
%\‚ Ì/_, _

Агtіfkіа kіteЊgenсe ог' the
5^пdаг QL

Make your micro think

Keith and Steven Brain

006°5

Artificial Intelligence is an increasingly important area
which will have profound effects on all our lives in the next
few decades. This book will give you an appreciation of
the possibilities and problems which Al brings.

Keith and Steven Brain are a father and son team and have
already published the best-selling Dragon 32 Games
Master, Advanced Sound and Graphics for the Dragon
computer and Artificial Intelligence on the Spectrum. They
are both regular contributors to Popular Computing
Weekly.

GB f NET	 +066.95

ISBN 0-946408-41-6

H]

	

'
9 780946 4084 2

Artificial Intelligence on the Sincla ί r QL introduces the
concepts involved in Al. The book shows you how to
implement Al routines on your QL and turn it into an
intelligent machine which can hald a conversation with
you, give you rational advice, learn from you and even
teach you.

The book explains AI from first principles and assumes no
previous knowledge of the subject. All the important
aspects of Al are covered and are fully illustrated with
example programs. In addition to covering programming in
SuperВasic the book explains haw to implement
`intelligent` routines for the QL Archive database program.

Artificiaiintelligence on the
Sinclair QL

Make your micro think

Keith and Steven Brain

UB/TIB Hanno'jer
100 526 535

11!1 [I I I 11 11i ill 1ј' іІЯіІІі
F 4082

89

I
14533

First published 1984 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street
London WC2R 3LD

• •
С ОNТЕNТЅ

Copyright О Keith and Steven Brain. 1984

0 Sinclair QL, QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd.
CO The contents of the QL are the copyright of Sinclair Research Ltd.
0 Quill, Archive, Abacus and Easel are Trade Marks of Psion Software
Ltd.

4ll rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in an y form or by any means,
electronic, mechanical, photocopying, recording and/or otherwise,
without the prior written permission of the Publishers.

British Library Cataloguing in Publication Data

Brain. K.R.
Artificial intelligence on the Sinclair QL.
1. Artificial intelligence—Data processing
2. Sinclair QL (Computer)
I. Title	 II. Brain, Steven
001.53'5'0285404	 Q336

ISBN 0-946408-41-6

Cover design by Grad Graphic Design Ltd.
Cover illustration by Stuart Hughes.
Typeset by Paragon Photoset, Aylesbury.
Printed in Great Britain b y Short Run Press Ltd, Exeter.

Page
Program Notes	 vii

Introduction	 1

1 Artificial Intelligence	 3

2 Just Following Orders	 7

3 Understanding Natural Language	 29

4 Making Reply	 49

5 Expert Systems	 69

6 Making your Expert System Learn for Itself 85

7 Fuzzy Matching	 109

8 Recognising Shapes	 123

9 An Intelligent Teacher	 137

10 Of Mice and Men	 147

11 Intelligent Use of Archive	 163

12 A Naturally Expert Salesman 	 181

II

a a

Contents in detail

CHAPTER 1
Artificial Intelligence
Fantasy — reality: two-way conversations, robots, expert systems.

CHAPTER 2
Just Following Orders
Preset orders and fixed responses — a REPeat loop — upper and lower
case — invalid requests — a tunic and screen movement — using
direction PROCedures — command words and responses in DATA
arrays — expanding the vocabulary — removing redundancy —
abbreviated commands — partial matching — sequential commands.

CHAPTER 3
Understanding Natural Language
Dealin g with sentences—subjects, objects, verbs, adjectives, adverbs —
punctuation — a sliding search — partial matching — rearranging the
wordstore array.

CHAPTER 4
Making Reply
.Getting more sensible replies—checking many words—making logical
decisions before replying — picking the appropriate reply — alternative
subjects — putting the subject in context — inserting the subject in the
sentence — problems with objects — changing tense.

CHAPTER 5
Expert Systems
How an expert works — simple problems — more difficult problems —
including pointers — sequential and parallel branching — checking how
well the answers match the data — better in bits.

CHAPTER 6
Making your Expert System Learn for itself
Letting the computer work out its own rules for two objects — expanding
the system — automatic digestion.

v

A rtificíσ! Jnrel!igence on :he Sinclп ir OL

CHAPTER 7
Fuzzy Matching
Recovering information from the human mind — soundex coding — a
program for converting names — retrieving information.

CHAPTER 8
Recognising Shapes
Simulating the action of a light sensor — looking at a smaller number of
features of the pattern.

CHAPTER 9
An Intelligent Teacher
Questions and answers — keeping a score — shifting the emphasis of
questions to areas of difficulty — making questions easier or harder.

CHAPTER 10
Of Mice and Men
Setting the scene — making the maze — finding the route — reaching the
centre — deciding where to move to — coping with corners — reducing
the amount of checking — random selection at junctions — backtracking
— finding new routes — speeding up.

CHAPTER 11
Intelligent Use of Archive
Extracting the required information correctly — finding a match 	
searching specifically — selecting records — putting things in order 	
using PROCedures — a more friendly (inter)face.

CHAPTER 12
A Naturally Expert Salesman
Combining processing natural language with an expert system — making
conversation with the computer — making decisions — the Computer
Salesman.

•
Program Notes

The order of the Y and Y coordinates in the 'AT' command vary with the
version of the ROM. If the screen organisation looks wrong, then simply
reverse the two parameters following AT.

vi	 V7,

Introduct ion

Artificial intelligence is undoubtedly an increasingly important area in

computer development and one which will have profound effects on all

our lives in the next few decades. The main aim of this book is to

introduce the unenlightened reader to some of the concepts involved in

artificial intelligence and to show them how to develop 'intelligent'

routines on the QL which they can then incorporate into their own

particular pro grams. Only a superficial knowledge of programming is

assumed and the book works from first principles as we believe that this is
essential if you are really to understand the problems involved in

simulating intelligence, and how to set about overcoming them.

The basic format of the book is that ideas are taken and suitable
routines built up step by step, exploring and comparing alternative

possibilities wherever possible. Rather than simply giving you a series of

completed programs, we encourage you to experiment with different

approaches to let you see the results of variations in technique for

yourself. Detailed flowcharts of most of the routines are included.

Although the main emphasis is placed on the AI aspects of the routines,

we have taken the opportunity to exploit many of the advantages of

SupeгBASIC, such as PROCedures, FuNctions, and Windows.

You may notice that in places certain lines are strictly redundant,

but these have been deliberatel y included in the interests of clarity

of program flow. As far as possible, retyping of lines is strenuously

avoided but modification of routines is commonplace. Certain defined

PROCedures are common to several chapters and we remind you that

these can be SAVEd separately to microdrive and then transferred into

the different programs with the MERGE command.

All listings in the book are formatted so that they clearly show nesting

and program flow, and so they do not appear exactly as they will on the

screen display. In most cases spaces and brackets have been used liberally

to make listings easier to read but be warned that some spaces and

brackets are essential so do not be tempted to remove them all.

All routines have been rigorously tested and the listings have been

checked very thoroughly so we hope that you will not find an y bugs. It is a

sad fact of life that most bugs arise as a result of 'tryping mitsakes by the

user. Semicolons and commas may look insignificant but their absence

can have profound effects!

1

λ rtifıcinl Intelligence On die Sinclп ir QL

	 a
Artificial intelligence is increasing in importance every day and we

hope that this book will give you a useful insight into the area. Who knows
— if you really work at the subject you might be able to persuade your
machine to read our next book for itself!

Once again thanks are due to Liz who has managed to resist the
temptation to throw out 'all that rubbish and redecorate the room.

Keith and Steven Brain
Groeswen, July 1984

•
CHAPTER 1

Artificial Intelligence

Fantasy
For generations science fiction writers have envisaged the development
of intelligent machines which could carry out many of the functions of
man himself (or even surpass him in some areas), and the public image of
artificial intelligence has undoubtedly been coloured by these images.

The most common view of a robot is that it is an intelligent machine of
generally anthropomorphic (human) form which is capable of indepen-
dently carrying out instructions which are given to it in only a very general
manner. Of course, most people have ingrained Luddite tendencies when
it comes to technology so in the early stories these robots tended to have a
very bad press. being cast in the traditional role of the 'bad guys' but with
near-invincibility and lack of conscience built in.

The far-sighted Isaac Asimov wove a lengthy series of stories around
his concept of 'positronic robots' and was probably the first author really
to get to grips with the realities of the situation. He laid down his famous
'Three Laws of Robotics' which specified the basic ground rules which
must be built into any machine which is capable of independent action —
but it is interesting to note that he could not see the time when the human
race would accept the presence of such robots on the earth itself. Star
Wars' introduced the specialised robots R2D2 and СЭРО , but we feel that
many of their design features were a little strange: perhaps there is a
'Interplanetary Union of Robots' and a demarcation dispute prevented
direct communication between humans and R2D2.

Of course intelligent computers also appear in boxes without arms and
legs, although flashing lights seem obligatory. Input/output must
obviously be vocal but the old metallic voice has clearly gone out of
fashion in favour of some more definite personalit y . If all the boxes look
the same then this must be a good idea, but please don't make them all
sound like Sergeant-Major Zero from Terrahawks'!

Michael Knight's KITT sounds like a reasonable sort of machine to
converse with, and it is certainly preferable to the oily SLAVE and
obnoxious ORAC from 'Blake's Seven'. ORAC seemed to pack an
enormous amount of scorn into that little perspex box but other writers
have appreciated the difficulties which may be produced if you make the
personality of the machine too close to that of man himself. In Arthur C.

Artificial Jn'elligence on the Sinclair QL
	

Chapter I Artificial Intelligence

Clarke's 2001: λ Space Odyssey' the ultimately-intelligent computer
HAL eventuall y had a nervous breakdown when he faced too many
responsibilities. In 'The Restaurant At The End of The Universe' the
value of the 'Sirius Cybernetics Corporation Happy Vertical People
Transporter' was reduced significantly when it refused to go up as it could
see into the future and realised that if it did so it was likel y to get zapped,
and the 'Nutri-Matic Drinks Synthesiser' was obviously designed by
British Rail Catering as it always produced a drink that was 'almost, but
not quite. entirely unlike tea'. More recentl y the rather flashy holo-
graphic figure of `Automan' has demonstrated some quite amazing
capabilities in his fight against crime, although there do seem to be some
major omissions in his programming with regard to dealings with women.

More worrying themes have also recently appeared. The most sig-
nificant feature of 'Wargames' was not that someone tapped into
JOSHUA (the US Defence Computer) but that once the machine started
playing thermonuclear war it wouldn't stop until someone had won the
game. In 'The Forbin Project' the US and Russian computers got
together and decided that humans are pretty irrelevant anyway.

Reality
The definition and recognition of machine intelligence is the subject of
fast and furious debate amongst the experts in the subject. The most
generally accepted definition is that first proposed by Alan Turing way
back in the late 1940s when computers were the size of houses and even
rarer than a slide-rule is today . Rather than trying to lay down a series of
criteria which must be satisfied, he took a much broader view of the
problem. He reasoned that most human beings accept that most other
human beings are intelligent and that therefore if someone cannot
determine whether they are dealing with another man or woman, or only
a computer, then they must accept that the machine is intelligent. This
forms the basis of the famous 'Turing Test' in which an operator has to
hold a two-way conversation with another entit y via a keyboard and try to
get the other party to reveal whether it is actually a machine or just
another human being — ven, awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carry on by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantl y to find the secret,
apparentl y without success. However, after some time the interviewer
returns, shakes him b y the hand, and congratulates him with the words:
`Well done, old man, the machine couldn't tell if you were human so you
are just what we need as one of Her Majesty's Tax Inspectors!'

Everyone has heard from the TV advertisements that the use of

computer-aided design techniques is now very common and that in-
dustrial robots are almost the sole inhabitants of car production lines
(leading to the car window sticker which claims 'Designed by a computer..
built by a robot, and driven by an idiot'). In fact most of these industrial
robots are really of minimal intelligence as they simply follow a pre-
defined pathway without making very much in the way of actual decisions.
Even the impressive paint-spraying robot which faithfully follows the
pattern it learns when a human operator manuall y moves its arm cannot
learn to deal with a new object without further human intervention.

On the other hand the coming generation of robots have more
sophisticated sensors and software which allow them to determine the
shape, colour, and texture of objects, and to make more rational
decisions. Anyone who has seen reports of the legendary 'Micromouse'
contests where definitely non-furry electric vermin scurry independently
and purposefully (?) to the centre of a maze will not be amazed b y our
faith in the future of the intelligent robot, although there seems little
point in giving it two arms and two legs.

Another important area where artificial intelligence is being currently
exploited is in the field of expert systems, man y of which can do as well (or
even better) than human experts. especially if you are thinking about
weather forecasting. These systems can be experts on any number of
things but, in particular, they are of increasing importance in medical
diagnosis and treatment — although the medical profession doesn't have
to worry too much as there will always be a place for them since
`computers can't cuddle'.

A major barrier to wider use of computers is the ignorance and
pigheadedness of the users. who will onl y as a last resort read the
instructions, and expect the machine to be able to understand all their
little peculiarities. Processing of 'natural language' is therefore a major
growth area and the 'fifth generation' of computers will be much more
user-friendly.

Most of the serious work on AI uses more suitable (but exotic)
languages, such as LISP and PROLOG. but unfortunately these tend to
be pretty unintelligible to the average user! The Supe гBASIC routines
which follow cannot be expected to give you the key to world domination,
although they should give you a reasonable appreciation of the
possibilities and problems which artificial intelligence brings. Like all
specialists, the experts in Al have their own technical jargon with which
to impress the ignorant natives. However, as this book is squarely aimed
at the edification of Mr/Ms Average, we have deliberatel y chosen to
avoid the use of such jargon wherever possible, as we feel that it tends to
confuse rather than aid the novice!

a 5

YES PRINT
"NORTH"

NO 	 ,	 Í

YE5	 / PRINTÉA^ST'"	
EASГ "

CHAPTER 2

Just Following Orders

As your computer is actuall y totally unintelligent, you can really only
converse with it at a relatively basic level, and in a formally structured
way. We will demonstrate later how you can tr y to break down this
`language barrier', but let's make sure we can walk before we try to run.
The first step is to have a series of preset orders to which there are fixed
responses.

We will start by examining the problems involved in making the
computer understand you giving it compass directions. At first sight the
simplest way to program this appears to be to form a REPeat loop which
asks for an INPUT from the user and contains a separate IF-THEN line
for each possibility (see Flowchart 2.1).

	 / INPUT
DIRECTION

м

Flowchart 2.1: Giving Compass Directions.

We will use two PROCedures, which will be steadily refined as the
chapter progresses. For the moment, START just clears the screen,

Chapter 2 Just Following Orders

whilst WHICHWAY does the work of comparing your input with four
key command words.

10 START
20 WHICHWAY

10000 DEFine PROCedure START
10010	 CLS
10990 END DEFine START

11000 DEFine PROCedure WHICHWAY
11010	 REPsat DIRECTION
11020	 UNDER 0 : PRINT \"DIRECTION?"
11030	 INPUT IN$ 1 UNDER 1
11100	 IF IN$="NORTH" THEN PRINT "NORTH"
11110	 IF IN$="SOUTH" THEN PRINT "SOUTH"
11120	 IF IN$="WEST" THEN PRINT "WEST"
11130	 IF IN$=''EAST" THEN PRINT "EAST"
11980	 END REPeat DIRECTION
11990 END DEFine WHICHWAY

To distinguish clearly between your INPUT and the response from the
QL we have arranged for the response to be UNDERlined, whilst the
backslash before 'DIRECTION' forces a new line.

A problem case?
When you test this routine you will soon find a common problem — the
computer only matches upper case (capital) letters, as strings are
compared exactly.

Thus, while 'NORTH' equals NORTH' and 'north' equals 'north',
'north cannot equal 'NORTH'.

The simplest thing to do is to just check if the first character of IN$ is
upper case. All capitals have CODEs less than 91 so a large prompt could
be displayed. when necessary , reminding you to press CAPSLOCK.

11040	 IF CODE(IN$) λ90 THEN
11050	 CSIZE 2,1 : PRINT "press CAPSLOCK',"

: CSIZE 1,0
11060	 NEXT DIRECTION
11070	 END IF

(In SuperBASIC there is no need to specify the first letter (IN$(1)) as
CODE will return the value for the first character in a string unless a
different point is specified.)

A more sophisticated approach is to persuade the computer to
automatically convert all letters entered into a particular case. To
understand how this operates we need to look at the binary rep-
resentation of the letters (see Table 2.1). You will notice that the only
difference between corresponding upper and lower case letters is that bit
6 (= 32) is always set in lower case but reset in upper case.

Table 2.1: Binary Representation of Upper and Lower Case Letters.

bit 8 7 6 5 4 3 2 1

value 128 64 32 16 8 4 2 1

λ 0 1 0 0 0 0 0 1

B 0 1 Π 0 0 0 1 0

Y 0 1 0 1 1 0 0 1

Z 0 1 0 1 1 0 1 0

a 0 1 1 0 0 0 0 1
b 0 1 1 0 0 0 1 0

y 0 1 1 1 1 0 0 1

z 0 1 1 1 1 0 1 0

To force both upper and lower case characters into lower case, we
therefore need to ensure that bit 6 is alwa ys set: to perform the opposite

conversion, we need to ensure that bit 32 is not set (that it is reset).
To set bit 6, we need to perform a 'bitwise OR' on the character code.

This sets bít 6 whether it was already set OR not.
For example:

'A' = 65 01000001

bitwise OR 32 00100000

01100001 = 97 (`a')

=97 01100001
bitwise OR 32 00100000

01100001 = 97 (`a')

To reset bit 6 we should perform a `bitwise NOT' on the character code.
This resets bit 6 whether or NOT it was set.

.4 rtіјіcіal intelligence on the S јncla јr QL

8 9

$1TWiSE
OR 32

t$ = I$(n)

ı

n=1 11'JPUT
I$

Flowchart 2.2: GET$ PROCedure.

(Note that all variables used are LOCal to the FuNction and are defined
in lower case to distinguish them from global variables.)

•	 Chapter 2 Just Following Orders
.4 гйficial Intelligence on the Sinclair QL

For example:	 20020	 n=1
200$0	 r$
20040	 INPUT i $
20050	 REPeat GET CHAR
20060	 t$ i$(n)

20070	 r$=r$ &г CHR ((CODE (t$)	 l 32) -
(м 2%tC5)

20060	 IF n=LEN (i $) THEN EXIT GET_.CHAR

20090	 п =п +1
20100	 END REPeat GET CHAR
20110	 RETurn r$
20120 END DEFine GET$

A = 65 01000001
bitwise NOT 32 00100000

01000001 = 65 (L A')

`a' = 97 01100001
bitwise NOT 32 00100000

01000001 = 65 (`A')

We will DEFine a FuNctíon called GET$ which will perform either
conversion. This uses only the bitwise OR command of the QL for two
reasons. The first (very practical) reason is that our QL, at least, doesn't
recognise the bitwise NOT command even though it ís in the manual! The
second reason is that it is then possible to use a single function to convert
from lower case to upper case or více versa simply by passing a parameter.

The GETS function is called from line 11030 which replaces the old
INPUT line and prompt.

11030 IN9=GET$(1) τ UNDER 1
11040 REMark DELETED
11050 REMark DELETED
110b0 REMark DELETED
11070 REMark DELETED

The parameter passed (cs) must be either 0 or 1 where 0 indicates
conversion to lower case, and 1 conversion to upper case.

An INPUT (i$) is made as usual, but then the REPeat GET_CHAR
loop takes each character in turn (i$ (n)) and this has a bitwise OR (¡¡)
with 32 performed on it. This forces bit 6 to be set. However the value of
32*cs (the parameter passed) is now subtracted from the result. If cs is
zero then this will have no effect and lower case will be produced. But if
cs is 1 then 32 will be subtracted, which will effectively reset bit 6. whether
it was originally set or NOT, and produce upper case. If the end of the
INPUT is reached (n=LEN (i$)) we EXIT GET_CHAR and the result
(r$) is RETurned to the calling line as IN$ (see Flowchart 2.2).

20000 DEFine FuNction GET^(c з)
20010	 LOCal i$, n, ta>, r$

10 11

/ ı NP!^^
DIRECTION

Artificial lurelligence on the Sńnclair OL	 Chapter 2 Just Following Orders

As it stands, this will modify all characters, which produces problems
such as a space (CНR$(32)) being transformed into CHR$(0) which is
non-displayable! We can prevent the conversion of spaces and numerals
by restricting the modification to characters having certain CODEs. A
simple way to do this is to restrict modification to characters having
CODEs greater than 65, by multiplying (32*cs) by NOT CODE (t$)<65.
Now if the CODE of t$ is less than 65, then (32*cs) will NOT be
subtracted, and the character will be unchanged.

20070	 rS=rs & CHR$((CODElt$) II 32)-
(32* с) * NOT CODE(t$)<65)

Invalid requests
If you type in anything other than the four key 'command words' then
nothing will be printed, except for another input request. It would be

more user-friendly if the computer indicated more clearly than your
command was not valid. You could do that by adding a test that none of
the command words has been found, but that becomes very long-winded,
and effectively impossible when you have a long list of valid words.

11140	 IF IN$<)"NORTH" AND IN$О 'SOUTH" AND
INil<>"WEST" AND IN$< >'ЕЅТ ' THEN

11150	 °SIZE 1,1 : PRINT "INVALID REQUEST"
ı CSIZE 1,0

11160	 END IF

On the other hand, adding NEXT DIRECTION to the end of each
IF–THEN line will force a direct jump back to the INPUT when a valid
command is detected. If all the IF tests are not true then the program falls
through to line 11150 which prints a warning. Making direct jumps back
when a valid word is found is a good idea anyway, as it saves the system
making unnecessary tests when the answer has already been found (see
Flowchart 2.3).

11100	 IF IN#="NORTH" THEN PRINT "NORTH"
NEXT DIRECTION

11110	 IF IN# & "SOUTH" THEN PRINT "SOUTH" z
NEXT DIRECTION

11120	 IF IN$-"WEST" THEN PRINT "WEST" : NEXT
DIRECTION

11130	 IF INW EAST" THEN PRINT "EAST" : NEXT
DIRECTION

11140	 REMark DELETED
11160	 REMark DELETED

Flowchart 2.3: Deleting Unnecessary Tests.'

Adding some action
That will echo the command given on the screen but of course it does not
actually do anything. As a model to work with we will introduce Boris the
turtle, who will move around the screen in response to our commands. To
convenientl y display him separately from the text we will divide the
screen up into windows in a SCREEN PROCedure, which splits the
screen vertically with window #1 (white) on the left and #2 (green) on the
right. Now text will appear on the right window, and Boris's trail on the
left window.

12000 DEFine PROCeduı re SCREEN
12010	 MODE 4
12020	 WINDOW #1,230,200,257,16
12030	 PORDER #1,1,2
12040	 CSIZE #1,1,0
12050	 PAPER #1,4
12060	 INK #1,0
12070	 CLS #1
12080	 WINDOW #2,230,200,26,16
12090	 BORDER #2,1,2

12	 13

ArtifiCial Intelligence on the Sinclair QL
	 Chapter 2 Just Following Orders

CSIZE #2,1,0
PAPER #2,7
INK #2,0
CLS #2
INK #0,7

12150	 CLS #0
12160 END DEFine SCREEN

The START PROCedure must now call SCREEN. set an appropriate
drawing SCALE, and move the turtle to his start position. The absolute
coordinates of the start position are 10,10 in channel #2, but it is simpler if
we express movement as plus and minus in relation to this point by means
of variables X% and Y%.

10010
	

SCRεεN

100г0
	

SCALE #2,20,0,0
10030
	

LINE #2,10,10
10040
	

У%=0

The actual screen movement is dealt with b y the TRACK PROCedure,
which draws a LINE_Relative to the last point (0,0). Notice that the
updating parameters are passed to TRACK as X1 and Yl.

13000 DEFine PROCedure TRACK(X1,Y1)
13010	 LINER #2,0,0 TO X1,Y1
13020 END DEFine TRACK

We now need to add the real response to your command, as well as the
message indicating that it has been understood, and a printout of your
current position (see Flowchart 2.4).

11020	 UNDER 0 : PRINT \"DIRECTION?"\"Xn";
XY,"Y n "1Y7.

11100	 IF IN$="NORTH" THEN PRINT "NORTH"
YY.=Y%+1 : TRACK 0,1 s NEXT DIRECTION

11110	 IF IN$="SOUTH" THEN PRINT "SOUTH" :
Y7.=((Yl. 3)-3)/3 a TRACK 0,-1 : NEXT
DIRECTION

11120	 IF IN$'"WEEТ " THEN PRINT "WEST" :
Х 7..=((X'/.#3)-3)/3 : TRACK —1,0 : NEXT
DIRECTION

11130	 IF IN#="EAST" THEN PRINT "EAST" :
X%=X'1.+1 : TRACK 1,0 : NEXT DIRECTION

SET
X ANP Y

/ PRINT
INVALID"

Flowchart 2.4: Adding a Response.

(You may notice that lines 11110 and 11120 look a little strange as X%=
((Х%*3)-3)/3 and Y%=((Y%*3)-3)/3 effectively only subtract one
from X% and Y%. The reason for this long-winded path is that the initial
version of the QL had a bug which caused —1-1, —2-2, and —4-4 to all
result in 0! As —3 is the smallest number which can be subtracted
correctly, X% is multiplied by 3 before subtracting 3 and divided by 3
again! If your machine can successfully calculate —1-1=-2 then you can
replace this long version with X%=X%-1 and Y%=Y%-1, wherever
it appears in this book.)

Using direction PROCedures
Of course that is a very simple example and, particularly where the results

12100
12110
ı 2120
12130

12140

14
	 15

Chapter 2 Just Following Orders

First you must DIMension arrays of suitable length for command
words. C$, and responses. R$. As only fixed length string arrays are
allowed in SuperBASIC, both the length of each element (20), and the
number of elements (з) must be defined. (Note that SuperВASIC has a
Zero element which is also used. thus catering for the four directions.) We
now also need to think about how we will match these arra y elements
against the INPUT. The length of an ordinary string input will be the
number of characters entered — but the length of the array elements is
fixed at 20. with any unused positions being filled with CHR$(0).

Now an input of:

NORTH

cannot be equal to an array element containing

NORTH (plus 15 empty positions)

unless we force our INPUT string into the same format by declaring it
with a DIM (IN$,20) statement.

10050	 DIM C$(3,20),R$(3,20),INS(20)

If you put the commands and responses in pairs in the DATA statement
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.2).

Table 2.2: Content of Command and Response Arrays.

ELEMENT
	

COMMAND	 RESPONSE
NUMBER
	

WORD (C$(n))	 (R$(n))

At this point we will add some lines to the S ТART PROCedure which
will initialise the arrays (fill them with your words). As SupeгВASIC does
not automatically RESTORE on RUN, this must be done explicitly.

10060	 RESTORE
10100	 DATA "NORTH", "GOING NORTH","SOUTH",

"GOING SOUTH","WEST 1 'GOING WEST",
"EAST","GOING EAST"

10200	 FOR N=0 TO з

0
1
2
3

GOING NORTH
GOING SOUTH
GOING WEST
GOING EAST

NORTH
SOUTH
WEST
EAST

Artificial Intelligence on the Sinclair QL

of your actions are more complicated, it may be better to put the
responses into individual PROCedures.

11100	 IF IN$="NORTH" THEN NORTH : NEXT
DIRECTION

11110	 IF IN$="SOUTH" THEN SOUTH : NEXT
DIRECT τ ON

11120	 IF IN$="WEST" THEN WEST : NEXT
DIRECTION

11130	 IF IN$="EAST" THEN EASτ : NEXT
DIRECTION

14000 DEFine PROCedure NORTH
14010	 PRINT "GOING NORTH"
14020	 Y%=Y%+1
14030	 TRACK 0^1
14090 END DEFine NORTH

14100 DEFine PROCedure SOUTH
14110	 PRINT "GOING SOUTН "
14120	 У%=((У%*)-з) ıз
1410	 TRACK 0,-1
14140 END DEFine SOUTH

15000 DEFine PROCedure WEST
15010	 PRINT "GOING WEST"
15020	 XY.=((X 'í.#2)-з) / з
150з0	 TRACK -1,0
15040 END DEFine W ΣSт

16000 DEFine PROCedure EAST
16010	 PRINT "GOING EAST"
16020	 X'/.=X7.+1
16030	 TRACK 1,0
16040 END DEFine EAST

More versatility
You could extend this use of IF-THEN tests ad infinitum (or rather ad
memoriam finitum!) but it is really rather a crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DATA and then store them in string arrays.

16	 17

NO

PR' NT
MATGHI N6
ňE5 РnN5E
EIΣ M EM

YES

YES

YES

YES

Y=Y-1

	/ PRINT
X Λ иo Y

/ INPUT /
/ DIRECTION/

CHECK
	 COMMAND

ELEMENT

INCREМENT
ELEMENT
NUMBER

Artificial Intelligence on the Sinclair OL
	

•	 Chapter 2 Just Following Orders

10210	 READ C$(N) s READ R$(N)
10220	 END FOR N

All those IF—THEN tests can be replaced by a single loop which compares
your INPUT with each element of the array containing the command
words (C$) in turn (see Flowchart 2.5).

Flowchart 2.5: More Versatility.

11100	 FOR N=0 TO 3
11110	 IF IN$<7C*(N) THEN
11120	 END FOR N
11130	 REMark DELETED
11140	 REMark DELETED
11160	 ELSE
11170	 PRINT RC(N)

11200
	

END IF

Now IF your INPUT does not match any of the command words the test
falls through. or ELSE the corresponding response element (R$(N)) is

printed out.
Of course we are now back in our original position of actuall y doing

nothing, so we need to add back some actions. We will do this through a
new POSITION PROCedure which is called when a match is found.

11100	 POSITION

We still have a pointer to indicate which word matched the input as N (the
number of array elements checked) holds this value. POSITION uses this
in the SELect command to move to appropriate routines which are
similar to those we wrote earlier, except that there is no need to define the
particular message, as this has alread y been printed as R$(N).

14000 DEFine PROCedure POSITION
14010	 SELect ON N
14020	 ON N=0
14030	 Y%=Y%+1
14040	 TRAC;< 0,1
14100	 ON N=1
14110	 У%=(СУ%*3)-3)/3
14120	 TRACK 0,-1
14140	 REMark DELETED
14190	 REMark DELETED
14200	 ON N=2
14210	 Х%=((X%ßc3)-3)/3
14220	 TRACK —1,0
14230	 REMark DELETED
14290	 REMark DELETED
14300	 ON N=3
14310	 Х%= Х %+1
14320	 TRACK 1,0
14330	 END SELect
14390 END DEFine POSITION

Expanding the vocabulary
The arrays can easily be expanded to contain more words and it would be
better if we defined the number of words as a variable, WD%, which we
would then use to DIMension the arrays and for both the fillin g and
scanning loops. This produces a general routine which is easily modified.

18
	

19

4rnficial Intelligence on the Sinclair OL •	 Chapter 2 Just Following Orders

10050	 WD =3 : DIM CS (WD%, 20) , RS (WD7., 20) ,

INs (20)

10200	 FOR N=0 TO WD%

11100	 FOR N=0 TO WD%

For example we can add intermediate compass directions which change
both X and Y axes.

10050	 WD7 : DIM C#(WD%,20),R'#(WD%,20),
INS (20)

10110	 DATA "NORTH EAS Т ","GOING NORTH EAST°

,"SOUTH EЛST","GOING SOUTH ЕЯST"

10120	 DATA "SOUTH WEST","GOING SOUTH WEST"
,"NORTH WEST',"GOING NORTH WEST"

and add some more actions:

14330	 REMark DELETED
14390	 REMark DELETED
14400	 ON N=4
14410	 Y%=Y%+1 і X%=X%+1

14420	 TRACK 1,1
14500	 ON N=5
14510	 У% ((Y%#3)-3)/ З : X%=X%+1
14520	 TRACK 1,-1

14600	 ON N=6
14610	 У%=((У%*3)-3)/3 ı X%=((X'/.$ 3)-3)/3
14620	 TRACK -1,-1

14700	 ON N=7

14710	 YX=Y%+1 : X''/.=((X%*3)-3) /3

14720	 TRACK -1,1

14730	 END SELect
14740 END DEFine POSITION

Removing redundancy
All the responses so far have included the word 'GOING' and this word

has actuall y been typed into each DATA statement. Now t yping practice
is very good for the soul but it would be much more sensible to define this
common word as a string variable. Notice that a space is included at the
end to space it from the following word. All occurrences of the word
'GOING' can be deleted from the DATA and GS combined with each
key word in the response instead.

10100	 DATA "NORTH"1"NORTH","SOUTH","SOUTH",
WEST, WЕЅТ ', 'ЕЅТ , 'ЕЅТ

10110	 DATA "NORTH EAST","NORTH EAST","SOUTH
ЕAST","SOUTH EAST"

10120	 DATA "SOUTH WEST","SOUTH WEST","NORTH
WEST", "NORTH WEST"

10130	 G$= "GOING "

11170	 PRINT G*IR$(N)

Now that is starting to look rather silly as both arra ys contain exactl y the
same words, so wh y not get rid of the response arrays. R$, and simply
print CS(N)? Well, in this case you could do that without any problem,
but of course where the responses are not simply a repetition of the input
(as is very often the case) the second arra y is essential.

If you look hard at all those action PROCedures you will realise that
they all do essentiall y one thing — update the values of X% and Y%.
Now we could include that information in the original DATA and get rid
of them altogether! We need to add two more arrays to hold the X and Y
coordinates, add the appropriate values into the DATA lines after each
response, and READ in the information in blocks of four (INPUT,
RESPONSE, X-MOVE, Y-MOVE — see Table 2.3).

Table 2.3: Y and Y Moves Incorporated into Arrays.

ELEMENT COMMAND	 RESPONSE
NUMBER	 WORD C$(n)	 R$(n)

X-MOVE Y-MOVE
X(n)	 Y(n)

1 NORTH	 NORTH О -1
2 SOUTH	 SOUTH О 1
3 WEST	 WEST -1 0
4 EAST	 EAST 1 0
^ NORTH-EAST NORTH-EAST 1 -1
ь SOUTH-ЕАST sOUTH-EAsT 1 1
7 SOUTH-WEST SOUTH-WEST -1 1
8 NORTH-WEST NORTH-WEST -1 -1

10050	 WD %=7 τ DIM C# (WD'/., 20) , R# (WD'/., 20) , IN#
(20) , X (WD'/.) , Y (WD'/.)

10100 DATA "NORTH","NORTH"0,1,"SOUTH",
"SOUTH", 0,-1,"WEST", 11 WEST", -1, 0,
"EAST","EAST", 1,0

20 21

Y=
MATtHf NG

E L:M ENT
MATCHING
X ELEMEN75

PRINT
МАТс Н ING
RESPONSE
Ee EМE

•	 Chapter 2 Just Following Orders

10110	 DATA "NORTH EAST","NORTH EAS Т ",1,1,
"SOUTH EAST","SOUTН EAST",1,-1

10120	 DAτA "SOUТН WEST", I 'SOUTH WEST",-1,-1
,"NORTH WЕSТ ","NORTH WЕS Т",- ı , ı

10210	 READ C$(N) : READ R$(N) : READ X(N)
: READ Y(N)

Now we can delete all the redundant lines and modify the TRACK
PROCedure so that X% and Y% are suitably updated (see Flowchart
2.6).

/

/

 PRENT I
	 RANDY

INPUT
DIRECTION

CHECK
COMMAND
ELEMENT

INCREМENT
ELЕMENT
NUMBER

YES

Flowchart 2.6: Using Linked Arrays.

Х%((К Y. Ї3)+(X (N) * 3) λ /3 σ

Y'/.=((Y%*3) +(Y (N) #3)) /3
TRACK X(N),Y(N)

REMark DLINE 14030 TO 14730

This overall pattern of putting all the information into a series of linked

arrays is a very common feature which is used in several of the later
programs in this book.

Abbreviated commands
So far we have always used complete words as commands, but that means
that you have to do a lot of typing to give the machine your instructions. If
you are feeling lazy. you might think of changing the command words to
the first letter of the word only, and then INPUT a single letter. However,
unless you start using random letters, that will only start work as long as
no two words start with the same letter! To code all the eight compass
directions used above, we will have to use up two letters: N, NE, E, SE. S,
SW, W, NW.

10100	 DATA I 'N' I , l 'NORTH", 0, 1, l 'S", "SOUTH", 0, -
1,"W","WEST",-1, 0,"E"p"EAST°,1,0

10110	 DATA "NE","NORTH EAST",1,1,"SE",
"SOUTH EASTII,1,-1

10120	 DATA "SW", 11 SOUTH WEST",-1,-1,"NW",
'NORTH WEST",-1, 1

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching
in all the programs above we have always checked that the input matched
a word in the command array exactly . However it would be useful if we
could allow a number of similar words to be acceptable as meaning the
same thing. For example. you could check whether the first letter of the
input word matched the abbreviated ke yword by only comparing the first
character (taking IN$(1)).

11080	 IN$=IN$(1)

That will work with NORTH. SOUTH, EAST and WEST, but there are
obvious problems in dealing with the intermediate positions, so we will
get rid of these positions again.

10050	 WD%=3 s DIM CS(WD%,20) ,RS(WD%,20),

IN$ (20), X (WD%),Y(WD%)

10110	 REMark DELETED
10120	 REMark DELETED

NC

14010

14020

14030

Artificial Intelligence on the Súeclair QL

23

MOVE TO
NEXΓ

GNARACfER

Flowchart 2.7: Locating the Position of a Space.

/COMMAND/
INPUT

PR(NT
POSITION

OF SPAGE

YES

•Artificia L Intelligence on the Sinclair OL

In addition there are lots of words beginning with the letters N. S, E and
W — all of which would be equally acceptable to the machine as a valid
direction.

For example:

NOT NORTH

would produce:

GOING NORTH

A more selective process is to match a number of letters instead of just
one. In this example, the first three letters of the four main directions are
quite characteristic.

NOR
SOU
EAS
WES

If you use these as command words then, for example:

NOR
NORTH
NORTHERN

Sequential commands
In the routines above we have dealt with the intermediate compass
positions as separate entities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get to any point and if more than one command word could be
understood at the same time we would not have to worry about checking
for directions such as NORTH EAST' as they could be dealt with b y the
combination of `NORTH' and 'EAST'.

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up a separate word? The answer, of course, is that you
see a space between them. Now, if we look for spaces we can break the
input into separate words which we can look at individually. The easiest
way to look for spaces is with the INSTR command which searches the
whole of a designated search string for a match with a second target
string.

To begin with we will incorporate INSTR into a WORDSPLIT
FuNction which is now called from line 11080.

11080	 WORDBPLIT

15000 DEFine FuNction WORDSPLIT
15010	 SPY.=" " INSTR 1N$

15030	 PRINT "SP% "I SP%

15090 END DEFine WORDSPLIT

• Chapter' Just Following Orders

and NORTHERLY	 This starts by checking whether the first character in IN$ is a space. If it is
not a space, then it will automatically continue checking until the end of

will all be equall y acceptable. but:	 INS is reached. If no space is found in the whole of INS then SP% will he
set to zero. If a space is found the value of SP% will be the number of

NOT	 characters along INS that the space is located (see Flowchart 2.7). The
NEARLY	 temporary line 15030 prints out SP% so that you can observe INSTR in
NOWHERE	 action.
and NONSENSE

will all be rejected.
All we need to do is to take the first three letters of the input. IN$(1 TO

3), and compare them with a revised DATA list.

10100 DATA "NOR","NORTH",0,1,"SOU","SOUTH"
,0, —1,"WES 1 ,"WEST",-1,0,"EAS","EAST"
,1, 0

11080	 IN$=IN$(1 TO 3)

74 25

	 / 1NPUτ
/ COMMAND

Sετ sEARLN
POS ιτ г oи ı

(sτ= 1)

ADD SPA[ε
To

STAR

MOVE 'ГО
NEYТ

CHARACTER

ί

NO

i•Artificial Intelligence on the Sinclair 0L

Try this out with:

NOR WES

SP% 4

NORTH WEST

SP% б

NOR NOR WEST

SP% 4

(Note that you will also get an `Invalid request' message for the moment
as IN$ is no longer converted to the first three characters only.)

Although the length of the word is accounted for by SP%, only the first
space is found. To find all the spaces we are going to have to work harder.

First of all a space needs to be added to the front end of IN$. so that the
first word has the same format as the others. and we must define the start
position of the search (ST%) as zero.

Chapter 2 Just Following Orders

Č Aнчč Eftš 	
AFтER	

11sPACE

11

Flowchart 2.8: Searching for a Keyword.

11

YES 1 I

11

5E 5EARC^λ
P05+лoи

τ0 SFAGE+1

(ST =sP + υ
CHECK

II MATCH

11080	 IN$=" " & IN$ ı ST'/.0	 Now we can use the value RETurned by WORDSPLIT to EXIT the
11090	 WORDBPLIT

The WORDSPLIT FuNction is now modified to find and cut out each
word in the INPUT (see Flowchart 2.8). Once a space has been found (at
SP%) a new search start position is defined as one character further along
IN$ (at ST%), a word (W$) cut out as the first three characters following
the space (ST% TO SТ%), and the INPUT string (IN$) truncated so
that it only contains the unchecked part of the entry (IN$(SТ% TO)).

REPeat WORDS loop as soon as no word is found.

11090	 IF WORDSPLIT THEN EXIT WORDS

Now typing:

NORTH WEST

produces:
15010	 SP'/.=" " INSTR IN $

1500	 SтZ =SP'/.+1

15070	 W$=IN$(8T% TO ST%+2) ı IN$=INf(STY. TO)

As WORDSPLIT was DEFined as a FuNction, we can use it to return
different values. We will RETurn minus one if no space is found
(SP%=0), and zero if a space is found and a word cut out.

15020	 IF SPY.=0 THEN RETurn —1

15080 RETurn 0

GOING NORTH
GOING WEST

and even:

NOR NOR EAST

is decoded as:

GOING NORTH

GOING NORTH

GOING EAST

27

A rojicial Intelligence on [lie 5ń τ c[пir ()L

It would be a lot neater if we deleted all those redundant `GOINGS' and
put all the reported directions on the same line. We need to PRINT G$
once, immediately before the INSIR check. Now each time we go

through the loop comparing the current word with those stored, we
`PRINT R$(N);' if there is a match. As there is a semicolon after this the
words will be printed on the same line but we also need to add spaces

between them.

11080	 INS=" " & IN$: ST%=0 : PRINT G$;

11170	 PRINT RCN); " ";

Now:

NORTH EАSТERLY SOUTH WEST

sends you neatly round in circles

GOING NORTH EAST SOUTH WES-T

CHAPTER 3

Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way as it has only been programmed to understand a ver y few words or
letters and it only recognises those if they are entered in exactl y the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing
whether the two strin gs match exactly.

However, in the real world everyone uses what is known as natural
language, which is a very sophisticated and extremely variable thing
which only the human brain can cope with effectively. Even if we forget
for the moment the differences between ' English' and 'American' or even
regional dialects of either of those (can 'Ow bist old hut' reall y mean
`How are you old friend'?), dealing with language has an infinite number
of problems.

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIA developed a superb translation program which could instantly
convert English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities in which it
converted everything he said into Russian, spoke that, and then
retranslated the Russian back into English. He was most impressed and
was totally absorbed until one of his aides reminded him that he had
forgotten that the First Lady was waiting for him outside. When he
ruefully commented 'out of sight, out of mind' he was amazed to hear the
machine come back with invisible maniac'!

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However, if we are going to be able to
deal with sentences we are going to have to think a lot harder than that.

The Oxford Dictionary definition includes 'a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement. question, command or request' but also concedes

29

s Chapter 3 Understanding Natural LanguageArtificial Intelligence on the Snclai г OL

that it is used loosely to mean 'part of writing or speech between two full
stops'. Phew! Can somebody translate that into everyday English,
please? The intricacies and illogicalities of the English language are
infamous, so how can we expect a computer to cope?

Parsing the parcel
Before we can understand a sentence we must break it down into its
component parts before we can analyse the significance of each individual
segment. This process of dividing up the sentence is known as 'parsing' by
the cognoscenti, so there's one more piece of jargon to impress your

friends if you are that way inclined.
Let's start by looking at some simple examples of sentences.

I WANT.

consists of a subject I and a verb WANT.

I WANT BISCUITS.

also has an object BISCUITS.

I WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATE.

I SOMETIMES WANT CHOCOLATE BISCUITS.

qualifies the verb with an adverb SOMETIMES.

The most important word in ail the above examples was 'WANT'. as it
conveyed the main idea. The second example was more informative as it
indicated that only one particular t ype of object. BISCUITS, was

wanted. The addition of an adjective. CHOCOLATE, gave further
information on the type of object wanted, but life became more uncertain
again when the adverb SOMETIMES was included.

Now how could a computer program decode such sentences? The
answer must be to find some logical structure in the sentence, so what
'rules could we lay down for this example?

1) All started with a subject. I. and ended with a full stop.

2) The last word was always the object BISCUITS (unless there was no

object and only two words).

3) If the word before the object was not the verb WANT, it was an
adjective. CHOCOLATE.

4) If the word before the verb was not the subject. I, it was an adverb,
SOMETIMES.

Let's write a program in which we give the computer sentences and ask it
to break them up into their component parts.

To begin with, we will set up a suitable SCREEN format with three
windows. Channel #0 at the bottom receives your input, and the rest of
the screen is split horizontally into windows #1 and #2. Window #1
(lower) shows the final results of the program, whilst window #2 (upper)
displays the workings of certain subroutines.

0 SCREEN

10000 DEFine PROCedure SCREEN
10010	 MODE 4
10020 CLS
10030	 WINDOW #x;435,40,36,216
10040	 WINDOW #1,455,100,26,116
10050	 WINDOW #2,455,100,26,16
10060	 BORDER #0,5,4
10070	 BORDER #1,3,2
10080	 BORDER #2,3,2
10090	 PAPER #0,0
10100	 PAPER #1,7
10110	 PAPER #2,4
10120	 INK #0,7
10130	 INK #1,0
10140	 INK #2,0
10150	 CSIZE #0,1,0
10160	 CSIZE #1,1,0
10170	 CS İ ZE #2,1,0
10180	 CLS #0 : CLS #1 : CLS #2
10190 END DEFine SCREEN

We need to give it a vocabulary of objects, adjectives and adverbs to work
with, by calling a SETUP PROCedure which READs these from
DATA and stores them in arrays OB$(n,l0), AJ$(n,10) and AVS(n,10),
according to type. Note that the length of the longest word (10) must be
taken into account when DiMensioning the arrays and that the number of
each type of word is defined as a variable (OB%, AJ%, AV%) so that it is
easy to add more words later.

31

ADD SPACε
τ0 END

YES CUr Our
WORD AND
ø1ORD
Sr TD SP-I)

MOVE τ0
NEXГ
CHAR.AςТξR

NO

NO I ЫСRЕλ ыТ
WORD

‚OIJNT
(wс =we* ı)

YES

PRINT
700

ı

Low,"

1 YES

Artificial Intelligence on the Sim-lnir QL
•

Chapter 3 Understanding Natural Language

10 REBTORE
40 SETUP

11000 DEFine PROC/dure BET UP
11010	 ОВ%=5 ı AJ'%=S 1 AVX=2	 DIM OB$ (OfiX, 10)

,AJ$(AJ%,10),AV$(AV'%,10)
11020	 DATA "BISCUITS","BUNS","CAKE","COFFEE"

,"TEA","WATER"
11030	 DATA "CHOCOLATE","bINGER","JAM","COLD"

! НОТ ', 'tLUКЕWRМ '
11040	 DATA "ALWAYS","OFTEN","SOMETIMES"

11050	 FOR N=0 TO OBX

11060	 READ OB$(N)

11070	 END FOR N
11080	 FOR N=0 TO AJ'f.

11090	 READ AJ$(N)

11100	 END FOR N

11110	 FOR N=0 TO AV!
11120	 READ AV$(N)

11130	 END FOR N
11140 END DEFine SET_UP

Now we need to INPUT the sentence to be parsed. using the GET$(1)
FuNction described previously, and a REPeat IN loop. (Don't forget that
you can use MERGE to transfer the original GET$ lines from the
program described in the last chapter!)

The sentence must be broken into words (see Flowchart 3.1). To make
life easier, we will add a space on to the end of INS, so that the format of
the last word looks just like that of other words, and also a dummy
character (*) right at the end for reasons which are explained below.

120	 IN#=IN$ 'н " #"

Once again we will use an INSTR search for spaces, and then cut out and
store each word. This is done here with the REPeat WORDS loop and
the WORDSTORE FuNction. The initial search start is defined as ST%
=1.

130	 SТ 7..=1
170	 RE?eat WORDS
180	 IF WORDSTORE THEN EXIT WORDS
190	 END REPeat WORDS

/
N PUT 	

COММAND /

θET SEARCH

(Š^IN1)

SET WORD
COUNT TO,

ZERO(wc=¢)

NO

5̂F.1ı¡0υ1
POь ιτ ON

(т = бі)

Flowchart 3.1: Cutting Out Words.

If a space is not found (SP% = 0) then the end of the sentence has been
reached. and WORDSTORE RETurns a value of —1. If WORDSTORE
RETurns any value other than zero then we EXIT the WORDS loop.

12000 DEFine FuNction WORDSTORE

12020	 SPX=" " INSTR IN3
120З0	 IF SPX=0 THEN RETurn —1

12090 END DEFine WORDSTORE

If a space is found, the section of IN$ from SТ% (current search start) to
SP%-1 (current space-1 = length of word) is cut out, the word count
(WC%) incremented, and the section stored in a word store array.
W$(WC%).

33

ТА κε
0вгεcτ

(08.ß(N))

•
Chapter 3 Understanding Natural LanguageArtificial Intelligence oп the Sinclair OL

20 DIM W$(5,10)

60 WC%=-1

12040	 WC%^WCY.+1

12060	 W9(WCX)=IN!(ST% TO SP%-1)

To begin with, SТ% = 1 so that the search starts at the first character in
the input string, and the word count variable. WC%. is set to zero (ie —1
+ 1) so that the first word found is stored in the zero element of the word
store array . The word count is incremented in each cycle so that the next
element of the array W$ is used next time.

The length of IN$ is now reduced by cutting off the word already stored
from the front end to leave IN$(SP%+1 TO) and a value of 0 RETurned

by the FuNction. As WORDSTORE is therefore zero, the WORDS loop
is repeated. The dummy asterisk at the end is needed as the new IN$ is
always defined as one more than the last space, so that the ultimate end of
IN$ must not be a space.

12070	 IN$1N$(BP%+1 T0)
1208д	 RETurn 0

Adding the following lines will produce a printout in the upper window
showing the reducing length of IN$ as the search proceeds.

	

150	 UNDER #2, 1 : PRINT #2,"IN#"\ :
UNDER #2, 0

	

12010	 PRINT#2 ,, IN$

A check is made that there are not more than six (0 to 5) words in the
sentence, as that would exceed the array size. If this is true then WC% is
reset to —1. and WORDSTORE RETurns —1, so that we EXIT the
WORDS loop.

	

12050	 IF WC%>5 THEN PRINT "SENTENCE TOO
LONG" : WC%=-1 : RETurn —1

When the search is completed (END REPeat WORDS), the list of words
found is printed nut in the lower window.

160	 UNDER #1, 1 : PRINT #1,"W#(N)"\ :
UNDER #1, 0

200	 FOR N=0 TO WC%
210	 PRINT, W$(N);" "
220	 END FOR N

A test is now made to see whether there is a match between words in the
sentence W$(N) and the objects in the vocabulary array 0B$(N) (see
Flowchart 3.2). Only words 2, 3 and 4 are checked as these are the only
possible positions for the object in our restricted sentence format. Three
different PROCedures are jumped to according to the position of the
matching word in the sentence. If no match is found a message is printed
and a new input requested.

Flowchart 3.2: Looking for a Match.

20	 FOR N=0 TO 08%
240	 IF Wß(2)=08$(N) THEN NEITHER :

NEXT IN

35

A rtificial Intelligence on the Sinclair QL

250	 IF W$(3)=OB$<N) THEN EITHER :
NEXT IN

260	 IF W$(4)=0B$(N) THEN BOTH :
NEXT IN

270	 END FOR N
280	 PRINT \,"object not found"
290	 END REPeat IN

•	 Chapter 3 Understanding Natural Language

First we check for a match between the second word and the contents of
the adverb array.

2020	 FOR N=0 TO AV%
2030	 IF W$(1)=V$(N) THEN PRINT

"ADVεRВ " : RETurn
2040	 END FOR N

If the object was found as word 3, then there was neither adjective nor

adverb.

1000 DEFine PROCedure NEITHER
1010	 PRINT \,"no adjective or adverb"
1020 END DEFine NEITHER

If the object was found as word 4. there could have been either an

adjective or an adverb in the sentence (see Flowchart 3.3).

1
PRINT

ADVERB OR
ADTECТIVE °

Flowchart 3.3: Adverb or Adjective.

2000 DEFine PROCedure EITHER
2010	 PRINT \,"either adjective or adverb"

If no match is found then we check the third word against the adjective
list.

2050	 FOR N=0 TO AJ%
2060	 IF W$(2)=AJ$(N) THEN PRINT ,

"ADJECTIVE" : RETurn
2070	 END FOR N

If a match is not found in either of these lists, then it would be useful to
indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb WANT', as in that case the
second word must have been an adverb. On the other hand if the second
word was the verb then the third word must have been an adjective.
Notice that the actual word which did not match is now included in the
message.

2080	 IF W$(1) <>"WANT" THEN PRINT \
"ADVERB ";W$(1);" NOT UNDERSTOOD" :
RETurn

2090	 PRINT \"ADJECTIVE ";W$(2);" NOT
UNDERSTOOD" : RETurn

2100 END DEFine EITHER

If a match is found in any test then we RETurn. Note that these possi-
bilities are exclusive and that in four words we can only have one or the
other.
Where both adverb and adjective are present we must check for both
(with ADV_CHECK and ADJ_CHECK), and therefore a match in the
first test also jumps on to the second test (see Flowchart 3.4).

3000 DEFine PROCedure BOTH
3010	 PRINT \"ADVERB and ADJECTIVE"
3020 ADV CHECi
3030 ADJ_СНЕСK
3040 END DEFine BOTH

aRJNT
PFU NТ/ оёспvа
NOT

UNDERS DOD

37

YE5

PRINT
"Аду

ERВ

NOT

UNDERζΡbТOOD 7

YE5

PRI NT
"AD7EC- VE
NOT

UNDЕRØÚ'

Artificial Intelligence on the Sinclair OL
	

•	 Chapter? Understanding Natural Language

„ ?RIt'JT
ADUEštB
гλD^EGijVE"

Flowchart 3.4: Adverb and Adjective.

If an ADVerb is found then we RETurn to the last PROCedure (íe
BOTH) and continue with ADJ_CHECK. Otherwise the word not
recognised is reported before ADJ_CHECK is called.

4000 DEFine PROCedure ADY_CHECK
4010 FOR N=0 TO AV%
4020	 IF W$(1)=AV$(N) THEN RETurn
4030 END FOR N
4040	 PRINT "adverb ";W$(1);" not understood"
4050 END DEFine ADV_CHECK

ADJ_CHECK works in the same way.

5000 DEFine PROCedure ADJ_CHECK

	

5010	 FOR N=0 TO AJ%

	

5020	 IF Wß(3)=AJ$(N) THEN RETurn

	

5030	 NEXT N

	

5040	 PRINT "adjective ";W$(3);" not
understood"

5050 END DEFine ADJ CHECK

What about punctuation?
As we already said, you usually recognise the end of a sentence because it
has a full stop, although when you type into a computer you usually forget
all about such trivialities. But what will happen in the program so far if
some 'clever user puts in the correct punctuation? If you think for a
moment you will realise that the computer will start complaining as it will
no longer recognise the last word, as this will actually be split out as the
word plus the full stop.

We therefore need to check if the last character in the input string IN$
is a full stop. The best place to check PUNCTUATION seems to be
immediately after the INPUT. If the end character (EN$ = IN$
(LEN(IN$))) is a full stop then simply CHOP this character off.and then
RETurn.

	

90	 PUNCTUATION

6000 DEFine PROCedure PUNCTUATION

	

6010	 EN$=IN$(LEN(IN$))

	

6020	 IF EN$="." THEN CHOP : RETurn
6050 END DEFine PUNCTUATION

7000.DEFine PROCedure CHOP

	

7010	 IN$=IN$(1 TO LEN(IN$)-1)
7020 END DEFine CHOP

Other punctuation marks may also appear at the end of the sentence so
perhaps we should look closer at the last character. More useful sentence
terminators are the question and exclamation marks which often indicate
the context of the words.

	

6030	 IF EN$="?" THEN CHOP : PRINT #0^"
QUESTION?"\

	

6040	 IF EN$=" ! " THEN CHOP : PRINT #0,"
EXCLAMATION"1

з8 39

YES GUT OFF
l.А5T

CHARACTER

NO

YE5 / PRINT
fαcιAwm

TACE ASCI
VALUE. OF

LASТ
Gн, It'тн R

NO

NO

YES	 PRINT ,
QUESTION

Flowchart 3.5: Dealing with Punctuation.

100	 COMMA

,-1 rtificial Intelligence on the Sinc^п ir OL

In many dialects of BASIC, the INPUT command will not accept any-

thin g after a comma, which it reads as data terminator, but fortunately

Supe гBASIC has no objections. Commas may be useful in indicating
different parts of a sentence, which could be examined as 'sub-sentences'
in their own right. However, in simple cases the y are best deleted and

replaced by spaces before the sentence is broken into words (see
Flowchart 3.5). Note that this will onl y function totally correctly if there is

no space after the comma, as any space followin g a replaced comma will

be seen as a new word. If no comma is found (CM% = 0) then we
RETurn, otherwise the lefthand part of IN$ (up to the comma), and the
righthand part of INS (beyond the comma) are taken and joined together

with a space.

•	 Chapter 3 Understanding Natural Language

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

11 0 	APOSтROPi-PE

9000 DEFine PROCedure APOSTROPHE
9010	 REPeat aposlocp
9020	 AP%="'" INSIR IN$
9030	 IF AP%=0 THEN RETurn
9040	 INS=INS(1 TOAP7.-1) & INS(AP%+1 TO)
9050 END REPeat aposloop
9060 END DEFine APOSTROPHE

A sliding search approach

Although the method of examining a sentence described above will work
it has the disadvantage that it requires the sentence to be entered in a
particular restricted format. For example if you enter:

I WANT REALLY HOTCHOCOLA"1E CAKE

the computer will report:

OBJECT NOT FOUND

as it only looks for objects as far as the fifth word.
Using a sliding search of the whole sentence for each ke yword, without

first dividing the sentence down into words, has the advantage that it
allows a completely free input format. In this approach we take the first
keyword and try to match it against the same number of letters in INS ,
starting at the first character. If this test fails then it is automatically
repeated, starting from the second character. etc. until a match is found
or the end of IN$ is reached. For example if IN$ was 'I WANT CAKE'
and the first ke yword was 'CAKE', the comparisons would be:

8000 DEFine PROCedure COMMA
8010	 REPeat tomloop
8020	 CM%=", " INSIR INS
800	 IF CMY.=0 THEN RETurn

8040	 IN$=IN$ (1 TO CM%-1) & "
TO)

8050 END REPeat :omloop
8060 END DEFine COMMA

å IN$(CM'J. +1

pass 1
pass 2
pass 3
pass 4
pass 5
pass б
pass 7
pass 8

I WA
WAN

WANT
ANT
NT C
T CA

C A K
C λ K E (match found)

,r. 41

INCREMENT
WARD

COUNT

5ТCRE
WORD

1

A rtificíпl hueHigence on the Sinclıг ir OL

	 •
We can use much of our existing program, but substantial changes are
also required. Therefore delete all the lines from 80 up to 9999 with
'DLINE 80 TO 9999' as a direct command and modify the DIM statement
in line 20 to expand the size of the wordstore array (W$(N)) to twenty
words. The WORDSTORE FuNction will not be used here so you can
also remove that with 'DLINE 12000 TO 12090'.

10 RESтORE
20 DIM W$(19,10)
30 SCREEN
40 sεT ί!P
50 REPeat IN
ь0
70	 AT *0, 1,1 t IN$=G εT$(1)
90	 CLS *1 ι CLS *2

To replace the WORDSTORE FuNction we have a somewhat similar
FIND(T$) PROCedure (see Flowchart 3.6). This searches IN$ for the
temporary string (TS) which is passed to it as a parameter. As T$ is passed
when FIND is called, it can be used to perform an INSTR check for any
particular string. If no match is found we RETurn. To report what has
been found, and so that we can use the words discovered later, we will
store each matched word (T$) in an array as it is detected. We have
already expanded the word store arra y . W$, to hold up to 20 words
(which should be enough for even a very verbose sentence!).

Chapter 3 Underszan 'Ong iVan'rai Language

180	 FOR M=0 TO AJ%
190	 FIND(AJ$O1))
200	 END FOR M

1000 DEFine PROCedure FIND(T$)
1010	 IN%=T4 INSTR IN$
1020	 IF IN% 0 THEN RETurn
1040	 WC%=WC%+1
1050	 W$(WC%)=T$
1080	 PRINT *2,,, Т$
1090 END DEFine FIND

Each object can be compared with IN$ b y forming a loop, and similar
checks can be made for matching with words in the adverb and adjective
arrays.

120	 FOR M=0 TO 05%

10	 FIND(OB$(M))

140	 END FOR M
150	 FOR M=0 TO ЯV%
160	 FIND(AV9(M))
170	 END FOR M

PR1NT

I Ts

Flowchart 3.6: Find (T$).

The program waits until the time delay (500) runs out, or a key is pressed.
before clearing out the INPUT window and REPeating the request for a
sentence.

250	 DUMMY$=INKEY$(500)
260	 CLS tί0
270 END REPeat IN

Partial matching
One advantage of the sliding search is that you can easily arrange to
recognise a series of connected words by only looking for some key

43

PRINT
MATCH

•A rtificial Intelligence on the Sипc(aír QL • Chapter? Understanding Natural Language

characters. This is obviousl y useful as it saves you having to put both
single and plural nouns such as BISCUIT and BISCUITS. If you amend

the DATA in line 11020 as below then both will now be recognised.

11020	 DATA "BISCUIT","BUN","CAKE","COFFEE"
, ТЕ , 1W ТЕR

However life is not that simple, as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN,
BUNS, and BUNFIGHT but unfortunately BUNCH, BUNDLE,
BUNGALOW, BUNGLE. BUNK. BUNION, and BUNNY as well!

This problem is not restricted to prefixes as the computer will also not
distinguish between HOT and SHOT. You could include a check that the
character before the start of each match was a space (ie that this was the
start of a word, see Flowchart 3.7). IN% gives the current start of word
position, so IN$(IN%-1) is the character before this, and we RETurn if

this is a space.

Flowchart 3.7: Checking That This is the Start of a Word.

1030	 IF IN$<IN%°1)<>" " THEN RETurn

For this to function correctly on the first word, we must add a space to the
start of IN$.

80	 IN$=" " & IN$

In a similar way you could use checks on the next letter after the match. or
the length of the word, to restrict recognised words.

Putting things in order
Although we have now detected all the words in the sentence. regardless
of their position or what else is present, they are found and stored in the
order in which they appear in the DATA. This is because the comparison
starts with the first item in the object arra y rather than the first word in the
sentence. It would be useful if we could rearrange the wordstore array so
that the words in it were in the order in which the y appeared in the

sentence.

лл

To do that we must keep a record of the sentence position of the word,
IN%o, and word count. WC%. as each word is matched in a new word
position array, WP%. This is a two-dimensional array with the sentence
position kept in the first element, WP(WC%,0), and the word count,
WP(WC%,1), in the second. To make the display clearer, 'word' and
'position' (ie character position of start of the match in IN$) labels have
been added.

20 DIM W$(19,10) I DIM WP(19,1)

110	 PRINT ,"word","position"

1060	 WP(WC%,0)=IN%	 WP(WC7.,1)=WC%
1070	 PRINT #2„WP(WCİ , 1),WP(WCY.,0);

The actual sorting routine which does the rearrangement is in the
ORDER PROCedure which is only reached if a match is found.

210	 ORDER

The SORT loop performs a simple exchange sort (see Flowchart 3.8). It
takes the sentence position (IS%) of the first word found (first element in
the first dimension, WP(0,0)) and compares it with the sentence position
(IS%) of the second word found (second element in the first dimension,
WP(0+1,0)). If the position variable for the first word is of higher value
than that for the second word then the first word found is farther along the
sentence than the second word, and these therefore need to be exchanged
by swapping through a dummy variable (D%). This will put the sentence
position pointers right, but the word count markers also need to be
rearranged to the correct positions. This process is repeated until the
word pointers are all in the correct order. Notice that the actual contents
of the string array which holds the words are not altered but only the
pointers (index) to them.

Flowchart 3.8: Putting Words in Order.

λ5

i
4)
i^

i+

^i
u: di

ц ι,^(
ι

?¡,á¡

P

`λ1

1

^

1ı

;ь!

ΐ

1

iii
I İij

öi'11

1ai

!.:._
n^к

-- _- c-i

-'í .-

1

μ ä^ί

di!

-- rr i1
^ -

Ìı;1ı 1

H, ^

!
L	 '¡';

-	 éiİ

; ^<<

i!t ı

iii
i i i

!1111

Id! Ì1ςi^

1i)I

'гь
!11jj

!}

йi 1
!,!1

лς:

i İý
!ч^!,!; Γ

¡irrlr:^!iΓ ^i lidii İ ^ ;,uι ι! г,::a^ г . u сл ,
; ıı;;! ıl;c;^;!ггη!ггп^,,j^ !la;! гCI

š	 ÍI11I

u
11i

τ±

^=ı

Ž

ı_s

i •	 C/ia pier 3 Understanding Natural Language
.4пфс lal Intelligence on the Sinchír QL

100	 PRINT X12, 11stors"," рa τΡ ition"

•гa!^i!Y9^'	 гiıı!4Pı ii1!iP:Ω!!!;!1 B!^i!^гiii" ıı;ii!í;Γ !1;1iΓςг;"^' г!!π Γ ! ; 1г ;п^п iii?!i ıTı l ı̂ I!1Γ6¡í^!λÌıЛг! ¡í¡İ 1B1 Γ ^!!ημчπ ^η,ί!1Γ1 ši11i11j
1 e!г1'L.. Y.ιι. ^l^1Ч!!. i 	1 	 ;

Ч ^¡ii iijiήljj¡Î ί111ÍN1^fi İiNliн̂
^	 úI	 ı j

^^^1ı 	 4ı ^^	 !^İ !1

^i	 i^j

Эı 	 И ií	 İ 1 4 ;

^	 ^i1
L1	 !11I1	 ^;	 11•	 г44

" ы
p

1
+	 ;''1

¡j İ

iI İ

ή1

üj

λ,

^^¡--

1'
i ;

;ii
 ц

.'!!
	"' ^T-.1__ .`

й -'- . .

1¡^

^

F '])

1¡;

ґ 4 --г -^

ï1i

ıp

i^1 ,:	 °1 !! "	 !Γń^!"!111¡ ¡ε !i ;Y1 :t^:!^y г^:,,,;;. pN	 !„l11¡a1ü^!!!t,I!,lh ı iil!L.a,,υJ1 !зiii! ! 1^íu:λ, п ,í:L ı 11i 1	 "!!

Figure 3.1: Sort.

2000 DEFine PROCеdura ORDER
2010 REPeet BORT
2020	 FOR N=0 TO WC%-i
2030	 IF WP(N,0)?=WP(N+1,0)
2040	 DX=WP(N,0) s WP(N,0)

WP(N+1,0)=DX
2050	 DX=WPtN,1) : WP(N,1)

WP(N+1,1)=D%
2060 END REPeat BORT
2070	 END IF
2080	 END FOR N
2090 END DEFine ORDER

If the strings are now printed in revised word count. WC %, order they
will be as they were in the original sentence, which should make it easier
to understand them.

220	 FOR N=0 TO WC'/.

230	 PRINT ,N+1,WP(N,0) W$(WP(N,1))
240	 END FOR N

If you RUN some test sentences you will be able to see the original
position of the words in the store (top window) and the words then
rearranged as ín the sentence in the bottom window (see Figure 3.1).

1!

91i

ίг

Ј-Ј

‚ii
^T1
	

4¡

l_	
i

ı^

' π!ςгн l¡!1 μ41.!11 Í!'ччl;tιYп¿^"¡!!:", 	 г^!!1!i î"@1ii!i•" f	 1i7111
'1í

,.	 : 	 it	 г u г_. '.Hik!!!η ı Niì:

THEN
=WP(N+1,0)

=WP(N+1,1)

a'; 47

Chapter 4

Making Reply

More sensible replies
We have considered at length how to decode sentences which are typed
into the computer, but the replies it has produced so far have been very
limited and rigid. Although many of the original words in a sentence are
often used in a reply, in a real conversation we look at the subject of the
sentence and modify this word according to the context of the reply.

For example the input:

I NEED REST

might expect the confirmatory reply:

YOU NEED REST

and similarly:

YOU NEED REST

should generate:

I NEED REST

If you look at the situation logicall y you will realise that for each input
subject there is an equivalent output subject, and that we have simply
chopped off the original subject and added the remainder of the sentence
to the appropriate new subject.

'I' is only a single character so we could check (IN$(1)) and. if this was
I'. PRINT 'YOU' would be added to the front of the remainder of the

input IN$(2 TO).

10 SCREEN
20	 REPeat LOOP
з0	 ЯТ #0, 1, 1 : INS=GET$(1)
40	 IN$=INS &" "

49

• Chapter 4 Making ReplyArtificial Intelligence on the Sénclaíг QL

b0	 IF IN$(1)="I" THEN PRINT "YOU" &
IN#(2 TO)

90	 DUMMY$=INKEY#(500)

100	 CLS #0
110 END REPeat LOOP

phrase and the second dimension, I$(N,1), is the corresponding output
word or phrase. It is easier to avoid errors if these are entered into DATA
in matching pairs and READ in turn into the array. Stan a new program
with these lines which SETUP the array.

20 SET_UP

(Note that the SCREEN format and the GET$(1) routine are exactly the
same as described for the last program.)

In the same way . the first three characters IN$(1 TO 3) could be
checked against 'YOU' and replaced when necessary by 'I':

80	 IF IN#(1 TO 3)= "YOL' THEN PRINT "I"
& IN$ (4 TO)

If you try that out with a series of sentences you will see that it works OK
until you type something like:

YOU ARE TIRED

which comes back as the rather unintelligent:

I ARE TIRED

We could get around this by checking for the phrases 'I AM' and 'YOU
ARE' as well as 'I and `YOU' on their own. but notice that you must test
for these first and add NEXT LOOP to the end of lines 50 and 70 to
prevent a match also being found with 'I' and `YOU' alone.

50	 IF IN$(1 TO 4)="I AM" THEN PRINT
"YOU ARE'' & IN$(5 TO) 1 NEXT LOOP

70	 IF IN#(1 TO 7)="YOU ARE" THEN PRINT
"I AM" & IN#(8 TO) : NEXT LOOP

Wider dimensions
Although this method will work, the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into
account the length of the matching word or phrase. Where many words
are to be checked it is therefore better to use a multidimensional string
array which can be compared with the input by a loop.

A convenient format is to have a two-dimensional array, I$(N,M),
where the first dimension of each element. I$(N,0), is the input word or

11000 DEFi π e PROCedure SET L'P
11010	 REBTORE
11030	 DIM I$(,1,7)
11100	 DATA "I AM","YOU ARE ","YQU ARE","I AM"
11110	 DATA "I","YOU","YQU","I"
11200	 FOR N=0 TO З
11210	 READ I#(N,0) : READ I$(N,1)
11220	 END FOR N
11390 END DEFi πe SETUP

We will use a looping sliding string search again, which for the moment
will just print out the corresponding word or phrase to that matched,
I$(N.1) (see Flowchart 4.1). One advantage of the sliding string search
here is that it will happily match embedded spaces in phrases as we have
not broken IN$ into 'words' before matching. (Note that the SCREEN
format and the GET$(1) routine are once again the same as described for
the last program.)

Flowchart 4.1: Using a Corresponding Reply.

10 SCREEN
30	 REPeat IN
40	 AT #0, 1, 1 : IN #=GET#(1)
50	 IN91=IN#&"
ó0	 FOR M=0 í0 З

.^ .51

Artificiпl ltuelligence on the Siıαdaer QL

70	 IS%=I#(M,0) INSTR IN#
80	 IF IS%>0 THEN EXIT M
90	 END FOR M

120	 DUMMY$=INKY#($00)

10	 CAS #0
140	 END REPeat IN

• • Chapter 4 Making Reply

TAKE
INPUT

^
,̂

The required response word is in the second dimension of the array
(I$(M,1)) so we PRINT this when the loop is left.

100	 PRINT I#(M,1)

To get a fuller reply we need to add back on the rest of the original
sentence (see Flowchart 4.21. It is not difficult to define the 'rest of the
sentence' as we must simply subtract the matched word from the front
of the sentence. IS% points to the start of the matched word, and we
can easily find the LENgth of this word as the word is stored in the
first dimension of the arra y as I$(M,0). We therefore need to add
IN$(IS% LEN(I$(M,0)) on to the front of our response word. To make
clear what is happening, the individual parts of the reply are printed
separately in the upper window.

100	 PRINT #2, I1(M,1),IN$(IS7.+L εN(I#(M,0
)) TO)

110	 PRINT i$(M,l) & IN#(ISY.+LEN(I#(M,0))
TO)

Now when you try:

I AM CLEVER

the computer agrees:

YOU ARE CLEVER

Before you feel too clever try:

WE ARE STUPID

which may well surprise you when it gives the reply:

YOUD (!!!)

52

REMOVE
FIR 5Г
WORD

t
PRINT
мAтCk!1NG

ι
REPLY

I
PRINT
e2ESГ OF

/ .sEN TEN С

t

Flowchart 4.2: A Fuller Reply.

If you think for a few moments you will see that one of our ke ywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT

where the computer returns:

YOUNCOMPETENT

Although the keywords are tested for in turn, we EXIT the loop when a
match is found so only the first match is reported. As the keyword is only
checked for once in each sentence, embedded 'I' only causes problems
when it precedes the keyword or there is no keyword in the sentence.

To get around this we must consider which keywords ma y cause
problems. Although the letter 'I' is very common it is very rarely the last
letter in a word, and so we could check that there is a space after the
keyword. We must treat all keywords in the same way so add a space to

53

• Chapter 4 Making Replyλ rtifìciai Intelligence on the Sú ı clair OL

the end of them all. This can be done by changing the DATA. Note that
there is no need to add spaces on to the end of the replies.

11100 DATA "1 AM ","YOU ARE","YOU ARE ","I AM"

11110 DA ТA "I ","YOU","YOU ","1"

We now need to subtract one less character from IN$, as a space has been
included as part of the keywords.

110	 PRINT I$(M,i) & τ N$(τ S'/.+LEN(I$(M,0))

– 1 TO)

The computer will now readily agree on your incompetence.

If the first ke y is not at the start of the sentence then everything before it

will be ignored in the reply. For example the answer to:

WHAT IF I FALL?

will be:

YOU FALL?

Some strange results can still occur when two true keywords are present.
For example:

WHAT IF YOU AND I FALL

gives

YOU FALL

and

WHAT IF I AND YOU FALL

replies

YOU AND YOU FALL

However adding more suitable keywords is eas y and some combinations
will just not be acceptable. To make the routine more general it is better
to define the number of keywords as a variable. KW%, and use this in
place of the actual number.

60	 FOR M=0 TO 3

11020	 KW%=5
11030	 DIM I$(КW%,1,7)
11120	 DATA "WE II , "WEII, II THEY ", "THEY"
11200	 FOR N=0 TO KWY.

Now the answer to:

WHAT IF WE FALL?

is the more logical

WE FALL

Pointing to replies
So far our computer has displayed only slightly more intelligence than a
parrot as it has merely regurgitated a slightly modified version of the
input. The next stage. therefore, is to make it take some logical decisions
on the basis of the input before it replies.

The nunı bers of subjects, SU%o, verbs. VB%, and replies, RP%, are
defined as variables so that the program can be easily expanded, and
three arrays using these are set up. (As we have a zero element in the
array these values are all one less than the number of words.) S$(n.n) is a
two-dimensional array which is concerned with the subjects in the input
and output sentences. The first dimension, (n,0) contains the recognised
subject words and phrases allowed in the input, and the second dimension
(n,1) contains the opposites which may be needed in the output. V$(n)
holds the legal verbs, and RS(n) a series of corresponding replies.

10 SCREEN
20 SETUP

11000 DEFine PROCedure SET_UP
11010	 RESTORE
11020	 SU%=26 : УВ7.=6 : RP%=6
11030	 DIM S$(SU%,1,7) : DIM V$(VH%,7) :

DIM R$(RP%,50)

The first six lines of DATA contain paired input and output subjects (see
Table 4.1) and these are READ into corresponding dimensioned

и JJ

Artijicial Intelligence on the Sinclair QL

Table 4.1: Pairs of Subjects in S$(п ,n).

S$(n,o)	 SS(п .1)

IHAVE	 YOU HAVE
I'VE	 YOU'VE
IAM	 YOU ARE
I'M	 YOU'RE
YOU HAVE	 I HAVE
YOU'VE	 I'VE
YOU ARE	 I AM
YOU'RE	 I'M
YOU	 I
SHE HAS	 SHE HAS
SHE IS	 SHE IS
SHE'S	 SHE'S
SHE	 SHE
THEY'VE	 THEY'VE
THEY ARE	 THEY ARE
THEY'RE	 THEY'RE
THEY	 THEY
HE HAS	 HE HAS
HE IS	 HE IS
HE'S	 HE'S
HE	 HE
WE HAVE	 WE HAVE
WE'VE	 WE'VE
WE ARE	 WE ARE
WE'RE	 WE'RE
WE	 WE
I	 YOU

elements in the S$(n,n) array. As the pronouns (`I', 'YOU', etc) are
frequently linked to other words to form phrases (such as 'I'VE') these
combined forms are also included in the DATA. Notice that these are
arranged in such an order that the most complete phrase containing a
keyword is always found first. A space is added on to the end of each
element, so that some clashing of partial matches is avoided and a space is
automaticall y formed in the reply.

11040 DATA "I HAVE ","YOU HAVE ","I'VE ",
"YOU'VE ","I AM ","YOU ARE ","I AM
","YOU'RE ","YOU HAVE ","'I HAVE "

•	 Chapter 4 Making Reply

11050	 DATA "YOU'VE "," τ 'Vε ","YOU ARE ",
"I AM ',"YOU'RE "," τ ' м '","YOU ",° т '

ј

11060	 DATA "SHE HAS ","sHE HAS ","SSE IS "
"SHE IS","SHE'S","SHE'S,"SHE","SHE"

11070	 DATA "THEY'VE ","'THEY'VE ","THEY ARE
","THEY ARE ","THEY'RE ","THEY'RE ",
"THEY ","THEY "

11080	 DATA "HE HAS „‚„ 	 HAS ","HE IS ","HE
I S " , "HE Ѕ ","HE'S ","HE	 ј HE ","WE
HAVE ", "'WE HAVE "

11090	 DATA "WE'VE ","WE'VE ","WE ARE ","WE
ARE ","WE'RE ","WE'RE ",""WE ","WE ","I

","YOU "

11140	 FOR N=0 TO SUY.
11150	 READ S$1(N,0) i READ S$(N,1)
11160	 END FOR N

The next DATA line contains the main verbs which are READ into
VB%$(n). The verb 'to be' is omitted as its variations are so complicated,
and many of its versions are already accounted for in the 'subject check.

11100	 DATA "HATE","LOVE","KILL","DISLIKE",
"LIKE", "FEEL", "KNOW"

11170
	

FOR N=0 TO VB%
11180
	

READ V$(N)
11190
	

END FOR N

The last set of DATA contains the replies which are put into RS(n),
before control returns to the main part of the program. To make things
simple to understand and check at this stage, all the replies contain the
original verb, although of course they could say anything.

11110	 DATA "PROBABLY HATE YOU AS WELL","LOVE
YOU TOO"

11120	 DATA "'KILL YOU","DISLIKE LOTS OF THINGS"
11130	 DATA "LIKE CHIPS","'FEEL POWERFUL?","KNOW

EVERYTHING"
11200	 FOR N=0 TO RP%
11210	 READ R$ (N)
11220	 END FOR N
11230 END DEF:riе SETUP

5h 57

'5 ЕТ
SUBTEGT
MATCH
PJINTER

NO

SET VERB
MATCH

FО INTεRБ

г
PICPc. uP

VERB MATCH
REPLY

I
ADD

50вХЕСТ
MATCH
REPLY

t

PRINT
REPLY

Matching
The input string is now compared with the list of subjects in the first
dimension of S$(п , п) (see Flowchart 4.3). If there is no SU В v1АТСН
then the NEXT IN is requested, or else a subject match variable, SM%, is
set to the element number at which a match was found. (The fact that no
subject was found will be indicated by the fact that the input window (#0)
does not clear before the next input.)

30	 REP!at IN
40	 AT #0, 1, 1 : IN$=GΣ T$(1)
50	 IN*=IN$ & "
ь0	 SU9_MATCH
90	 DUMMY$=INKEY$(500)
100	 CLS#0
110	 END REPeat IN

1000 DEFi п PROCedure SU В _MATCH
1010	 FOR 11=0 TO SU%
1020	 IS%=S$(ß,0) INSIR IN*

1030	 IF IS%>0 THEN

1050	 SМ%=М
1060	 Rεтur п
1070	 END IF
1090	 END FOR M
1100	 NEXT IN
1110 END DEFine SUВ _MATCH

The verb array is now compared with IN$. If no verb is found then the
input is rejected, or else the VERВ МАТСН variable, VM%, is set.

70	 VERØ_MATCH

2000 DEF1ne PROCedure V ЕR В _MATCH
2010	 FOR M=0 TO VØ%
2020	 ISJ=V$(M) INSIR IN*
2030	 IF IS%>0 THEN
2040	 VM%=M
2060	 RETurn
2070	 END IF
2080 END FOR M
2090	 NEXT IN
2100 END DEFine VERB MATCH

Flowchart 4.3: Setting Match Pointers.

Artificial Intelligence on the Sinclair QL Chapter 4 Making Reply

τя ;4

ADD ON
SUBTELT
IN FIRbT
DIMENSION

ADD ON
SULI ECT IN
SØND

DIMENSION

Flowchart 4.4: Putting the Subject in Context.

Making reply
Now that the subject and verb have been identified, we can pick up the

appropriate reply by usin g VM% as a pointer to the reply array . R$(n).

80	 REPLY

3000 DEř ine PROCeίure REPLY

3010	 RL$=R$ (VMY.)

In the simplest case we can just add the appropriate subject to the front of
RL$ before we print it.

3060	 RL$=S$(SM%,0) & RL$
3150	 PRINT RL*
3190 END DEFine REPLY

Now. for example, if you type in:

I HATE COMPUTERS

the program will reply with

I PROBABLY HATE YOU AS WELL

and:

IKNOWALOT

generates:

I KNOW EVERYTHING

Alternative subjects
If you prefer the machine to agree with you rather than trying to beat you
at your own game, then just change the subject added to RL$ to the
second element of the array (the 'opposite').

3060	 RL$-B$(BMY.,1) & RL:

Now:

I KNOW A LOT

generates:

YOU KNOW EVERYTHING

For more variety you can pick the subject at random from the first or
second element, so that the reply is not predictable.

3060	 RL$aSst(SM%,RND (1λ) & RL$

Putting the subject in context
It would be more sensible altogether if we chose the correct subject
according to the context of the reply, but to do that we must have markers
in the reply array. We will use a slash sign, '/', to indicate that the word in
the first dimension of the subject array is to be used. and an asterisk `*' to
indicate that the word in the second dimension is to be used.

11110	 DATA "/PROBABLY HATE YOU AS WELL",
"/LOVE YOU TOO"

11120	 DATA "/KILL YOU","#DISLIKE LOTS OF
THINGS"

11130	 DATA "/LIKE CHIPS","#FEEL POWERFUL"
, "*KNOW EVERYTHING"

We can search the reply string, R$(VM%), pointed to by the verb
marker. VM%, for a slash sign, 'I'. If a slash sign is found then the
contents of the first dimension of the subject array. S$(SMMl%O,0), are
added to the reply. RL$, less the first character (the slash sign, see
Flowchart 4.4).

• • Chapter 4 Waking ReplyArtificial Intelligence on the Sinclair QL

б0 б 1

• Chapter λ Making ReplyA rnjzcial Intelligence on the Sinclпir QL

	 i
3000 DEFi п e PROCadure REPLY
3010	 RL$=R#(VM%)
3030	 PRINT #2, RL$
3040	 IS%="/" INSIR RL$
3050	 IF IS%>0 THEN
3060	 RL$=S$ (SM'/., 0) & RL$ (ISY.+1 T0)
3080	 END IF

If no slash sign is found in the reply, a second search is made for an
asterisk, *'. If this is found then the second dimension of S$(n.n) is used
in the same way.

3090	 ISX="*" INSIR RL$

3100	 IF Is%>0 THEN
3110	 RL$=S$(5MX,1) & RL$(IS%+1 TO)
3130	 END IF
3150	 PRINT RL$
3190 END DEFine REPLY

Now:

[LOVE ME

will give:

I LOVE YOU TOO

but:

I FEEL POWERFUL

produces:

YOU FEEL POWERFUL

Inserting into sentences
To make things simple we have always started our reply sentences with
the subject, but in real life this is not always the case. Now that we have
markers in the replies to indicate what type of subject is to be added, we
can also use them to indicate where in the reply to insert this word or
phrase. First we will amend the DATA so that the word to be inserted is
never at the start, to make the insertion process obvious.

11110	 DАТЯ "DO YOU REALISE THAT /PROBABLY
HATS YOU AS WELL","WELL /LOVε YOU TOO"

11120	 DATA "IF /DON°T KILL YOU FIRST","SO
WHAT /DISLIKE LOTS OF THINGS ESPECIALLY

II

11130	 BATA "DO /LIKE CHIPS","WHY DO *FEEL
POWERFUL?","* ТН INK *KNOW EVERYTHING"

(Note that the space after the asterisk in the DISLIKE repl y is essential as
a marker must not be the last character in a reply string.)

We actuall y alread y have a record of where to insert the word as IS%
tells us where in the reply the slash or asterisk was found. All we need to
do is to take the part of the reply before the marker (RLS(1 TO IS%— 1)),
add the correct version of SS'(SМ%,n), and then the rest of the reply
(RL$(IS%+1 TO)).

3060	 RL$=RL$(1 TO ISX-1) & S$(SMX,0)
& RL#(I5X+1 TO)

3110	 RL$=RL$(1 TO ISX-1) & 5#(SMX,1)
& RL3(IS%+1 TO)

Now:

I WILL KILL HIM

produces:

IF I DON'T KILL YOU FIRST

and:

I DISLIKE COMPUTERS

gives:

SO WHAT YOU DISLIKE LOTS OFTHINGS

Although we are now inserting the subject into the reply sentence more
naturally, we are onl y dealing with one subject per sentence. Some more
minor modifications will allow us to insert any number of subjects into a
sentence.

62 63

• Chapter 4 Making Reply

N

—5čТ TAKE ADD ON ADD
Fn и NTER LEFГ END $Uвгε'τ

IN 'IRSт RIGHT EN
MATCH OF REPLY O(МENb10N OF REPLY

SET
POINTER

TAKE
LEFТ END

ADO OцΡ
З UВТЕ'1

IN SECOND

ADD
RIGHT END—►--

MATCH OF REPLY DIМE,7510N OF REPLY

3140	 IF IS%=0 THEN
3150	 PRINT RL$
3160	 EXIT CHECK
3170	 END IF
3180	 END REPeat CHECK
3190 END DEFine REPLY

Now:

I KNOW EVERYTHING

produces:

YOU THINK YOU KNOW EVERYTHING

and:

I DISLIKE COMPUTERS

gives

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

Artificial Intelligence on the Sinclair OL

	 •
11120	 DATA "IF /DON'T KILL YOU FIRST","SO

WHAT /DIBLIKE LOTS OF THINGE ESPECIALLY

11130	 DATA "DO /LIKE CHIPS","WHY DO *FEEL
POWERFUL?","*THINK *KNOW EVERYTHING"

We need to define the initial reply (RL$) as R$(VM%) and then REPeat
the CHECK for markers until no more are found (IS% = 0) when we
EXIT the CHECK loop (Flowchart 4.5).

.'/

NO

RESET
SEARCH
START

Yεs

Flowchart 4.5: Inserting into a Sentence.

3000 DEFine PROCadura REPLY
3010	 RL!=Rf(VMX)
3020	 REPeat CHECK
3030	 PRINT *2,RLi
3040	 IS%="/" 1NSTR RL$
3030	 IF I5%>0 THEN
30ь0	 RL4-RL#(1 TO IS;:-1) & Ø$(SM$,0)

& RL$(Is%+i TO)
3д70	 NEXT CHECK
3080	 END IF
з090	 τsı.="*" τ NSTR RL$
3100	 IF ISX>0 THEN
3110	 RL$-RL$<1 TO IS9.-1) & Bf(SM%,1)

& RL$(Is%+1 т0)
3120	 NEXT CHECK
3 і 0	 END IF

OBJECTions on the SUBJECT
Everything is starting to look rosy until you try something like:

I HATE YOU

which replies

DO YOU REALISE THAT YOU PROBABLY HATE YOU AS
WELL

The problem here is that we are jumping out of the search routine as soon
as the first match is found, and that although we are checking for the
subject 'I' we are finding the object 'YOU' first. As 'YOU' comes before
'I' in the subject array this is found first, in spite of the fact that it comes
later in the sentence.

As we cannot practically mimic all the intricacies of the human brain we
will have to make the assumption that the subject always comes before
the verb, and the object after it. In the program so far we have been
checking for the subject before we checked for the verb, so we will have to
reverse that order.

64 б5

suВ7EC
AF7Eft
VER

NO

YεS

NO

'YES

•
6 0 	 VERB_MATCH
70	 SUB_ мATCH

The verb position in the input is the value of IS%o when a verb is found, so
we will save that as a verb position, VP%, pointer.

2000 DEFine PROCedure VERØ_MATCH
2010	 FOR M=0 TO VBX
2020	 IS%=V$<M) INSIR IN$
2030	 IF ISX>0 THEN
2040	 VMX=M
2050	 VP'/.= I S%
2060	 RETurn
2070	 END IF
2080 END FOR M
2090 END DEř ine VERB_ЖТСН

Chapter 4 Making Reply

Now when a match with the subject array is found we can compare that
position, IS%, with the stored verb pointer, VP%, and reject the match if
the match is positioned after the verb (see Flowchart 4.6).

1000 DEFine PROСedure SUB_М ТСН
1010	 FOR M=0 TO SU%
1020	 íS%=S$(M,0) INSTR IN$
1030	 IF IS1>0 THEN
1040	 IF IS'/. < VP% THEN
1050	 SМ%=M
1060	 RETurn
1070	 END IF
1080	 END IF
1090 END FOR M
1100	 NEXT IN
1110 END DEFine SUB MATCH

Artificial intelligence on the Sίnclaίr QL

A change of tense
Although both `LIKE' and 'DISLIKE' contain the sequence `L-I-K-E',
we find `D[SLIKE' correctly as it is before LIKE' in the arra y . But if we
change to the past tense of the verb it may or may not be found. With the
first five verbs the situation is straightforward as to change to the past
tense we just add on a'D' at the end of the present tense. Both forms are
therefore accepted.

HATE
	

HATED
LOVE
	

LOVED
KILL
	

KILLED
DISLIKE
	

DISLIKED
LIKE
	

LIKED

However, with the last two verbs the word changes completely, so there
can be no simple match. Although we might get away with checking for

as this is a rare combination, there is no practical way we can use
such a common group as `FE' as a keyword.

sET (sм)
SUBJE T
MATCH

FEEL
KNOW

FELT
KNEW

Flowchart 4.6: Rejecting Object Matches.	 It is easier if we treat all verbs in the same way and, if there are no

б6 6'7

Artificial Intelligence оп the Sinclair QL

constraints on memory, then we can simply put all the possible versions
into the verb array in pairs.

11020	 SU26 : VS =13 τ RP%.=6
11100	 DATA "HATE","HATED","LOVE","LOVED",

"KILL', 'KILLED", "D ІЅL іКЕ ", "DIsLIKED"
11105	 DATA "LIKE", "LIKED", "FEEL", "FELT",

"KNOW","KNEW"

Unless we want to have different replies for the different tenses, we will
now have to divide the verb match variable, VM%, by two, to point to the
correct reply for both forms.

2040	 VMY.=INT(M /2)

•
CHAPTER 5
Expert Sуsteшs

A human expert is someone who knows a great deal about a particular
subject and who can give you sensible advice ('expert opinion') on it.
Such expertise is onl y acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they are often not on hand when a problem needs to be solved.

Scientists have therefore applied themselves to the problem of
producing computer programs which mimic the functions of such human
experts. Such programs have the advantage that they can be copied very
easily to produce an infinite number of experts. and of course the y do not
need tea-breaks, sleep, pay-rises, etc. either! Of course the computer
must be totally logical and can still only follow pre-programmed
instructions entered by the programmer. It is interesting to note that
science fiction authors have envisaged problems when the ultimate
experts (such as HAL in '2001: λ Space Odyssey or Isacc Asimov's

positronic robots) are faced with alternative courses which conflict with
more than one of their prime directives and produce not system crashes
but 'pseudo-nervous breakdowns'.

Before we can start writing programs for expert systems we must ask
ourselves how a human expert works.

Let us first consider the simplest situation where the expert's task is to
find the answer to a known problem.

First of all he takes in information on the current task

Secondly he compares this with information stored in his brain and looks
for a match

Finally he reports whether a match has been found or not

What we need here is simply a database program which tries to match the
input against stored information (see Flowchart 5.1). λ user-friendly
system would accept natural language (see earlier) but to keep things
simple here we will stick to a fixed input format. To start with, let's look at
recognising animals by the sounds the y make. We use a SТART
PROCedure to set up two arrays: the question array. QUS(n), contains

68 69

i

Flowchart 5.1: λ Simple 'Expert'.

the sounds which are known, and each element of the answer array,
AN$(n), contains the name of the relevant animal.

10 SCREEN
20 START

10000 DEFine PROCedure SCREEN
10010	 MODE 4
10020	 CLS #0 : CLS #1 : CLS #2
10030 END DEFine SCREEN

11000 DEFine PROCedure START
11010	 RESTORE
11020	 DIM QU$(4,5),AN$(4,5),IN$(5)
11030	 DATA "MIAOW, "CAT","WUFF"," DOG, "MOO"

,"COW","HOOT","OWL","NEIGH","HORSE"
11040	 FOR N=0 TO 4
11050	 READ QUW(N) 1 READ AN$(N)
11060	 END FOR N
11070 END DEFine START

Now we just need to ask for a sound, using our GET$(1) FuNction, and
compare it with the contents of QU$(n). If a match is found then an
ANSWER PROCedure is called.

Chapter 5 Expert Systeins

0 REPeat QUESTION

	

40	 PRINT\"WHAT NOISE DOES IT MAKE? ";

	

50	 INS=GET$(1)

	

60	 FOR N=0 TO 4

	

70	 IF IN$ 0U$ <N) THEN ANSWER

	

80	 END FOR N

	

90	 PRINT"SORRY I DON'T KNOW THAT ONE"
100 END REPsat QUESTION

12000 DEFine PROCedure ANSWER

	

1 010	 PRINT'AN ANI МAL THAT ";QU9*(N);"S IS
A "OWN)

12020 END REPeat QUESTION
12030 END DEFine ANSWER

Perhaps we should say at this point that our computer expert may well be
better at this task than the human as it cannot make subjective judge-
ments, become bored, or accidentall y forget to check all of the in-
formation in its memory. On the other hand it is not very literate as it
reports 'λ OWL', etc. (We will leave you to tidy that up by adding a
routine which checks whether the first letter of the answer array match is a
vowel.)

Branching out
The example above is very simple as only one question is asked, and.there
is only one possible answer. In reality we need to be able to deal with
more difficult problems, where the answer cannot be found without
asking a whole series of questions. For example what should an expert do
if he put the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLAT BATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause he should follow a logical path and make a number of
checks. The first thing to do is to check whether it is only the starter motor
which is not working?

A rtфfiсіа l Intelligence on the Sinclair QL

70 71

/ (МТЮN /
J LIGH Γ
/ ON?

NO
1

/DO LIGHTS
WORK ?

NO

/ REPAIR 	
tONNECПO

YES

YE5 C нARGε
OR

pusH

10000 DEFine PROCedure SCREEN
10010	 MODE 4
10020	 CLS #0 : CLS #1 : CLS #2
10030 END DEFine SCREEN

10 SCREEN
2д START 12010	 PRINT \"IS IGNITION LIGHT ON (Y/N) ";

12020	 IN$=GET*(1)

12030	 IF IN#="Y" THEN REST
12040	 LIGHTS
12050 END DEFine IGNITION

11000 DEFine PROCedure START
11010	 PRINT \"FAULT DIAGNOSIS"
11020	 IGNITION
11030 END DEFine START

12000 DEFine PROCedure IGNITION

13000 DEFine PROCedure LIGHTS
13010	 PRINT \"DO LIGHTS WORK CORRECTLY (Y/N)";

13020	 IN$=GET$(1)
13030	 IF IN$="Y" THEN BATTERY

13040	 PRINT \"REPLACE IGNITION SWITCH "

13050	 START
13060 END DEFine LIGHTS

•Artificial Intelligence on the Sinclair QL
•

Chapter 5 Expert Systems

IS IGNITION LIGHT ON? (Y/N)

If the answer to this is `N' then there is no power at the switch, so the cause
must be one of the first three possibilities listed above. We can narrow

things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY? (Y/N)

If the answer is yes then the battery cannot be flat, and it must he
connected to the light switch correctly. so presumably the switch is
broken and a suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work then the connections should be checked.

ARE BATTERY CONNECTIONS OK? (Y/N)

If the answer is yes then the battery is flat so you must charge it (or push!).

CHARGE BATTERY OR PUSH CAR

In the same way a sequence of checks could be made to deal with the
situation where there is power but the starter mechanism itself does not
work (the last three possibilities). The simplest way to program this
branching structure is a series of IF—THEN tests which call the
appropriate PROCedures according to your response (see Flowchart
5.2).

Flowchart 5.2: A Branching 'Expert'.

72 73

PROCedure
RESTORE
NP7.=7 : DIM OP$(NP%,30),Y(NPY.),N(NP%)
DATA "IS IGNITION LIGHT ON",7,2
DATA "DO LIGHTS WORK CORRECTLY",3,4
DATA "REPLACE SWITCH",0,0
DATA "ARE BATTERY CONNECTIONS OK",5,6
DATA "CHARGE BATTERY OR PUSH CAR",0,0

11000 DEFine
11010
11020
11030
11040
11050
11060
11070

START

/

PRINT
	 OUTPUT

NO

ENTER
YOUR

RESPONSE

NO

•	 Chapter 5 Expert Systems

CP POINTED
TO дї
NCP)

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays
and have pointers which direct you to the next question or reply,
according to whether you answer yes or no to the current question (see
Flowchart 5.3).

The format for entering the DATA for each branch point is then:

(TEXT), (pointer for YES'), (pointer for NO')

The first question was:

IS IGNITION LIGHT ON? (Y/N)

If the answer was N' then you need to ask the second question:

DO LIGHTS WORK CORRECTLY? (Y/N)

Otherwise you need to continue with the other part of the diagnosis
(which we have not included but which would be point 7). We need to set
up three arrays: OP$(n) contains the output (text), Y(π) the pointer for
`yes', and N(n) the pointer for 'no'. To make the program easy to modify

Flowchart 5.3: Pointing to the Next Output.

a variable. NP%, is used for the number of points. The DATA is read in
groups of three into each element in these arra ys. Where the DATA point
is a possible end of the program this is indicated by the Y(n) and N(n)
pointers being set at zero. (Note that the SCREEN PROCedure is the
same as in the last program, but that the rest of the program is new.)

10 SCREEN
20 START

14000 DEFine PR0Cadure BATTERY
14010	 PRINT \"ARE BATTERY CONNECTIONS OK

(Y/N)";
14020	 IN$=GET$(1)
14030	 IF INS="Y" THEN CHARGE
14040	 PRINT \"REPAIR CONNECTIONS "
14050	 START
14060 END DEFine BATTERY

15000 DEFine PROCedu м e CHARGE
15010	 PRINT \"CHARGE BATTERY OR PUSH CAR "
15020	 START
15030 END DEFine CHARGE

16000 DEFine PROCedure REST
16010	 STOP
16020 END DEFine REST

This sort of program is relatively easy to write. but as usual is inefficient as
it becomes longer and more complicated.

Artificial Intelligence on the S ίпclпίr QL

74 75

4rtiЃјcial Intelligence on the Sinclair OL
	

Chapter 5 Expert Systems

11080	 DATA "REPAIR CONNECTIONS",0,0

11090	 DATA "rest o± program",0,0
11100	 FOR M=1 TO NP%
11110	 READ OP$(M) : READ Y(M) : READ N(M)

11120	 END FOR M
11130 END DEFine START

The actual running routine is very simple. λ pointer, CP%. is used to
indicate the current position in the array: to begin with this is set to 1. and
the first text pointed. If this is an end point, Y(CP%) = 0, (hardly likely
just yet!) then we EXIT QUESTION and CP% is reset to 1 when the
sequence is RESTARTed. If a real pointer is present then the REPeat
QUESTION loop requests an INPUT. If the input is 'Y' then CP% is set
to the value contained in the appropriate element of the Y(n) array,
otherwise it is set to the value contained in the N(n) array.

30 REPeat RESTART
40	 UNDER 1 : PRINT \\"FAULT DIAGNOSIS"

: UNDER О
50	 CP%=1
60	 REPeat QUESTION
70	 PRINT \OP$ (CP У.) ; " ";
80	 IF Y(CP%)=0 THEN EXIT QUESTION
90	 IN$=GET$(1)

100	 IF IN$="Y" THEN CP%=Y(CP%) :
NEXT QUESTION

110	 CPY.=N(CP%)
120	 END REPeat QUESTION
130	 END REPeat RESTART

λ parallel approach
An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usuall y takes longer than following
an efficient tree structure but it is more likely to produce the correct
answer as no points of comparison are omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark 1 or 0 for the presence or
absence of these in each of our rive modes of transport (Table 5.1). If you
look closely you will notice that the pattern of results varies for each of the

different possibilities, so it must be possible to distinguish between them

b y these features.

Table 5.1:

bicycle

Presence or Absence of Features.

car	 train	 plane horse

wheels 1 1 1 1 0

wings 0 0 0 1 О
engine 0 1 1 1 0

tvres 1 1 0 1 0

rails 0 0 1 0 0

windows 0 1 1 1 0
chain 1 0 0 0 0

steering 1 1 0 1 1

We will enter these values as DATA and then READ them into a
two-dimensional array, FE(n,n), which will hold a copy of this pattern,
together with a string array containing the names of the objects OB$(n).
(Note that SCREEN is as before.)

10 SCRεε N
20 START

11000 DEFine PROCedure START
11010	 RESTORE
11020	 DIM OB$(5,7),FE(5,8)

11030	 DATA "BICYCLE",1,0,0,1,0,0,1,1

11040	 DATA "CAR",1,p,1,1,0,1, ü,1

11050	 DATA "TRAIN",1,0,1,0,1,1,0,0

11060	 DATA "PLANE,1,1,1,1,0,1,0,1

11070	 DATA "GORSE",0,0,0,0,0,0,0,1
11080	 FOR N=1 TO 5
11090	 READ OBW(N)

11100	 FOR M=1 TO 8

11110	 READ FE(N,M)
11120	 NEXT M

11130	 NEXT N

11140 END DEFine START

We can now QUESTION whether the first feature is present or not, and
then CHECK which modes of transport match at this particular point (see
Flowchart 5.4).

76
	

77

I
/

/wHεειs ?

AN = 1

Yεs

AN=Ø

/ PRINT
/ OBTECI 	

 	

Flowchart 5.4: A Parallel Approach.

30	 aεPeat IЭUεsт τ ON

50	 PRiNT \ H DOEB H HAVE wнεELB ",
: CHECK

250 END REPeat QUESTION

12000 DEFine PROCed υre CHECK
12010	 IN$=GET$(1)
12020	 AN%=1
12030	 IF IN$="N" THEN ANX=0
12040	 FOR N=1 TO 5
12050	 IF FE(N,1)=AN''.. THEN PRINT OBW(N)
12060	 END FOR N
12070 END DEFine CHECK

Iп this case, answering 'Y' will produce a printout of:

Artificial hτ tellige ιzce on the Sinclair QL
	 •	 •	 Chapter 5 Expert Systems

BICYCLE
CAR
TRAIN
PLANE

and answering 'N' will produce a printout of only:

HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as, although we have just shown that onl y a horse does not have wheels,
the program insists that we still ask all the other questions before it
commits itself. This is not really as silly as it seems at first, as if you answer
`Y' to the next question ('does it have wings') then you will see that the
computer quite logically refuses to believe in flying horses.

We can now use the comparison CHECK PROCedure to test for all
eight features in turn. We need to make slight modifications, adding an

array pointer. AP%, which is incremented to check the next element of
the feature array, FE(N,AP%), in each cycle (see Flowchart 5.5).

N6R^М!м Т
ARRAY

POINTER
(AP)

AN= 1

AN= Ø

Flowchart 5.5: Checking the Features in Turn.

78 79

NA7CH
FE(N,AP

,ιι
ОB7ELTв Yεs

ØINГ
OBTE CI

INCREMENT
&UCC ε s
CS U (N))

•Artificial Intelligence on the Sinclair O L Chapter 5 Expert Systems

30 REPeat QUESTION
50	 PRINT

CHECK
60	 PRINT

CHECK
70	 PRINT

CHECK
80	 PRINT

CHECK
90	 PRINT

CHECK
100	 PRINT

CHECK
110	 PRINT

CHECK

\"DOES IT HAVE

\"DOES IT HAVE

\"DOEB IT HAVE

\"DOES IT HAVE

\"DOεS IT NEED

\"DOES IT HAVE

\"DOεS IT HAVE

WHEELS ";

WINGS "; s

AN ENGINE "; :

TYRES

RAILS "; s

WINDOWS "; I

A CHAIN II; :
Flowchart 5.6: Measuring Success.

	

120	 PRINT \"IS IT STEERABLE "; ı
CHECK

	

130	 APY.=0
250 END REPeat QUESTION

	

11020	 DIM OE$(5,7),FE(5,8) : APY.=0

	

12020	 AP%=ARY.+1 : ANY.=1

	

12050	 IF FE(N,AP%)=AN% THEN PRINT OB$(N)

Top of the pops
The previous routine will print out a list of matches for each individual
question as it proceeds, but it does not actually tell us which set of DATA
is an overall match for the answers to all the questions. We can produce a
SCORE which shows how well the answers match the DATA b y having a
success array element. SU(n), for each object, which is onl y incremented
when a match is found. FE(N,AP%) _ AN% (see Flowchart 5.6).

	

200	 PRINT \"SCORE"

	

210	 FOR N=1 TO 5

	

220	 PRINT OB$(N),SU(N)

	

230	 SU(N)=0

	

240	 END FOR N

11020	 DIM OB*(5,7),FE(5,Ø) :AP'/.=б σ DIM SU(5)
12050

	

	 IF FS(N,AP%)=AN% THEN PRINT 0 вτ(N)
σ EU(N)=SU(N)+1

If a complete match is found then SU(п) will be equal to 8. Where one or
more points was incorrect, the score will be lowered, but scoring in this
way is particularl y useful where the correct answers to the questions are
more a matter of opinion than fact (eg is a horse really steerable?), as the
highest score actually obtained probably points to the correct answer
anyway. (Notice that in this case each correct answer has equal weighting.)

Better in bits
You may have noticed that we just happened to use eight features for
comparison and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a b yte. If we consider each
feature as representing a binary digit (see Table 5.2), rather than an

Table 5.2:

bicycle

Binary Weighted Features.

car	 train	 plane horse

wheels 1 1 1 1 0

wings 0 0 0 2 0

engine 0 4 4 4 0

tyres 8 8 0 8 0

rails 0 0 16 0 0

windows 0 32 32 32 0

chain 64 0 0 0 0

steering 128 128 0 128 128

sum total 201 173 53 175 128

80
	

81

NO

NO

AN = Ø

SCORE _
SCORE +
31 NA RY
VALUE

ıNc.ЕМЕNТ
EINØY
VALUE

40	 ØV7.=1 : SU%=0

2г0	 IF DV(N)=SU% THEN PRINт ,OØ$(N) :
NEXT OUE8TION

230	 END FOR N
240 REMark DELETED

i •	 Chapters Expert SystemsArtificial Intelligence on the Sinclair QL

absolute value, then each object can be described by a single decimal
number which is the sum of the binary digits. instead of eight separate
values. We will convert to decimal with the least significant bit at the top
so that starting from the top at 'wheels' each feature is equivalent to 1.2,
4, 8, 16, 32, 64. 128 in decimal notation.

It is not too difficult to convert our score' of 1 to 8 into the appropriate
binary value, as long as we remember that the decimal value of the binary
di git. BV%, must double each time we move down and that we must only
add the current binary value to the score if the answer was 'ves', AN% = 1
(see Flowchart 5.7).

If you consider for a moment, you will realise that we onl y need to keep
track of the total number produced, SU %, by adding the binary values of
the ves answers — there is no need to loop through and check each part

i	
INPUT

FEATUR E
	 /

AN= 1

of the array contents each time, or even to have a two-dimensional array
at all: The onl y DATA. we need to enter are the overall decimal values for
each object. DV(n), and when all the questions have been asked we can
check these a gainst the decimal value obtained by the binary conversion
of the 'yes/no' answers, SU% (see Flowchart 5.3).

Flowchart 5.8: Matching the Decimal Value.

11020
11030
11040
11050
11060
11070

11090
11100
11110
111 г0

DIM OВ$(з ,7),DV(5)
DATA "BICYCLE",201
DATA "CAR",173
DATA "TRAIN",53
DATA "PLANE",175
DATA "HORSE', 125

RεAD 08$(N)
READ DV(N)
REMark DELETED
REMark DELETED

Flowchart 5.7: Producing a Binary Score.	 12040	 IF N%1 THEN SUP.=SU%+BV%

82
	

83

•Artificial Intelligence on the Sinclair QL

12050
	

Bvx=BVx+BV%
12060
	

REMark DELETED

This approach obviously saves a lot of memory and time, as each array
element takes up several bytes and must be located before it can be
compared, so it is particularly useful where you are dealing with large
amounts of information. But it does mean that you have to calculate the
decimal equivalents of all of the bit patterns before you can use them, and
it also gives you no clues when a complete match is not found. (Note that
you cannot simply take the nearest decimal value here as the decimal
equivalent value of each correct answer depends on its position.)

Of course you could do the calculations the hard way, but on the other
hand you can easily DEFine a BIN FuNction to do the hard work for you.
A row of eight dots is printed as a prompt and the required string of
binary digits (NS) entered, and passed to BIN. This slices off each
individual digit, starting from the least significant (' ńghthand end). If the
digit is 1 (note that Supe гBASIC coercion allows direct comparison of
string and simple variables) then the decimal value (DV%) is updated.
When all eight digits have been checked, the final decimal value (DV%)
is RETurned.

1 CLS
2 PRINT " 	
з INPUT N$
4 PRINT BIN(N$)
5 GO TO 2

30000 DEFine FuNction BIN(N$)
30010	 DV%Z0 t BD У..s1
30020	 FOR N=8 TO 1 STEP -1
30030	 IF N*(N)=1 THEN DVx=DVx+BDX
30040	 BD%=BDX+ØD%
30050	 END FOR N
30060 RETurn DV%
30070 END DEFine BIN

CHAPTER 6
Making your Expert System Learn for
Itself

Although the expert systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance, which can be very tedious, or even downright
impossible where the human expert is not really sure of the answer.

However it is also possible to construct an expert program which can
learn from its mistakes and work out the decision rules for itself, which is,
of course, what a human expert tends to do. The only requirement is that

you have to tell it when (although not where) it goes wrong. This is
obviously an advantage if you are not altogether sure of the correct rules
yourself anywa y . In this case we start out with a series of feature variables
which we hope should enable us to distinguish between the different
objects (outcomes) but without any predefined yes/no pattern of these

features (`decision rule') to guide us. Instead we use the program itself to
determine what the pattern should be.

We will work with our familiar transport example and start by setting
up the variables. FE% is the number of features to be considered, 8,
FES(N) is an array containing the names of these features, FV(N) is an
array which will hold the values which you give to each feature when you
make input at any particular point (as 0 or 1), and RU(N) is an array
which will hold the current overall values of the decision rule on each
feature.

10 SCREEN
20 ST ЯRT

10000 DEFine PROCedure SCREEN
10010	 MODE 4
10020	 CLS #0 : CLS #1 s CLS #2
10030 END DEFine SCREEN

110д0 DEFine PRC'Cadure ST ЯRT

11010	 RESTORE
11020	 FE'1.=8 к DI#i FE$(FEY.,8),FV(FEX),RU(FE'!.)

84
	

85

50 REPeat QUESTION
60 FOR N=1 TO FE%
70	 FV(N)=0
80	 PRINT !FE$(N);
90	 IN$= τ NКЕУ$(-1)
100	 IN$=CHR$((CODE(IN$) ll 32)-32)
110	 IF IN$="Y" THEN FV(N)=1
120 END FOR N

200 END REPaat OUESTION

(Note that a simpler method of forcing upper case is used here, rather
than the GET$ PROCedure, as only single character inputs are made
which are easily modified.)

Now in UPDАТЕ_DE the decision variable, DE%, is set to zero
before being recalculated as the sum of the current value of DE% plus

each of the feature values. FV(N), entered multiplied by the current
decision rule values, RU(N).

	

130	 UPDATE=DE

12000 DEFine PROCedure UPDATE_DE

	

12010	 DE%=0

	

12020	 FOR N=1 TO FE%

	

12030	 DEX=((DEX$3)+(FV(N)*RU(N))#3))/3

	

12040	 END FOR N

	

12050	 PRINT \\"DEX= ";DE/,
12060 END DEFine UPDATE DE

Which is which?
To start with, we will consider the simplest situation where there are only
two possibilities — a BICYCLE or a CAR. Initially we make the
distinction between these quite arbitrarily by sa ying that if the final value
of DE% is equal to or greater than 0 then it is a BICYCLE, whereas if
DE% is less than 0 then it is a CAR. It does not really matter that this is
not actually true as the system will soon correct itself. When the program
has made a decision on the basis of the value of DE% it requests
confirmation (or otherwise) of the result.

UPDATE
DEG ISION
VALUE/

 PRINT
DECISION
VALUE

ı

NO

WEIGHT
=1

/ CAR?

NO

DE&l510N

VALUE= Ø

sλ rtifrcúг l InrePigence on the Siпcla r OL •	 Chapter б Making your Expert System Learn for Itself

11030	 FOR N=1 TO FE"/.
11040	 READ FE$(N)
11050	 END FOR N
11060	 DATA "WHEELS","WINGS","ENGINE","TYRES",

"RAILS",°WINDOWS", 'C НAIN',°STEERING°
11070 END DEFina START

Each feature is considered in turn (see Flowchart 6.1) in the QUESTION
PROCedure. First the current feature value, FV(N), for this cycle is set to
0, and then a yes/no' input IN$ is requested from the user on each point.
If IN$ is Y', the feature value element. FV(N), is set to 1, but otherwise it
remains set at 0. This will produce a pattern which describes the particular
object (outcome) as a pattern of 0' and 1' in array FV(N).

/ INPUT
FEATURE

WEIGHT
σΡ —1

UPDATE
RULE

Flowchart 6.1: Learning to Distinguish Between Two Objects.

180	 IF DE'/.>=O THEN PRINT \"IS IT A BICYCLE
";	 IN$=INКEY$(-1) : IN$=CHR$((CODE(
IN$) li 32)-32) : PRINT IN$: BICYCLE

CURRENT'
FEATURE
VALUE = 1

4б 87

Artificial Intelligence on the Sinclair Q L

1 90	 IF DE%<0 THEN PRINT \" τ S IT A CAR " τ
IN*=INKEYSь (-1) 	IN$пCNR*((CODE(IN*)

11 32)-32) ь PRINT IN$ s CAR

Three possible courses of action may be taken according to whether or
not the computer's decision was confirmed b y you.

If it was correct then effectively no action is taken as the weighting
variable, WT%, is set to 0.

IF DE% was >=0, but the computer was wrong (and selected CAR).
then the weighting variable. WT%. is set to —1.

If DE% was <0, but the computer was wrong (and selected

BICYCLE), then WT% is set to +1.

13000 DEFins PROCedure BICYCLE
13010	 IF INS="Y" THEN WT%=0 : UPDATE_RULE
13020 WT%=-1 ı UPDATE RULE
13030 END DEFine BICYCLE

Chapter 6 Making your Expert System Learn for itself

The program will return with a decision value. DE%, of 0, as this is the
initial value and no modifications have yet taken place:

DE%= 0

As DE% ís 0 then the system assumes that this is a BICYCLE and asks for
confirmation, to which the answer is. of course, 'yes':

IS IT A BICYCLE? Y

The contents of the rule arra y , RU(N), are now printed out. This shows
that the values have not changed from 0 as the correct answer was, by
pure chance, obtained!

RULES

14000 DEFine PROCedure CAR	 0	 WHEELS
14010	 IF IN$="Y" THEN WT0 : UPDATE_RULE 	 0	 WINGS
14020 WТ%=1 ı UPDATE_RULE	 0	 ENGINE
14030 END DEFine CAR	 0	 TYRES

0	 RAILS
The effect of the weighting variable takes place in the UPDATE_RULE 	 0	 WINDOWS
PROCedure in which we modify the values in the rule array, RU(N), 	 0	 CHAIN
pulling them down when they are too high. and pulling them up when 	 0	 STEERING

the y are too low.

Now try entering this sequence which describes a CAR:
15000 DEFine PROCedure UPDATE_RULE
15010	 PRINT \"RULES'\
15020	 FOR N=1 TO FE%
15030	 RUIN)=IIRU(N)#3)+IFV(N)#W Т '/.)#3)/3
15040	 PRINT RU(N),FE$(N)
15050 END FOR N
15060 END DEFine UPDATE RULE

The way the system operates is best seen by a demonstration. Type RUN
and then follow this sequence of entries. (Note that the punctuation has
been designed to give a screen format which clearl y indicates the
relationship between your input values and the decision rule values.)

First of all enter these values:

DE% is still 0, so the wrong conclusion is reached and the wrong question
is asked (BICYCLE) to which the answer must be 'no':

DE% = 0

IS IT A BICYCLE ? N

Now as a mistake was made the decision rule is modified b y subtracting 1
from each value in the rule array where a yes answer was given. The
contents of the rule arra y are thus now:

WHEELS Y WINGS N
	

ENGINE N
	

TYRES Y
RAILS N
	

WINDOWS N CHAIN Y
	

STEERING Y

WHEELS Y
	

WINGS N	 ENGINE Y
	

TYRES Y
RAILS N
	

WINDOWS Y CHAIN N
	

STEERING Y

WHEELS Y WINGS N
	

ENGINE N
	

TYRES Y
RAILS N
	

WINDOWS N CHAIN Y
	

STEERING Y

DE% =1
IS IT A BICYCLE? Y

.-І rtificiаl Intelligence on the Sinclair OL

	 •	 Chapter 6 Making your Expert System Learn for Itself

RULES

—1	 WHEELS
0	 WINGS

1	 ENGINE
1	 TYRES

0	 RAILS
—1	 WINDOWS
0	 CHAIN

1	 STEE RING

If you now enter the values which describe a CAR once more, the
program will come up with the correct answer:

0	 WHEELS
0	 WINGS
-1	 ENGINE
0	 TYRES
0	 RAILS
-1	 WINDOWS
1	 CHAIN
0	 STEERING

However the positive features which are common to the BICYCLE and
the CAR are now automaticall y increased by 1. so that if you repeat this
last sequence it will now produce the correct conclusion:

WHEELS Y WINGS N	 ENGINE Y
	

TYRES Y
RAILS N
	

WINDOWS Y CHAIN N
	

STEERING Y

DE% = —5
RULES

[S IT A CAR ? Y
0	 WHEELS

RULES	 0	 WINGS
—1	 ENGINE

—1	 WHEELS	 0	 TYRES
0	 WINGS	 0	 RAILS

1	 ENGINE	 —1	 WINDOWS

1	 TYRES	 1	 CHAIN
0	 RAILS	 0	 STEERING

1	 WINDOWS
0	 CHAIN	 The situation has now stabilised and the program will always recognise

1	 STEERING	 both CAR and BICYCLE correctly every time you enter the features
which describe them:

Before you feel too pleased with yourself, try giving it the values for a
BICYCLE again, which it will get wrong!

WHEELS Y
RAILS N

WINGS N	 ENGINE Y
WINDOWS Y CHAIN N

TYRES Y
STEERING Y

WHEELS Y
RAILS N

DE%= —3

IS ITA CAR ?N

RULES

WINGS N	 ENGINE N
WINDOWS N CHAIN Y

TYRES Y
STEERING Y

DE% = —2

IS IT A CAR? Y

RULES

0
0

WHEELS
WINGS

NO

ZERO
DEL151ON
VALUES

ZERO
FEATURE
VALUE

PRINT
FEATU RE

®YES Í FEATURE
VALUE
=1

NO

NO	 лu.
GHECКED

YE5
NO

YES IUPDATE
DEOISION
VARIABLES

YE5 INO

DE = DE(N)
TS =N

NO
NO PRINT

О5 ЕСТ
LIET

WHCH?

YES YES

NO

YES®
tNO

UPDATE
RULES

YES*

NO

YE$

NO

/ PRINT /
DE(N),DE,CR

NO
UPDATE
RULES Y εЅ

PRINT
Ru ιε s

Artificial Intelligence on the Sinclair OL
	

Chapter 6 Making your Expert System Learn for Itself

ENGINE
TYRES
RAILS
WINDOWS
CHAIN
STEERING

Notice that the final value of DE% for a BICYCLE is 1, and for a CAR
—2. If you look at the rule array values, you will see that these correspond
in both number and position to the unique features which distinguish
these objects (CHAIN for BICYCLE, and ENGINE and WINDOWS
for CAR).

A wider spectrum
Although you have now managed to teach your computer something, it is
not exactly earth-shattering to be able to distinguish between only two
objects. Let's expand the system to deal with a wider spectrum of pos-
sibilities (see Flowchart 6.2).

To start with we need to define the number of objects (outcomes) we
wish to be able to recognise. OB%. name them as DATA which we
READ into a new array. OBS(ОВ%), change our decision rule array into
a two-dimensional form. RU(FE%, OB%), which can hold rules for each
of the objects separately, and set up a decision array, DE(N), to hold
decision values for each object.

20 START

11000 DEFine PROCedure $TART
11010	 RESTORE
11020	 FE%=8 s OB%=5 : DIM FE*(FE%,8),FV(FE%),

RU(FЕ%,OВ%),OB$(08%,7), ОЕ (ОВ%) : TS%=5
11030	 FOR N=1 TO FE%
11040	 READ FE#(N)
11050	 END FOR N
110'0	 DATА "WHEELS","WINGS","ENGINE","TYRES",

"RAILS","WINDOWS","CHAIN","STEERING"
11070	 FOR N=1 TO OB'/.
11080	 READ OBW(N)
11090	 END FOR N
11100	 DATA "BICYCLE'',"CAR","PLANE","TRAIN"

,"HORSE"
11110 END DEFine START

Flowchart 6.2: Learning the Rules for a Wider Spectrum of Possibilities.

Rather than just having a single decision variable. DE%, we need here to
determine a decision value for each object each time. In each c ycle we
must first set DE% to zero, and then zero ever y element in the decision
array , DE(N), so that we start with a clean state for every object (ZERO_
DE).

50	 ZERO_DE

14000 DEFine PROCedur-! ZERO_DE
14010	 DE; =0
14020	 FOR N=1 TO OB'!.

цı 4^

Chapter 6 Making your Expert System Learn for Itselfλ rtificiıг l Jute/li gence on the Sin г lпίr OL

140,š0	 DE(N)=0
14040	 END FOR N
14050 END DEFine ZERO_DE

Questions on the values for each feature are then entered in the same way
as before.

40	 REPeat QUESTION

60
	

FOR N=1 TO FE%
70
	

FV(N)=0
80
	

PRINT !FE$(N);
9ß
	

IN$=INKEY$(-1)
100
	

IN$=CHR$((CODE(IN$) il 32)-32)

110
	

PRINT !IN$;
120
	

IF IN$="Y" THEN FV(N)=1

130
	

END FOR N

200	 END REPeat QUESTION

UPDATE_D y now updates each element of the decision array, DE(N),
according to the status of the entered values. FV(N), and the contents of
the appropriate rule array element. RU(N,M).

140	 URDATE_DV

	

150	 DECISION

16000 DEFine PROCedure DECISION

	

16010	 FOR N=1 TO OB'/.
	16020	 IF DE(N)>=DE% THEN DE%=DE(N) : TS;.=N

	

16030	 END FOR N
16040 END DEFine DECISION

The best guess of the system is that this is the correct answer, so once
again it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

160	 ANSWER

17000 DEFine PROCedure ANSWER
17010	 PRINT \"WAS IT ";OB$(TS%) э ° II'

17020	 IN$=INKEY$(-1)
17030	 IN$=CHR$((CODE(IN$> 11 3 2) -3 2)
17040	 PRINT IN$
17050	 IF IN$="Y" THEN NEXT QUESTION
17060 END DEFine ANSWER

However, if the answer needs correction, the names and numbers of all of
the objects are printed out and you are asked for the number of the
correct answer, CR%. (The limitations on CR% prevent you crashing
the program by entering an illegal value.)

170	 CORRECTION
15000 DEFine PROCedure UPDЯTE_DV
15010	 FOR N=1 TO FE%
15020	 FOR M=1 TO 08%
15030	 DE (M) =((DE(M)#3)+((FV(N)*

RU(N,M))*3))/3
15040	 END FOR M
15050	 END FOR N
15060 END DEFine UPDATE DV

We now need to look to see if any of the DECISION values for any of the
objects. DE(N), are greater than or equal to the overall decision value,
DE%. If this is true then we set a score ' . TS%, variable equal to the
number of the object producing the best match, N.

18000 DEFine PROCedure CORRECTION
18010	 FOR N=1 TO OB%
18020	 PRINT \N,OB$$(N);
18030	 END FOR N
18040	 PRINT \\"WHICH WAS IT? ";
18050	 INS=INKEY$(-1)
18060	 CRХ=CODE(IN$)-48 : IF CR%<1 OR CR%>5

THEN CORRECTION
18070	 PRINT CR%
18080 END DEFine CORRECTION

To UPDATE_RULES we must first make a check to determine whether
the decision value for each object. DE(N), is greater than or equal to the

44 o ε

•	 Chapter 6 Making your Expert System Learn for ItselfArtificial Intelligence on the Sinclair QL

overall decision value, DE%, AND whether the object being considered
is NOT the correct answer. If both of these are true then the rules are
updated again by subtracting the correct feature values. FV(N), to bias in
favour of the correct answer.

180	 UPDATE RULEB

19000 DEFine PROCedure LJPD4TE_RULEB
19010	 FOR N=1 TO OB%
19020	 IF DE(N)>=DE% AND N{}CR% THEN
19030	 FOR M=1 TO FE%
19040	 RU(M,N)=((RU(М ,N)*гΡ3) -

(Fц (M)#3))/3
19050	 END FOR M
19060	 ELSE NEXT N
19070	 END IF
19080	 END FOR N

Then the correct feature values. FV(N). are added to the rule array for
the correct object to bias in the opposite direction.

19090	 FOR M=1 TO FE%
19100	 RU(M,CR%)=((RU(М ,CR%) λгЗ)+

(FV (М) *3) >/3
19110	 NEXT M
19120 END DEFine UPDATE RULES

Finally DISPLAY_RULES prints out the status of the rule arrays so that
you can see what is happening.

	

190	 D ISPLAY_RUL ΣS

20000 DEFine PROCedure DIBPLAY_RULES

	

20010	 CLS #2 : CLS #3
20020 FOR M=1 т0 OBX

	

20030	 AT #2,3, м-1 τ PRINT #2,DE(M);"
";DEX;"	 ";CRX

	

20040	 FOR N=1 TO FEY.

	

20050	 AT *3, (N*3) -3, М-1 : PRINT
*3, RU (N, N) ;

	

20060	 END FOR N

Ч6

20070 END FOR М
20080 PRINT
20090 END DEFine D τ SPLЯY_RUιεS

To make the whole program easier to understand we will use the
capabilities of the QL to produce a comprehensive screen status format
(see Figure 6.1) with multiple windows. These are produced by the
SCREEN_SET PROCedure and then LABELled appropriately.
Although we will omit any discussion on the details of this 'decorative'
aspect of the program, we should explain that the main action takes place
in the default window (right half of screen), with printouts of DE(N).
DE% and CE% in window #2, the rules in window #3, and various labels
in windows #4, #5 and#6.

Note that a separate SCREEN PROCedure is defined which not only
clears the whole screen to start with but also provides you with a safety net
which can easily return you to an acceptable format for listing the
program. The two parameters passed to SCREEN are PAPER and INK,
respectively, hence typing SCREEN 6,0 as a direct command before
LIST will automatically return the full screen area and produce a black
listing on a white background.

10 SCREEN 0,6 i sCREEN_BET
30 LABEL

10000 DEFine PROCedure SCREEN_SET
10010	 MODE О
10020 CLS #0
10030	 INK #0,7
10100	 WINDOW #1,230,200,257,16
10110	 BORDER #1,3,6
10120	 CS τ ZE #1,2,0
10130	 PAPER #1,5
10140	 INK #1,0
10150	 CLS #1
10200	 WINDOW #2,140,50,105,32
10220	 CSIZE #2,0,0
10240	 INK #2,2
10250	 CLS #2
10300	 OPEN #3,SCR 170X60A85X100
10310	 BORDER #3,3,2
10з20	 OBIZE #3,0,0
10330	 PAPER #3,6
10340	 INK #3,0

97

.::,	 гέ ип мi... '^aυ,:mıil:гuпλппь„auı i ^úE

-- _. , 1 Іјј L`_ !'—^

^ lit nitiiiiuii

i :.: ..1 ı ııı.L:..ı. .

1Γ

Iİ

. ıι

	

,— 	 '— = '= Ci --

= гг — _Ј = -

İiiH- г ^.έ Ј 1 ű!	 j İi6

1 : .,. ^	 1ΐ
 ω	 — +--^ — ξ̂; 	 _ ^ ^~
	 ^—

	

i^	 i	

111

--	
—. ,^ ^

-^ ,--^	 _	 ¡¡_	 — -

i	 ^	 i	 ^ _	 ^. 1

^j^ 	
ί == г W LiJ _j э

— .

í 1!:; uıгeηпλp!iL:гíÿ η, ; aη p!, ; ;mwm гG ,Гпc^¡ пıı mпi,;:

	

. , p :, ^ Ч 	 ı	 4 ıı Ea	 .., ııı ^гı ;ı; ı
!!.

ίЗ ; .. ^ ?-- ííN _ 'í . ^;

+P t i* d1^ις,,
^:ΐ

ηP111¡tlllмl(Πpςliti511!!ή^ ^ г ^ İİ

^1._ .'g	 .i	 чгг И	 9. "^1

• • Chapter 6 Making your Expert System Learn for Itself
A rtificial Intelligence on the Sinclair OL

Figure 6.1: A Learning Expert.

10350	 CLS #3
10400	 OPEN#4,SCR 175X90A80X155
10410	 BORDER #4,5,2
10420	 CSIZE #4,0,0
10430	 INK #4,1,0
10440	 PAPER #4,6
10450	 CLS #4
10500 OPEN#5,SCR 230X70A26X90
10510	 BORDER #5,3,2
10520	 CSIZε #5,0,0
10530	 INK #5,4
10540	 PAPER #5,6
10550	 CLS #5
10600	 OPEN #6,SCR_230X70A26 Х 18
10610	 BORDER #6,5,2
10620	 CSIZE #6,0,0
10630	 INK #6,1,4
10640	 PAPER #6,6
10650	 CLS #6
10700 END DEFine SCREEN SET

20000 DEFine PROCedure SCREEN (A,B)
20010	 WINDOW #2,460,200,26,16
20020 PAPER #2,A
20030	 INK #2,8
20040 CLS #2
20050 END DEFine SCREEN

13000 DEFine PROCedure LABEL
13010	 AT #6,11,0 : CSIZE #6,1,0 : PRINT

#6,"DE(N)	 DE?..	 CR%" : CSIZE #6,0,0
13020	 FOR N=í TO OB%
13030	 AT #6,1,N : PRINT #ó,0B#(N)
13040	 AT #5,1,N : PRINT #5,OB$(N)
13050	 END FOR N
13060	 FOR N=1 TO FE'/.
13070	 FOR М=1 TO 8
13080	 AT #4, (N*3)-2, М-1
13090	 PRINT #4,FE*(и , м)
13100	 AT #5,15,0: CSIZE #5,3,0 I PRINT

#5,"RULES" : CSIZE #5,0,0
13110	 END FOR M
13120	 END FOR N
13130 END DEFine LABEL

no QQ

Artificial Intelligence on the Sinclair QL

Once again a demonstration is the best way to understand what is
happening so enter the following sequence:

WHEELS Y WINGS N
ENGINE N
	

TYRES Y
RAILS N
	

WINDOWS N
CHAIN Y
	

STEERING Y

The program will come back with the erroneous conclusion that it was a

HORSE. so you must tell it that this was wrong, when it will ask you for

the correct answer (BICYCLE = 1):

WAS IT HORSE N

1	 BICYCLE
2	 CAR
3	 TRAIN
4	 PLANE

5	 HORSE

• Chapter 6 Making your Expert Šestem Learn for Itself

W W E T R	 W C S
H I N Y A	 I H T
E N G R I	 N A E
E G I E L	 D I E
L S N S S	 0 N R
S E W I

S N
G

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels, tvres, chain and steering —
which are all features which we defined as part of a BICYCLE but which
are not found in a HORSE. In addition you will see that the values for
these features in the BICYCLE rule array are now all +1, whilst the
values for these features for all the other objects are all now —1. Now give
it the features of a CAR, which it thinks is a BICYCLE, and then correct
it. Notice that the rule arrays for BICYCLE and CAR are now amended
to take into account the new information.

WHEELS Y WINGS N
ENGINE Y
	

TYRES Y
RAILS N
	

WINDOWS Y
CHAIN N
	

STEERING Y
WHICH WAS IT 1

WAS IT BICYCLE N
The status of the various decision and rule arrays are now printed out for
your information, in the windows on the lefthand side of the screen.

DE (N) DE% CR%

BICYCLE 0 0 1

CAR 0 0 1

TRAIN 0 0 1

PLANE 0 0 1

HORSE 0 0 1

RliLES

BICYCLE 1 0 0 1 0 0 1 1

CAR —1 0 0 —1 0 0 —1 —1

TRAIN —1 0 0 —1 0 0 —1 —1

PLANE —1 0 0 —1 0 0 —1 —1

HORSE —1 0 0 —1 0 0 -1 -1

1	 BICYCLE
3	 CAR
3	 TRAIN
4	 PLANE
5	 HORSE

WHICH WAS IT2

DE (N) DE% CR%
BICYCLE 3 з 2
CAR —3 3 2
TRAIN —3 3 2
PLANE —3 3 2
HORSE —3 3 2

RULES

101

1
ı

3
4
5

BICYCLE o 0 —1 0 0 —1 1 0

CAR o 0 1 0 0 1 —1 0

TRAIN —1 0 0 —1 0 0 —1 —1

PLANE — ι o o —1 υ o —1 —1

HORSE —1 0 Π —1 () 0 —1 —1

W W E T R W C S

H I N Y A I H T

E N G К I N A E

E G I E L D I E

L S N S S O N R

S E W
ς

1
N
G

Next give it a PLANE, which it decides is a CAR. and correct it again.

WHEELS Y WINGS Y
ENGINE Y
	

TYRES Y
RAILS N
	

WINDOWS Y
CHAIN N
	

STEERING Y

WAS IT CAR N

1
	

BICYCLE

2
	

CAR

3
	

TRAIN
4
	

PLANE
5
	

HORSE

4
	

PLANE
5
	

HORSE

WHICH WAS IT 3

And finally a HORSE. which comes out as a PLANE!

WHEELS N WINGS N
ENGINE N
	

TYRES N
RAILS N
	

WINDOWS N
CHAIN N
	

STEERING Y

WAS IT PLANE N

BICYCLE
CAR
TRAIN
PLANE
HORSE

WHICH WAS IT 5

If you continue to feed your expert information then eventually it will get
the right answer every time. How long this will take depends upon the
extent of the differences between the features of the objects, and on the
order in which the objects are presented to the expert. Be warned that it
can take a long time before it becomes infallible! Here is one sequence
which eventually was right every time.

•	 Chapter 6 Making your Expert System Learn for Itself
Artifici ıι! Intelligence on the Sńτ cla ίr OL

PLANE (TRAIN)
CAR (YES)
HORSE (YES)
PLANE (CAR)
CAR (YES)
CAR (YES)
BICYCLE (YES)
BICYCLE (YES)
PLANE (CAR)
CAR (YES)
BICYCLE (CAR)
TRAIN (YES)

CAR (PLANE)
PLANE (CAR)
PLANE (BICYCLE)
PLANE (CAR)
PLANE (CAR)
PLANE (YES)
TRAIN (CAR)
CAR (PLANE)
PLANE (YES)
PLANE (YES)
CAR (YES)
HORSE (YES)

BICYCLE (YES)
PLANE (YES)
CAR (PLANE)
CAR (PLANE)
PLANE (YES)
HORSE (YES)
TRAIN (YES)
CAR (YES)
CAR (PLANE)
CAR (YES)
PLANE (YES)
BICYCLE (YES)

WHICH WAS IT 4

And now a TRAIN, which it still gets wrong!

WHEELS Y WINGS N
ENGINE Y
	

TYRES N
RAILS N
	

WINDOWS Y
CHAIN N
	

STEERING N

WAS IT PLANE N

1
ı

3

BICYCLE
CAR
TRAIN

As the final scale of values ranged from +6 to
surprised that it took a long time to get there.

—2 you should not be

102 1 0

25000
25010

Artificial Intelligence on the S ίnclair OL
	 •	 Chapter 6 Making your Expert System Learn for Itself

RULES

BICYCLE 1 0 —1 1 0 —2 3 0

CAR —1 4 1 0 —1 1 —' 0

TRAIN 0 —1 1 —2 2 1 —1 —2
PLANE —2 6 0 0 —1 0 —2 —2

HORSE —1 0 0 —1 0 0 —1 0

W W E T R W C S

H I N Y λ I H T

E N G R I N λ E

E G I E L D I E
L S N S S O N R

S E W I
S N

G

Automatic digestion of the data
Although our expert now manages to sort out the rules for itself, we are
still left with the tedious job of holding a 'conversation with it, whilst it
builds up the correct pattern in its rule arrays. In a real application of such
an expert system it would be much better if we could feed it a mass of
collected information on a subject area and the conclusions, and then
leave it alone to digest this and come up with the rules automatically in its
own good time.

In fact it is not too difficult to modify our existing program to produce
an 'automatic' mode which crunches information provided as DATA,

First of all we need to enter that information in a fixed format
containing the name of the particular object and 'Y' and N' answers for
each feature, in the correct order.

Rεмar к INFORMATION STORE

DATA HBICYCLEi , ' I У ", "NII , U N 11 , 'Іу II
 ,

"Nn , ІІ Ј іІ ,
i'yii	 iy"

25020
	

DATA "CAR 1! , π τσ ^ σσ N σ i ^ ^ γ σσ ^ σσ γ σσ ,

σσ N" , ''" , п "
σσ , ,σγσ,

25030
	

DATA "TRAíN"*"Y","N","Y п ,uN п
,

'''‚и ' 	 Н "''', ''N"

,
 "N ıı

25040
	

DATA "PLANE ","Y","Y","Y","Y",
11N1I' " У ',

11 N 11 ' 11γ t1

25050
	

DATA "HORSE","N","N","N","N",
''N'' , UN11, '' Г '' , '' У ''

250ь0	 DATA "END"

We now introduce a READER PROCedure, called at the start of the
QUESTION loop, which, for the moment. just READs and PRINTs out
the name (N$) of the object currently being examined.

45 READER

26000 DEFine PROCedure READER
26030 READ N$
26100	 CSIZE 3,1 : PRINT N$: CSIZE 2,0
26110 END DEFine READER

The 'Y' and 'N' answers for each feature are also READ in turn, as IN$.
in a replacement for the previous INKEY$ check in the QUESTION
loop.

90 READ IN$

In the ANSWER PROCedure, we need to compare the name of the
object being examined (N$) with the name of the top-scoring object
(OB$(TS%)) selected by our expert. If a match is found then
'CORRECT' is printed.

14020 IF ОВ$(TS%)=N$ THEN
14030	 CSIZE 3,1 : PRINT \"CORRECT"\\ :

CSIZE 2,0
14040	 NEXT QUESTION
14050 END IF

In the CORRECTION PROCedure we need to compare the name of the
item currently being examined (N$) with the names of each of the objects
(OB$(N)) which are known by our expert. The best way to do this is to
insert a check inside the listing loop which sets CR% to N when there is a
match. The original INKEY$ and following validation check must also be
removed.

17025 IF OØ$(N)=N$ THEN CR%=N
17050 REMark DELETED
17060 REMark DELETED

Once those changes have been made you can sit back, or perhaps indulge
in a cup of coffee, as you watch your expert hard at work!

104
	

105

•Artificial Intelligence on the Sinclair QL • Chapter 6 Making your Expert System Learn for Itself

Round and round
As it stands the program 'vill end when all of the objects have been
examined once which, as you should have already noticed, is not enough
to build the correct rules. We can force repeat c ycling by checking
whether the 'END' message following the real DATA has been detected,
and RESTOREíng to the appropriate line number. Notice that we must
READ N$ again after the RESTORE.

Keeping your expert
Now that your expert has been trained it would be a pity to lose him when
the power goes off. However, as the rules are stored in arrays, you could
easily write a routine to save them and then reload them for use at a later
date.

26040
	

IF N!="END" THEN
26050
	

RESTORE 27000

26080
	

READ N$
26090
	

END IF

To be able to see how well our expert is doing and to be able to
congratulate him when he has finished his task, we need to keep track of
how many cycles of testing have been completed, and whether full success
has been achieved. Two new variables are defined. CY% is the number of
cycles of comparisons completed. and SU% is the success achieved. SU%
must be incremented in the ANSWER PROCedure, reset on RESTORE.
and be compared with the number of objects to be correctly identified (5).
A printout of the current cycle is produced in the bottom left hand corner
of the screen on channel #0, so that you can assess progress, and a
'RULES LEARNT' message appears when SUO 7o reaches 5.

5 CY%=1 : SU'/.=0

14040	 SU'!.=SU%+1 i NEXT QUESTION

260 1 0	 IF SU'I. =S THEN STOP
26020	 AT #0,0,0 : CS I ZE #ύ , 3, 1 г PRINT *0,

СУ '!. г CS I ZE #0, 00 0

26070	 SUX =0

When you test out this automated version you will discover six cycles of
the DATA are required to guarantee successful recognition of the five
modes of transport as the DATA is entered. However, if you switch the
positions of the BICYCLE and the HORSE this reduces to only four

cycles. With PLANE swapped with BICYCLE only four cycles are again
needed, but with BICYCLE and CAR switched the requirement rises to
no less than ı ιvelre cycles! It is also interesting Ýo note that the final rules
differ in each case. We leave you to experiment with random selection of
the DATA. as well as expansion of the field of knowledge.

106
	

107

•	 •
CHAPTER 7

Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. For example English is a very
variable language and there are frequently alternative spellings of the
same (or verv similar) surnames, which can cause difficulties. One way
round this problem is to try to match the sound of the word rather than the
actual letters in it by means of 'soundex coding', which was originally
developed to assist processing of the 1890 census in the USA. This
method of coding ensures that similar sounding words have almost the
same code sequence. The rules for coding a word are as follows:

1) Always retain the first letter of the word as the first character of the
code. From the second letter onward:

2) Ignore vowels (a, e, i. o, u).
3) Ignore the letters w, y, q and h.
4) Ignore punctuation marks.
5) Code the other letters with the values 1-6 as follows:

Letters	 Code
bfpv	 1
cgjksxz	 2
dt	 3

4
mn	 5
г 	 6

6) Where adjacent letters have the same code only the first one is
retained.

7) If length of code is greater than four characters then take first four
only.

8) If length of code is less than four characters then pad out to four
characters with zeros.

To make this clear here are some examples of soundex coded names:

BRAIN — В650: В is retained. R is 6, A and I are dropped, N is 5 and a zero
is added to pad out the code.

I (Ю

INPUT
NAME

TAKE NEXT
LETTER

AS τм $

SEARLЧΡ
STRING =
CODE GROUP

NO

YES

Тг$ _
CODE
NUMBER

ADD TM$

To cos

PRINT
	 NAME
AND CODE

sArńficial Intelligence on the .S псc air QL Chajuer 7 Fuzzy Mп tching

CUNNINGHAM – C552: C is retained, U is dropped. both Ns are rep-
resented by the single code 5, I is dropped, the third N is represented by 5.
G is 2. H and λ are dropped. and M is coded as 5—but the resulting code
(C5525) is truncated to four characters.

GORE – G600: G is retained, O is dropped. R is 6, E is dropped and zeros
are added to pad the code.

IRELAND – 1645: [is retained, R is 6, E is dropped. L is 4, A is dropped.
N is 5 and D is 3 — but the resulting code (I6453) is truncated to four
characters.

SCOT–S300: S is retained, C is dropped because it is in the same group as
S. O is dropped, T is 3 and zero is added to pad the code.

If your name is full of vowels and other rejected letters then you will find
that your code is somewhat abbreviated!

HEYHOE – Н000: H is retained, all the other letters are rejected (!), and
the code is filled up with zeros.

Coding routine
To save all that brainwork let's develop a program which allows you to
input a word in English and output it in soundex code (see Flowchart 7.1).
The first thing to do is to jump to a SETUP routine which first of all
RESTORES the DATA pointer and then calls SCREEN which sets up a
suitable series of screen windows.

10 SE'ı _UP

10000 DEFine PROCedure SET_UP
10010	 RESTORE
10020	 SCREEN
10030 CODES

10050 END DEFire SETUP

The SCREEN display is divided vertically into two main windows (#1
and #2), with #0 at the bottom reserved for INPUT, and #3 and #4 at the
top of the screen used for labels (see Figure 7.1).

11000 DEFine PROCedure SCREEN
11010	 MODE 4

11020

11030
11040
11050

11060
11070
11080
11090
11100
11110

Flowchart 7.1: Producing a Soundex Code.

WINDOW #2,230,186,26,30
BORDER #2,2,6
CSIZE *2,1,0
CLS #2
WINDOW #1,230,186,257,30
BORDER #1,2,4
CSIZE #1,1,0
PAPER #1,5
INK #1,0
CLS#1

110
	

111

Figure 7.1: Fuzzy Matching.

λ rtificial Intelligence on the Sí пclпiг QL Chapter 7 Fuzzy Marching

11120	 BORDER #0 ,1,4

11130	 CSIZE#0,2,0

11140	 CLS 40

11150 	OPEN #3,SCR_230X14A257X1ó
11160 	OPEN #4,SCR_230X14A26X16
11170	 BORDER #3,1,4

11180	 BORDER #4,1,4

111 90	 CSIZE #3,2,0

11200	 OBIZE #4,2,0
11210	 PAPER #3,0
11220	 PAPER #4,0

11230	 INK #3,7

11240	 INK #4,7
11250	 CLS#3
11260	 CLS#4
11270	 PRINT #3," NAMIE","	 CODE"
11280	 PRINT #4, " CO#";"	 ";"IN#(1 TO N)";

11290 END DEFine SCREEN

The CODЕS PROCedure reads each group of the retained letters into
one clement of a soundex code string array, SC$(n). Note that these
groups are arranged so that the letters are ín the array element cor

-responding to their code value.

1200 DEFine PROCedure CODES
12010	 DIM SC$(6.7)
12020	 DATA H BFFV U , 'CGJKsXZ ', "DT , U L II, iI MN H , R"
12030	 FOR N=1 TO 6

12040	 READ SC$(N)
12050	 END FOR N

12060 END DEN ne CODES

We can now INPUT the word to be converted, IN$. (A mug-trap is

provided for an empty string, but if you want to convert automatically
from lower case you can include the GET$ PROCedure described in

Chapter 2.)

100 REPeat LOOP

110	 AT #0,1,2 : INPUT #O,IN$; : IF
IN$="" THEN LOOP

140 END REPeat LOOP

112 1 ı t

Artificial Intelligence on the Sinclair QL s •	 Chapter 7 Fuzz y Marching

As conversion to the code numbers and compilation of a soundex code
string will be required at various points, we will set this process up as a
FuNction named COMPILES. As this is a FuNction we can easil y PRINT
out the result of passing INS to it.

120 AT #0,20,2 : PRINT #0, COMPILE$
(IN$)\\

16070	 ТМ$=t1'
16080 END DEFine CONVERSION

We then need to check the other letters of the word, 2 TO LEN(IN$), in
turn after first making a temporary string, TM$. equal to the current
letter to be translated.

To begin with we must make the coded version of this, COS. the first
letter of the INPUT word (following the first rule above).

15030
15040
15050

FOR N=2 TO LEN(IN$)
TM$=IN$(N)
CONVERSION

15000 DEFine FuNction COMPIL ε: (INЯι)
1501 б 	 Tмf= τ Nf(ı) ј CO$=TM$: CONVERSION

For conversion of each letter to the appropriate code character, we have
to check TM$ against each individual letter in each group of letters,
SCS(N), to find a match. To check each letter group we have to go round
six times, making a search string, SE$, the current soundex code group
and using an INSIR routine which checks each letter in the group against
TM$ in turn.

16000 DEFine PROCedure CONVERSION
16010	 LOCal P
16020	 FOR P=1 TO 6
16030	 SE$=SCi(P)
16040	 SPY.=ТМ$ INSTR SE$

When the INSTR check has been made we have to determine whether a
match has been found to any of the soundex groups, and, if so. to which
group. If no match is found then SP% will be set to О . On the other hand if
a match is found then SP% will be set to P which will point to the value of
the code group matched. If a match was found (SP%>0) then we convert
the value of the loop scanning the code groups. P. to a string. TM$, which
replaces our original temporary string.

16050	 IF SP%>0 THEN TM$=P : RETurn

If no match is found in that group, we have to check the next group.

16060	 END FOR P

If no match is found at all then TM$ must contain one of the characters to
be ignored so we reset TM$ empty — TM$="".

We can now make the coded string. CO$, equal to the original coded
string plus the newly-converted character, TM$, and RETurn the final
result when all characters in INS have been checked.

1408ύ 	 C0$=C0$&TM$

15110	 END FOR N

15140	 PRINT #2
15150	 RETurn CO$
15160 END DEFine COMPILE$

The final converted code will eventually be printed out at the bottom of
the screen (next to the INPUT) but it would be instructive to watch how
the computer reaches its decision. Adding the following line to the
COMPILES routine will provide a detailed printout of the state of play
during each cycle of the conversion in the lefthand window.

15100	 PRINT #2," ";COQ „ IN$(1 TO N)

If you INPUT the name STEVEN you will get the code S315, by the
following route:

IN$(1 TON)
ST
STΣ
STE V
STEVE
STEVEN

However, if you try BRAIN or CUNNIŇGHAM you will get codes B65
and C55525 respectively.

CO$

S3

S3

S31
S31
S315

114 115

TAKE 15T
LEl ı LR

A5 тм $

^
1

c0$ = тм$

^

TAKЕ NEXT

LETTER
AS Т Г1$

ý MP.TCHI^4	 ı

rt^ ZUBROUTINE 1

SEARCH
STRING=

CО E úñOUP

^

NO

YES	 Yε s

SET TM$
ı EMPTY

тn$ =
GODE
NUMBER

I
^

t

L 	

^--1--,
1 ^млτcн ^ ч c, 1
1 SuBкσuтıиε 1

ι	 1

ADD TM$
TO CO$

LT$ =TM$

15020 LT$= T M$

15060
15070

IF TM$< λι T$ THEN
LTTM

GO$ = FIRST
FOUR GК4R5^"

NO

• Chapter 7 Fuzzy Matching
Artificial Intelligence on the Sinclair OL

CO$	 IN$(1 TO N)
B6	 BR
B6	 BRA
B6	 BRA'
B65	 BRAIN

C	 CU

C5	 CUN
C55	 CUNN
C55	 CUNNI
C555	 CUNNIN
C5552	 CUNNING
C5552	 CUNNINGH
C5552	 CUNNINGHA
C55525	 CUNNINGHAM

The code for BRAIN is too short. and needs padding out with zeros, and
the code for CUNNINGHAM is too long and the same codes are
repeated one after another for the letter N.

Dealing with the details
To solve the problem of the repetition of the same code for adjacent
letters, we need to keep a record of the last temporary string, LT$. We
need to make LT$ the code of the first character in IN$ to start with, so
that the initial letter is not repeated. As we go through the FOR NEXT
loop we must then compare LT$ with TM$, and if they are the same we
must not add TM$ to COQ. Otherwise we need to make LT$ the latest
TM$.

Finally íf the string is too long then we cut it down to size with CO$(1 TO
4) again (see Flowchart 7.2).

^--1--,
'• ^tмтcн ^иь 1

$UBRDUT7NE1
1	 ^

LT$ =Tu$

NO

I INPUT /
 NAME J

Ø ı n^^
	 NAME

ND CODE

15090	 END IF

Now we can sort out the problem of the code being too short. First of all
we check the length of the strin g , LEN(CO$)<4. If it is too short we add
three zeros on to the end and then cut the string back down to the correct
size (four characters).

15120	 IF LcN(CO$)<4 THEN CO$=C 0$&"000 τ І

i CO$'CO$(1 TO 4)

Flowchart 7.3: Dealing with the Details.

1510	 IF LЕN(CO$)?4 THEN C0$=C0$(1 TO
4)

Matchmaking
Now that we have a reliable method of producing the soundex codes, let's
give it something to work on. The first task is to READ a list of names out

116
117

A rtificial Intelligence on the Sinclair QL • • Chapter 7 Fuzzy Matching

of DATA statements into a name string array, NA$(N). Our demon-
stration list only consists of 18 names, but if you want more a quick flick
through your local telephone directory should soon solve that problem!
Note that the number of words is also stored as NW%, and that this
PROCedure is now called from within SETUP.

10040 NAMES

13000 DEFina PROC^tdure NAME3
13010	 LT$="" τ NW%=17
13020	 DIM NA$(NW7,16) τ DIM NC$(NW%,16)
13030	 DATA "ABRAHAM","ABRAHAMS","ABRAMS",

"ADAMS","ADDAMS","ADAMSON","ALAN",
"ALLAN","ALLEN"

13040	 DATA "ANTHANY","ANTHONY","ANTONY",
"ANTROBUS"," APPERLEY ","APPLEBEE",
"APPLEBY","APPLEFORD"

13050	 FOR N=0 TO NW7..
13060	 READ NA$(N)
13070	 END FOR N

13120 END DEFíne NAMES

The whole idea of matching with soundex codes relies on the fact you use
the soundex code to make the match before printing the possible words.
We therefore have to find the codes for each of the names from the
DATA and put these codes into an equivalent string array, NC$(N).
However, this is easy as the previously DEFined FuNction COMPILE$
can be re-used to find the soundex code, if NA$(Q) is passed instead of
IN$.

130в0	 FOR Q=0 70 NW%
13090	 NC$(Q)=COMPILE$ (NA$(o))
13100	 PRINT NA$(Q),NC$(Q)
13110	 NEXT o

If you RUN this now you will see all the codes for the DATA produced
(on the left window) and displayed (on the right window) before the input
request. However, the righthand display is rather ragged, so let's smarten
it up by formatting it with a TABLES FuNction. This puts the results into
two neat columns by adding padding spaces to the righthand end of the
strings, and then retaining only the first part of the result.

1 з 100	 PRINT TABLEs(NA$(0) ,NC$(0))

14000 DEFine FuNction TABLE$ (I1$,I2$)
14010	 I1$=I1$ & FILL$(" ",16)
14020	 I2$=I2$ & FILL$(1,8>

14030	 I1$=I1$(1 TO 16)
14040	 I2$=I2$(1 TO 8)
14050	 RETurn " "&I1$&I2$
14060 END DEFine TABLE$

NAME
ABRAHAM
ABRAHAMS
ABRAMS
ADAM
ADAMS
ADDAMS
ADAMSON
ALAN
ALLAN
ALLEN
ANTHANY
ANTHONY
ANTONY
ANTROBUS
APPERLEY
APPLEBEE
APPLEBY
APPLE FORD

The only thing we need to do now is to compare the codes and determine
which of these names match the code of your input.

130 COMPARE

17000 DEFine PROCedure COMPARE

17030	 FOR N=0 TO NW7'
17040	 IF CO$=NC$(N) THEN PRINT #2

,TABLE$ (NA$(N),
NC$(N))

17050	 END FOR N

17090 END DEFine COMPARE

CODE
A165

A 165

A 165

A350

A352

A352

A352
A450

A450

A450

A535

A535

A535

A536

A 164

A141

A 141

A 141

118
	

119

PRINT
	 NO OF CHR

CHECKED

Flowchart 7.3: Partial Matching.

first 3 characters match
APPLEBEE A141
APPLEBY A141
APPLEFORD A141
press any key to continue

first 2 characters match
ABRAHAM A165
ABRAHAMS A165
AB RAíМS A165
APPERLEY A164
APPLEBEE A141

Artificial Intelligence oп he Sίпclaír QL Chapter 7 Fuuz y Matching

This will only print words with exactly matching soundex codes. For
example, if you try entering the name APPLEBE you will get the

following response:

APPLEBE	 A141

NAME
	

CODE
APPLEBEE
	

A141
APPLEBY
	

A141
APPLEFORD A141

Although APPLEBE (one E at the end) is not present in the DATA. we
have found APPLEBEE AND APPLEBY, as well as APPLEFORD
(where the interesting sound at the end has been chopped off).

Partial matching
Notice, however, that APPERLEY has been rejected, even though it
sounds quite similar at first. It would therefore be useful if we could also
print out partial matches.

This can easily be done by adding an extra FOR-NEXT loop which
compares a decreasing section (1 TO M) of the INPUT with decreasing
lengths of the stored codes (see Flowchart 7.3).

17010	 FOR M=4 TO 1 STE° -1
17020	 PRINT #2,\"first "; М ;" characters

matc ń "\

17040	 IF C0$ (1 TO M) =NC$(N)(1 To M)
THEN PRINT M2,TABLЕ# <N$<N)

NC#(N))

17060	 PRINT ßi2,"press any key to continue"
17070	 DUММУ$=INкεY$(-1)
17080 END FOR М

If you now try APPLEBE, you can see the whole range of possibilities.

APPLEBE	 A141

first 4 characters match
APP LEB EE
	

A 141

APPLEBY
	

A141

APPLEFORD A 141

press any key to continue

ı
 M= 4

ıın	
1^1

press any key to continue

Artificial Intelligence on the Sinclair QL

APPLEBY	 A141

APPLEFORD	 A141
press any key to continue

first 1 characters match
ABRAHAM A165

ABRAHAMS A165

ABRAMS A165

ADAM А350

ADAMS А352

ADDAMS A352
ADAMSON A352

ALAN A450

ALLAN A450

ALLEN A450

ANTHANY А535

ANTHONY А535

ANTONY A5 35
ANTROBUS А536

APPERLEY A164

APPLEBEE A141
APPLEBY A141
APPLEFORD A141

•
CHAPTER 8
Recognising Shapes

We normally recognise objects using our senses of sight, sound, taste and
feel, whereas of course our basic computer can only obtain information
through the keyboard. Whilst it is possible to produce sensors which can
be interfaced to your machine to give it another view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We will make do instead with a
simulation of the action of a light sensor to illustrate how shapes can be
recognised.

Let us think for a start about three simple shapes — a vertical line, a
square, and a right-angled triangle.

We can recognise these shapes by looking at the pattern the y make on
an imaginary grid and deciding whether or not there is a point set at each
X and Y coordinate.

In the case of the line, only the first X coordinate is used, but all of the Y
coordinates. The square is a little more complicated, as all the X
coordinates on Y rows 1 and 8 are set, but from Y rows 2 to 7 only the first
and last X points are set. Finally the triangle is even more complicated as
the slope is produced by incrementing the X axis each time.

Y row
1

Table 8.1:	 Decimal Values of Shapes Described in Binary Form.

line	 square	 triangle
1	 255	 1
1 129 3

3 1 129 5
4 1 129 9
5 129 17
δ 1 129 33
7 1 129 65
8 1 255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and produce a decimal value for each
row in the same way as we did before when we were looking at expert
s ystems (see Table 8.1). In fact this type of approach is used to produce

,,

Aпίficia! Intelligence on the Sinclair QL i • Chapter 8 Recognising .Shapes

the characters which you see on your screen display, the formats for
which are stored in memory in just this form. For example, Figure 8.1
shows how the letter 'А is built up.

Figure 8.1: Forming the Letter '4'.

There are now machines available (optical character readers) which
can reverse this process and actuall y 'read' a printed page by scanning the
paper in a grid pattern and measuring whether light is reflected at
particular coordinates.

What they actually take in will be a pattern of `yes' and 'no' for each
coordinate and of course this must then be decoded and compared with
the patterns for known shapes. The most obvious way to make this
comparison would be to consider every point in turn as a binary digit and
then convert each row back to a decimal value which could then he
compared with a table of known values. However this has the dis-
advantage that we must actually check every individual point on the grid
(64 points).

A branching short cut
A quicker approach relies on the fact that each character can actuall y be
detected b y looking at a much smaller number of critical features of the Figure 8 2(a): Decision Tree for Alphabet.

ıı ^

Artificial Intelligence on the Sinclair QL i •	 Chapter8 Recognising Shapes

pattern. For example, Figure 8.2 gives a decision tree which will find all
the capital letters of the alphabet using only 12 points (see Figure 8.3),
and it is not even necessary to check all 12 in any particular case. If you
follow each of the routes you will see that the maximum number of steps
to be followed is 7, and that most letters are found in less than 5 steps
(Table 8.2). This must obviously be quicker than comparing all 64 points!

Y

Figure 8.2(b)

x

2	 3	 4	 5

x X X
X X

X
X X

X X
x

X
Figure 8.3: Points Used in Decision Tree.

2

3

4

5

6

7

To demonstrate how this approach works, we will simulate the action
of the scanning head b y producing a grid on the screen, on which you can
construct characters.

The SETUP routine does the initial housekeeping, starting with the
display.

177

r Chapter 8 Recognising ShapesArtificial intelligence an the Sinclair OL

Table 8.2: Numbers of Steps Required for Recognition of Each Character. 	 next. N(N) the next element to use if the answer was 'no', and Y(N) the
next element to use if the answer was 'yes'.

3 steps—i, D
4 steps — L, J, C, G. O, W
5 steps — S, λ, Q, R. Т . F, U. space

10020

6 steps — P, V, Y, H 10030
7 steps — B. М . N, E. K, X. Z

10 SET_UP

10040

12000

10000 DEFine PROCedure SET_UP 12010

10010	 SCREEN 12020

10070 END DEFine SET_UP 12030
12040
12050

The SCREEN is cleared and two vertical windows are set up. The left
window (#2) is cleared to white, and the right window (#1) to green. 12060

12070
12080

11000 DEFine PROCedure SCREEN 12090
11010	 MODE 4 12100
11020	 PAPER 0 12110
11030	 CLS 12120
11040	 WINDOW #2,270,200,26,16 12130
11050	 BORDER #2,3,7 12140
11060	 CBIZE #2,1,0 12150
11070	 CLS #2 12160
11080	 WINDOW #1,144,200,318,16 12170
11090	 BORDER #1,1,7 12180
11100	 CSIZE #1,1,0 12190
11110	 PAPER #1,5 12200
11120	 INK #1,0 12210
11130	 CLS #1 12220
11140	 BORDER #0,10,0 12230
11150	 INK #0,7 12240
11160	 CLS #0 12250
11170 END DEFine SCREEN 12260

12270

The decision tree is held in a series of linked arrays where NB is the
number of branches. LE$(N) holds the names of the letters. Cl(N) the X
coordinate to be checked next, C2(N) the Y coordinate to be checked

12280
12290
12300

AT #2,5,10 : PRINT #2,"LOADING DATA
INTO ARRAY"
TREE
CLS#2

DEFine PROCedure TREE
RESTORE
NВ=53 : DIM LE$(NB),C1(NØ),C2(NØ)
,N(NB),Y(NB)

FOR C=1 TO NB
AT #2,15,12 : PRINT #2,C
READ LE$(C) : READ C1(C) :
READ C2(C) : READ N(C) : READ У (C)

END FOR C
DATA 0,0,0,2,19
DATA 0,0,4,3,10
DATA 0,2,1,4,9
DATA 0,4,0,5,8
DATA 0,2,0,6,7
DATA "_",0,0,0,0
DATA "S",0,0,0,0
DATA "J",0,0,0,0
DATA "I",0,0,0,0
DATA 0,4,3,11,14
DATA 0,4,4,12,13
DATA "C",0,0,0,0
DATA "G",0,0,0,0
DATA 0,4,6,18,15
DATA 0,1,3,17,16
DATA "A",0,0,0,0
DATA "Q",0,0,0,0
DATA "0",0,0,0,0
DATA 0,4,0,20,29
DATA 0,4,3,21,28
DATA 0,4,2,27,22
DATA 0,4,6,23,26
DATA 0,4,4,24,25
DATA "P",0,0,0,0

129

Artijicial Intelligence on the Sínclaír QL

12310	 DATA "B,0,0,0,0
12320	 DATАβ "R",0,0,0,0
12330	 DATA "L",0,0,0,0
12340	 DATАβ "D",0,0,0,0
12350	 DATA 0,4,6,45,30
12360	 DATA 0,1,5,31,44
12370	 DATA 0,4,2,32,39
12380	 DATA 0,0,4,33,36
12390	 DATA 0,2,0,34,35
12400	 DATA "X,0,0,0,0
12410	 DATA "Z",0,0,0,0
12420	 DАTA 0,3,1,38,37
12430	 DATA "K", 0, 0, 0, 0
12440	 DАβ А "`,0,0,0,0
12450	 DATA 0,1,3,40,43
12460	 DATA 0,3,1,42,41
12470	 DATA "M,0,0,0,0
12480	 DATA "N",0,0,0,0
12490	 DATA "H",0,0,0,0
12500	 DATA "W", 0, 0, 0, 0
12510	 DATA 0,2,0,46,51
12520	 DATA 0,0,4,47,50
12530	 DATA 0,1,3,48,49
12540	 DATA "Y",0,0,0,0
12550	 DATA " У ,0,0,0,0
12560	 DATA 1U",0,0,0,0

12570	 DATA 0,0,4,52,53
12580 DATA
12590	 DATA "F",0,0,0,0
12600 END DEFine TREE

A 5 x î GRID array (don't forget the zero elements) is DIMensioned to
hold the points set information on the character which we will produce,
and the cursor position is set to the top lefthand corner of this (X% = 0,
Y% = 0).

10050	 DIM GRID(4,6)
10060	 ХХ=0 ı У%=0

Key prompts are displayed on the lefthand screen and then we are ready
to use the EDITOR to design our character.

•	 Chapter 8 RecognlsíngShapes

20 REPeat C ıНARACTER
30	 PRINT *2,\"SPACEØAR to set point"
40	 PRINT #2,\"F1 to erase point"
50	 PRINT 2,\"F2 to c lear screen"
60	 PRINT $2,\"F3 to decode"

70	 EDITOR

90 END REPeat CHARACTER

λ block representation of the contents of the GRID array. with a flashing
cursor to show your position, is produced in the righthand window (#1)
by the EDITOR. The loop sets a block at the current coordinates
(X% ,Y%) to colour 2 (red), and then checks IF the corresponding GRID
array element contains 1 (ie GRID (X%, Y%) is TRUE). If 1 is found
then this block is set to colour 0 (black). Alternativel y , ELSE sets the
block back to colour 4 (green), so that there is no lasting effect. The rate
of flashing is controlled by the delay value in the INKEY$(N) check, and
the sequence repeats until a key is pressed.

13000 DEFine PROCedure EDITOR
13010	 REPeat LOOP
13020	 BLOCK 28,28,(X%*28),(77. 28),2
13030	 IF GRID(X%,Y%) THEN
13040	 BLOCK 28,23,(XY.*28),(Y%*28),0
13050	 ELSE
13060	 BLOCK 28,28, (X%*28), (77.28

),5
13070	 END IF
13080	 A$=INКEY$(5)
13090	 IF A$="" THEN END REPeat LOOP

When a key is pressed, the CODE of this key is taken and used in a series
of IF—THEN tests. The X and Y coordinates are updated according to
movement of the cursor keys and if the spacebar is pressed the colour of
the current screen position is set to black and the corresponding GRID
element is set to 1. If you make a mistake then Function key 1 erases the
current position by resetting the colour to green, and resets the GRID
element to 0. Note that checks have to be included to prevent movement
beyond the edges of the grid.

13100	 A=CODE(A$)
13110	 IF A=192 AND X%>0 THEN X'/.=X%-1 :

130 131

ARRAY
POINTER

=1

Chapter 8 Recognising Shapes

СОLLECT
x

COORDINATE

13170
13180
13190
13200
13210
132г0
13230
13240
13250

IF A=236 THEN
CLS #1

FOR C=0 TO 4
FOR M=0 TO 6

GRID(C,M)=0
END FOR M

END FOR C
END REP=at LOOP

END IF

artificial Intelligence on the Sinclair QL

END REPeat LOOP
13120	 IF A=200 AND Х%<4 THEN Х %= Х 7.+1

END RεPeat LOOP
13130	 IF Я=208 AND Y%>0 THEN Y'1.=Y —1

END REPeat LOOP
13140	 IF A=216 AND YY.<6 THEN Y%=Y%+1

END REPgat LOOP
13150	 IF A=32 THEN Gй ID(к1,Yı)=1

BLOC,{ 28, 28, (к '/.#2в) , (У%*28) , 0
END RεPφat LOOP

13160	 IF A=232 THEN GRID(Х%, У%) =0 :

BLOCit 28, 28, (Х %Х28) , (Yï.*28) , 4
END REPeat LOOP

If your character design becomes a complete disaster then Function key 2
clears the screen in window #1, and then resets all the points in the GRID
to О .

Finally Function key 3 RETurns to the READER PROCedure which
decodes your design, or else the program loops back to the keycheck.

	

1360	 IF A=240 THEN RETurn
13270 END REPeat LOOP
13280 END DEFine EDITOR

	

80	 READER

In the READER PROCedure, the design produced is checked against
the recognised patterns (see Flowchart 8.1). The array pointer, AP, is
first set to 1 so that the search is started from the beginning. X and Y
coordinates are read from the C1(AP%) and C2(AP%) elements pointed

Flowchart 8.1: READER PROCecure.

to, and the last position. LP%, pointer set equal to the current array
pointer, AP%. The point colour. PC. at these coordinates is now
determined by looking into the appropriate GRID array element. If this
contains 1, then this point has been set and the 'yes' pointer, Y(AP%),
must be followed. If any other value is found then the 'no' pointer,
N(AP%), is followed. In either case a check is now made to see whether
the element pointed to contains a 0 (which indicates the ultimate end of a
branch), which shows that a character has been found. If so. the
appropriate letter LE$(LP%) is printed in window #0, and the display is
held until a key is pressed, when a new cycle is initiated. As long as a
higher value than 0ís found, this must be another branch point and so the
program loops back and picks up the new values of C1(AP%) and

132
	

133

•Artificial Intelligence an the Sú гclair QL

C2(АР%). To allow you to see which points have been checked these
BLOCKS are set to red as they are found. Any points which were set but
not tested will remain black.

• Chapter 8 Recognising Ѕhареѕ

themselves by means of a built-i п expert system. You teach these by
showing them a few pages of text and then entering these same characters
vía the keyboard. However we feel that it will still be a long time before

anyone can produce a machine that can read our handwriting!

14000 DEFine PROCedure READER

14020	 AP% =1
14030	 REPeat PIXEL_CHECK

14040	 X X=C1(APX) : Y Y.=C2(APX) τ

LP'!.=APX

14050	 PCl. =GRI D(XY., Y'!.>

14д60	 IF PC7. THEN APX=Y (AP':):

ELSE APX=N(ЯP%)

14080	 IF AP% THEN
14090	 BLOCK 28,28,(X Х*28),(У%*

28),2
14100	 END REPeat PIXEL CHECK
14110	 END IF
14120	 CSIZE #0,3,1 : AT #0,6,0 :

PRINT #0,"CHARACTER IS "1LE$
(LP%.)1 ı CSIZE #0,0,0

14130	 PRINT #2,\\"PRESS A KEY TO
CONTINUE"

14140	 A$=INKEY*(-1)
14150	 CLS#0 1 CLS #1 ı CLS #2
14160 END DEFine READER

So that you can see which part of the tree was actually followed, add these
modifications which wí11 print out the sequence of branches followed
along the tree.

14010	 PRINT #2,\" К axis","Y axis",
iipoint Ii, пех t

14070	 PRINT #2,\ Х%,YX,PC%,AP%1

The disadvantage of this more rapid method (of only checking critical
points) is that it will make a mistaken match if it encounters a shape that is
not on the tree, whereas if all points are checked then no match will be
found in such a case. Early optical character readers would only accept a
single particular typeface, but the latest machines not onl y accept
different styles of type, but actually learn the recognition rules for

134	
135

.
CHAPTER Ч

An Intelligent Teacher

Another place where artificial intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student's knowledge at random, but this is not how real human teachers
work. As well as asking the questions, they keep an eye on the progress of
the students, increase the difficulty of the questions as experience
increases, and test them more rigorously on the types of problems with
which they are having difficulties. For example, if a child takes a test
involving addition, subtraction, multiplication and division, but only gets
the division questions wrong, then it follows that the child should be given
more division questions in the future to provide more practice.

Let's have a look at how we can introduce these 'human' qualities into a
teaching program.

Questions and answers
We need to create random numbers to be used in the first question, which
we will make an addition. Using RND(0 TO 10) will give numbers
between 0 and 10.

10 SCREEN
20	 REPeat OUESTION
40	 A%=RND(0 TO 10)
50	 BY.'RND (0 TO 10)

10000 DEFine PROCedure SCREEN
10010	 MODE 4
10020	 CLS #0 : CLS #1 : Cιs #2
10030 END DEFine SCREEN

The computer adds these together and then goes on to an INPUT and
CHECKing PROCedure.

60	 C '/.=A'!. + ØY.
70	 СНЕС

137

•Artificial Intelligence on the Sinclair oL • Chapter 9 An Intelligent Teacher

First of all. CHECK must print the question and then INPUT your
answer, IP%.

1000 DEFine PROCedure CHECK

	

1010	 PRINT \A%;"+";B%;"=";

	

1020	 INPUT IP%

Your answer must then be checked. If the answer. C%, is the same as
your answer then CORRECT is printed. ELSE 'WRONG' is printed
followed by the correct answer, and then the next question is asked.

	

1030	 IF C%=IPÏ THEN

	

1040	 PRINT \"CORRECT"

	

1050	 ELSE PRINT \"WRONG, THE CORRECT
ANSWER WAS "; СУ..

	

1060	 ENDIF
1080 END DEFine CHECK

	

280	 END REPeat QUESTION

Not a number?
If you experiment with this simple routine, you will find that it crashes if
you enter a letter in place of a number (deliberately or accidentally). It
would be a much more friendly teacher who refused to accept anything
other than a number as INPUT, so we will use a GET PROCedure
instead of that simple INPUT request. This INPUTS a string (IP$), rather
than a number, and first checks that the string is not empty (RETURN
alone pressed). It then checks that the CODE of each character in the
string (IP$(N)) is a numeral (CODE between 42 and 56) before convert-
ing IP$ to a simple variable (IP%o) by coercion.

	

1020	 GET
2000 DEFine PROCedure GET

	

2010
	

INPUT IPs
	2020
	

IF IPs-"" THEN GET

	

2030
	

FOR N-1 TO LEN(IP$)

	

2040
	

IF CODE(IPS(N)) <43 OR CODE<IPS(N)
?57 THEN

	

2050	 PRINT " ENTER Я NUMBER!!

	

2060	 GET

	

2070	 END IF
	2080	 END FOR N

2090	 IP% =IP$

2100 END DEFine GET

Alternative rules
The other three rules of arithmetic (subtraction, multiplication and
division) can be easily dealt with in the same way if we replace the '+' sign
in line 1010 by a sign string, SG$, which we can set to the appropriate

character at the time. At the same time, as RND(0 TO 10) is common to
all the calculations, we might as well DEFine this as a FuNction called
PICK which RETurns an appropriate number.

1010	 PRINT \A%;SG$; В%;"_";

3000 DEFine FuNction PICK
3020	 RETurn RND(0 TO 10)
3030 END DEFine PICK

	

40	 A%=PICK

	

50	 BX=PICK

	

60	 C%=A%+B% : SGS="+"

	

70	 CHECK

	

100	 A%=PICK

	

110	 B%=PICK

	

120	 С%%–В% я
	 H

	

130	 CHECK

	

160	 A%=RICK

	

170	 B%=PICK
180 C'/.=AX#BY. і BGS="*"

	

190	 CHECK
220 A'/.=P I CK

	

230	 BY.=P I CK

	

240	 C%=AX/BY. ј BGS="/"

	

250	 CHECK

Dividing by zero
As it stands, the program can crash if B% happens to be 0 when a division
is selected. This can be simply fixed by always adding 1 on to B%, in this

case:

138
	

139

Artificial Intelligence on the Sinclair SQL
	 •

2з0	 BX=PICK+1

Deleting decimals
We are using integer variables to keep us to round numbers, but of course
a division may still produce a fractional answer, which you cannot enter
correctly as IP% will be rounded down, eg:

3/2 = 1.5

•
Chapter 9 An Intelligent Teacher

How many questions?
The program will now ask one question of each type in sequence, ad
infinitum. We can limit this by defining the number of questions. NQ%,
as a variable.

10 SCREEN : τRı=0 ј sC;: =0 ј NaY.=32

Each time a question is asked. NQ% is decreased by 1: when NQ% = 0
the test ends (after eight questions of each type have been answered).

but the program will accept 1, 1.5, 1.9 or any other number between 1 and
1.999... as correct.

To avoid producing decimals, A% needs to be a multiple of B%. To
achieve this we calculate B% first and make A% equal to B% multiplied
by a random number between 0 and 10.

220	 Øy=PICK+1
230	 ЯX'PICK#HX

Keeping a score
Now that we have the test itself working we need to consider how to keep
a score. The simplest thing is to increment a tries variable. TR%, each
time the GET PROCedure is used, and to increment a score variable,
SC%. each time a correct answer is obtained.

10 SCREEN : TR'/.=0 : S07=0

1040	 PRINT \"CORRECT" s SC%=SC::+1

2090	 IP%=IP$: TR%=TR.+1

Your current performance can now be shown by a SCORE PROCedure
called at the end of CHECK.

1070	 SCORE

4000 DEFine PROCadure SCORE
4010	 PRINT "YOUR SCORE IS ";SC'%;"/";TRY.
4020 END DEFi гı e SCORE

If you prefer the score as a percentage then amend line 4010 as follows:

4010	 PRINT "YOU NAVE HAD "'t С7./ ТR%)*100;
"% CORRECT"

2090	 IP%=IP$: TR'/.=TR;:+1 : NQY.=N0%-1

3010	 IF NO%=0 THEN PRINT "32 QUESTIONS
ASKED"

Shifting the emphasis
If we are going to bias the questions in favour of areas of difficulty, we
need to keep a record of performance in each individual area. We
therefore need separate variables for each type of question (AD% for
addition. SU% for subtraction. MU% for multiplication, and DI% for
division). These variables are defined in terms of one eighth of the total
number of questions to be asked, NQ%.

10 SCREEN : TR%=0 : SC%=0 : NO%=32 :
ADY. =NO'/./ 32 : SU%=NO'/./ 32 : MU'/.=NO%/ 32

D I Y.=NQY/ 32

Now if the correct answer, C%, is the same as your answer, IP%, then an
increment variable. IN%, is set to —1, CORRECT is printed, and the
routine returns. Otherwise IN% is set to 1 and WRONG is printed
followed b y the correct answer.

1040	 PRINT \"CORRECT" : IN%=-1

1050	 ELSE PRINT \"WRONG, THE CORRECT
ANSWER WAS ";C% : INY.=1

IN% is added to the appropriate individual number of questions variable
— AD%, SU%, MU% or DI%a — on returning from CHECK, pro-
ducing an increase in this value if the answer was wrong, or a decrease if
the answer was right.

140
	

141

	70	 CHECK :ADX=ADX+IN'1.

	

130	 CHECK : SUX=SUX+ τ N'!.

	

190	 CHECK : i'1U%=iiUX+ i N'!.

	250	 CHECK : DIX =DIX+INX

Now we add a test to see whether ail the questions of a particular type
have not been correctly answered (eg AD%>0, see Flowchart 9.1). If all
questions of a t ype have been correctly answered then no more of this
type are asked as this section is jumped over.

aλ rtífτ cfп l !nteLligence o п the S1nclп ir OL •	 Chapter 9 An Intelligent Teacher

	

30	 IF ADX>0 THEN

	

80	 END IF

	90 	 IF SU%>0 THEN

	

140	 END IF

	

150	 IF MU%>0 THEN

	

200	 END IF

	

210	 IF DI%>0 THEN

	260 	 END IF

If the appropriate number of each type has been answered correctly —
AD% = 0, SU% = 0, MU% = 0, DI% = 0— then the program ends.

270	 IF ADX+SUX + ►AUX +D I %=0 THEN PRINT
"4 ОUESТ IONS OF EACH TYPE CORRECT"

Notice that you are no longer asked questions about areas in which you
have correctly answered four questions without making any errors. If you
make a mistake then AD% (etc) will be increased, and therefore you will
have to answer more than this number correctly before AD% reaches 0.

Degrees of difficulty
How about making the questions easier or harder according to how well
you are doing (ie the values of AD%, SU%, MU%, and DI%)? So far
the current values of A% and B% have always been between 0 and 10, as
they were produced by RND(0 TO 10). We now need to bias the numbers
produced for the questions towards higher values, if you are correct, and
lower values if you are incorrect. At the same time we must ensure that
you do not produce negative values if your performance is abysmal.

To start with, we need to modify the PICK FuNction so that the current
value of the 'number of questions to be asked in each group' pointer
(AD%, SU%, MU% or DI%) is passed to it as X%.

40	 λ;:=P ICK(ADY.)

5д 	 Ø'J.=PICK(ADX)

100	 AX=P.CK(SUX)

110	 BX=PIC ΣC(SU'I.)

P1CK
1.51- No

г icκ
2w No

ЧAKE
CALCULATIGN

1NPUГ
ANSWERí

INCREMENT
ТFIES

UPDATE
INDIVIDUAL

SCARE
UPDATE
SCORE

Flowchart 9.1: intelligent Teacher.

142
	

143

Artificial JnteHigence on the Sinclп ir QL

10	 A'/.=PICK (SUX)
170	 AX^PICK{SUX)

220	 BX=PICK(DIX)+1
230	 AX=PíCI<(DIX)

• • Chapter 9 An Intelligent Teacher

What about words?
Although the example above deals solely with mathematical problems,
there is absolutely no reason why the same technique cannot be used in
dealing with more detailed textual questions and answers.

3000 DEFine FaNction PICK(XX)

The 'worst case' will be if you get all the questions wrong in the last group.
In this case only four questions will be asked on the first three groups,
leaving 32_(3*4) = 20 questions to be asked on the last group. In
addition we must remember that X% (eg AD%) starts at a value of 4, so
that the maximum value of X% which could be obtained is 20+4 = 24.

We therefore set up a weighting variable, WT%, which is calculated by
subtracting three times the number of questions to be asked in each group
(3*AD%) from the total number of questions (NQ%) and adding back
on the number of questions in the group AD% at the start.

WT%=NQ%—(3*AD%)+AD%

This is more simply expressed as:

WT%=NQ%—(2*AD%)

10 SCREEN σ TR7.=0 : 5C1,=0 ε NQX=32 :
AD'/.=NQ% /З2 ε SU;'.=NOY./32 : î1U%=NQ%/32 s

DIX=N0X/32 к WTX=NQX—i2^AD:)

We now replace the fixed value of 10 by the difference between WT% and
X%, by modifying the calculation in the PICK FuNction.

3020	 RETurn RND(O TO (WTX%—X%))

To begin with, WT% = 24 and X% = 4 so numbers between 0 and 20 will
be selected. If a correct answer is given, then X% is reduced to З and
numbers between 0 and 21 will be chosen. After four correct answers.
XO7o will not change (for this type of question) as it will have reached 0 and
the line will be skipped. The last values will therefore be between 0 and
23.

But if the first answer is incorrect. X% will increase by 1 and the range
of numbers produced reduced by 1 (0-19). In the `worst case', X% will be
increased 20 times to 24 and (WT% —X%) will fall to zero for both A%
and B% (so you should be able to solve that particular problem!).

144
	 145

CHAPTER 10

Of Mice and Men

Mankind has been fascinated b y mazes for centuries and the difficulties
involved in finding the way out of (or to the centre of) a maze have
featured prominently in m ythology. More recently the theme has been
taken up by the enthusiastic band of 'mouseketeers' who send their
electronic micromice as their champions to do battle against the
unknown. Whilst some ma y feel that these activities are trivial, we are
sure that they would not object too much if somebody else was sent to
check for radiation after a nuclear accident, or to explore the surface of
some alien planet in their place!

Although short-range direct control of devices is possible, and a video
link can allow an operator to 'see' his wa y , the delays involved in long-
distance transmission pose considerable problèms. It is of little value to
see a picture showing that your multimillion pound exploratory probe is
about to fall into a Martian crevasse if it has already fallen by the time you
receive the picture! Autonomous intelligent devices will therefore always
have their place. Although any real exploratory robotic device must be
fitted with suitable sensors, dependent upon its environment and
activities, and will require some reliable form of motive power, with our
QL alone we can at least simulate some of the problems involved in
finding your way around.

Setting the scene
To begin with we set up a screen with three windows. On the right (#1) we
will show the actual maze, on the left (#2) the contents of the MOUSE
BRAIN are displayed. and at the bottom (#0) we have the current time
and status.

10 SCREEN

10000 DEř ine PROCedure SCREEN
10010	 MODE 4
10020	 WINDOW #2,230,200,25,15
10030	 BORDER #2,1,4
10040	 PAPER #2,7

,/17

Artíficíп l Ituelligence on the Sínclцér QL •	 Chapter 10 Of Mice and Men

10050	 INK #2,0
10060	 CSIZE #2,1,0
10070	 CLS 42
10080	 WINDOW #1,230,200,258,15
10090	 BORDER #1,1,4
10100	 PAPER #1,0
10110	 INK #1,7
10120	 CSIZE #1,1,0
10130	 CLS #1
10140	 PAPER #0,0
10150	 INK #0,0
10160	 CSIZE #0,2,0
10170	 CLS #0
10180	 PAPER #0,7
10190	 PRINT #0,"

	
MOUSE BRAIN

MAZE
10200 END DEFine SCREEN

Making the maze
We now need to produce a maze to travel through. Although we could
generate one randomly it is rather more fun to design your own, and it
makes it easier to create tests to determine which particular types of
situation cause confusion. The actual maze is contained within a 37 b y 33
array, but a copy of the contents of each array element is also displayed on
window # 1. Here each array element is represented in the window by a 6
by 6 pixel BLOCK, and before we start we will show the centre of the
maze (18,16) as a green (colour 4) BLOCK. The start position is set in the
top left corner at X% = 1, Y% = 1.

20 DESIGN

11000 DEFine PROCedure DESIGN
11010	 DIM MAZE(37,33)
11020	 X%= ı : Y%= ı
11030	 BLOCK 6,6,(18#6),(16#6),4

As long as no key is pressed, we loop around flashing a non-destructive
cursor, which alternates between green (colour 4) and the present colour
in the current maze coordinates.

11040	 REPeat LOOP
11050	 BLOCK 6,6,X7.#6, Y%#6,4

11060	 BLOCK b, ó, XX# ь , Y;'.#6, MAZ ε (X'/., Y'/.)

11070	 λ$=INKEY$(2)
11080	 IF λ#="" THEN END REPeat LOOP

When a key is pressed. the four cursor directions are checked. As long as
you remain within set limits in the array the X and Y coordinates are
updated, and the screen cursor moves (without leaving a trail).

11090	 A=CODE(A$)

11100	 IF A=192 AND X'!.>1 THEN XX=X7.-1
END REPeat LOOP

11130	 IF A=200 AND X'/.<35 THEN X%=X7.
+1 : END REPeat LOOP

11160	 IF A=208 AND YX>1 THEN YX=Y%-1

: END REPeat LOOP
11190	 IF A=216 AND У%<31 THEN YY.=Y7.

+1 : END REPeat LOOP

To form the maze we need to mark out a path in the maze array for the
mouse to follow. We also show this on the screen as white (colour 6)
BLOCKS. So that it is easy to alter the maze by swapping white BLOCKs
for black (0), we DEFine a PATH PROCedure to which we can pass a
parameter indicating the colour to be . used. Remember that both the
actual maze and the screen display must be updated.

12000 DEFine PROCedure PATH (COLOUR)
12010	 MAZE (X%,Y%)=COLOUR

12020	 BLOCK 6,6,X%#6,Y%#6,COLOUR
12030 END DEFine PATH

White BLOCKS are produced by pressing CTRL and an arrow key, and
black erasing BLOCKS by pressing ALT and an arrow key.

11110	 IF Ás 193 AND X7.>1 THEN PATH 0
: X::=X%-1 : END REPeat LOOP

11120	 IF A=194 AND X7.)1 THEN PATH b
: X%=X7.-1 : END REPeat LOOP

11140	 IF A=201 AND X Х<35 THEN PATH 0
: X%= χ '/.+1 ı END REP: σι t LOOP

11150	 IF A=202 AND Х %<35 THEN PATH 6
: X%=X7.+1 ј END REPeat LOOP

149148

.

,	
PRINT
T')ME

F La5 i-t
CURSOR

PR1NT
"SUGСESS,r

t

/ PRINT
ΣLАPSED

/ TIME

Chapter 10 Of Mice and Men•A rtificial Intelligence on the Sinclair QL

11170	 IF A=209 AND Y%>1 THEN PATH 0
1 Y%=Y%-1 ı END REPeat LOOP

11180	 IF λ=210 AND Y%>1 THEN PATH 6
: YX=Y;;-1 I END REPeat LOOP

11200	 IF A=217 AND Y9.<31 THEN PATH 0
e Y%=Y%+1 ı END REPeat LOOP

11210	 IF A=218 AND Y<31 THEN PATH 6
ı YX=Y%+1 e END REPeat LOOP

Should your maze start to look like a disaster area, then pressing SHIFT
and Fl will RUN the program so that you can start from scratch again!

11220
	

IF A=234 THEN RUN

Finally SHIFTed F2 will RETurn from DESIGN so that the mouse can
stan his search. (Note that the only condition to be satisfied in the maze is
that the start point (X% = 1, Y% = 1) must be connected to the centre in
some way.)

11230	 IF A=238 THEN RETurn
11240	 END REPeat LOOP
11250 END DEF:ne DESIGN

Flowchart 10.1: Starting Movement.

Finding the route
We can now send our mouse into action looking for the cheese in the
centre of the maze. We need to give him a memory, which will be the
same size as the maze array, set him the start position (1,1), and reset the
clock with SDATE, so that we can time his progress.

30 REPeat RESTART

40	 DIM MEMORY (37, 33) a Х '/.=1 e Y =1

60	 SDATE 1984,0,0,0,0,0

The movement of the mouse falls within a loop (see Flowchart 10.1). The
first action in this is to PRINT the last five characters of DATE$ (ie the
minutes and seconds part). Note that you cannot slice DATE$ itself, but
must convert it to the temporary variable D$ first.

70	 REPeat MOVEMENT
80	 D*=DATES
90	 D$=D$(16 TO)

100	 AT *0,16,0 e PRINT VO,D$

180	 END REPeat MOVEMENT

The array element at the start coordinates in the MEMORY is set to
green (colour 4), and a flashing cursor on window #2 in the corresponding
position is produced by the TRACK PROCedure. This takes three
parameters (X and Y coordinates and the colour to be used for the
BLOCK).

150 151

152

•	 Chapter 10 Of Mice and Menλпificiп [Intelligence on the Siпc[air QL

110	 ME λ90RY (XX, Y'!.) =4

120	 TRACK X'!., Y'!., 0

130	 тRACK X%, Y:, MεMORY (X'l., Y Y.)

1000 DEFinе PROCadure TRACK (X1,Y1,C)

	

1010	 BLOCK #2,6,6,(X1#6),(Y1*6),C
1020 END DEFine TRACK

A bull's eye?
We can easily check whether the centre has been reached b y checking the
appropriate coordinates (18,16). When (or maybe that should be IF) the
centre is reached, then the journey time is reported, and you have three
options. Pressing 'N' RUNs the program so that you can design a new
maze. Pressing 'C' clears the screen on window #2 and then returns you to
RESTART for another attempt at the same maze (as only the MEMORY

array , and not the MAZE array, is reset). Pressing any other key
RESTARTS on the same maze without clearing the screen, so that any
differences in the points which are checked in the next attempt are more
obvious.

	

140	 IF X%=18 AND Y%=16 THEN CENTRE

2000 DEFine PROCedure CENTRE

	

2010	 PRINT #0," HE REACHED THE CENTRE OF
THE MAZE"\"	 IN "íD$(1 TO 2);"
MINUTES AND ";D$(4 TO 5);" SECONDS"

	

2020	 A$=INКEY$(-1)

	

2030	 IF Aß="N" THEN RUN

	

2040	 IF A#="C" THEN CAS #2 : END REPeat
RESTART

2050 END REPeat RESTART
2060 END DEFine CENTRE

Which way?
The mouse must take a look to see where it is possible to move. The next
position to be examined is determined by addin g X and Y Decision values
(XD% and YD%) on to the current coordinates. To begin with, we will
set XD% to 0 and YD% to 1, so that the mouse will always try to move
down.

50 	XDX=0 : YD%=1

150	 IF NAZ č (X%+XDX,YY.+YD Х)=0 THEN
STOP

170	 К Y.=XY.+XD'!. a YX=Y%+YDX

RUN the program, draw a simple vertical line, and start the mouse by
pressing SHIFT F2. You will see that he moves down until he reaches the
end of the line, when he STOPS. So far so good but we now have to decide
what he should do when the next position does contain О .

Coping with corners
Your first thought might be to reverse the direction if a wall is hit
(inverting XD% and YD% by multiplying them by —1) but of course that
would only send the mouse shuttling back and forth along the line ad
infinitum. If he is to be able to make a turn to a new heading then he must
check around to find out more about his surroundings. Four FuNctions
are defined to cope with each of the four possible directions (left, right,
up, down). Each of these works in basically the same way, using an
UNKNOWN PROCedure to find out what is in the next possible
position. So far we have only looked at the maze and have not put any
information into the mouse memory. As long as nothing has been put into
a MEMORY location then this will still be 0. We must therefore copy the
appropriate maze information into MEMORY. as well as making a
TRACK to show that we have looked here. If the location has already
been checked then UNKNOWN has no effect. Now if an y of the direction
FuNctions find an unchecked MEMORY location then we RETurn
immediately without CHECKing the other possibilities. This means that
LEFT has priority over RIGHT, which has priority over UP. which has
priority over DOWN. Note that this means that the mouse will always
make the same decisions, and that XD% and YD% are only updated if
the Colour Code variable (CC) is matched, indicating a pathway is
present (see Flowchart 10.2).

150 DUMMY=CHECK

3000 DEFine FuNction CHECK
3020 CC=6
3060	 IF LEFT THEN RETurn 0

3070	 IF RIGHT THEN RETurn 0

153

A rtificial Intelligence on the Sinclair QL Chapter 10 Of Mice and Men

6000 DEFine FuNction RIGHT
6010	 UNKNOWN X'%+1,Y%
6020	 IF MEMORY(Х%+1,Y%)=CC THEN XD%=1

YD%=0 : RETurn –1
'030 RETurn 0
6040 END DEFine RIGHT

7000 DEFine FuNction UP
7010	 UNKNOWN X%,Y%-1
7020	 IF MEMORY(Х 7.., У%-1)=CC THEN XD%=0

YD7.=-1 : RETurn –1
7030 RETurn 0
7040 END DEFine UP

8000 DEFine FuNction DOWN
8010	 UNKNOWN XX.,Y%+1
8020	 IF MEMORY(X%,Y%+1)=CC THEN XDX.=0

YD%=1 : RETurn –1
8030 RETurn 0
8040 END DEFine DOWN

Flowchart 10.2: Coping with Corners.

3160	 IF UP THEN RETurn 0

3170	 IF DOWN THEN RETurn 0

з240 RETurn –1
3250 END DEFine CHECK

4000 DEFine PROCedure UNKNOWN (X1,Y1)
4010	 IF MEMORY(X1,Y1) =0 THEN

4020	 MEMORY(X1,Y1)=MAZE(X1,Y1)

4030	 TRЯCK X1,YI,MEMORY(X1,Y1)

4040	 END IF

If you try that out with a winding pathway such as that shown in Figure
10.1, you will see that only LEFT and RIGHT are actually checked most
of the time, as the program RETurns before UP and DOWN are reached.

Cutting the checks
As things are. LEFT, RIGHT and UP must all be checked before
DOWN, whereas it would be more sensible if we reduced the amount of
checking done by introducing a bit more logic. Only LEFT and RIGКT
need to be CHECKed when XD% ís 0 (ie the mouse was already moving
UP or DOWN), and only UP and DOWN CHECKed when YD% was 0
(ie he was already moving LEFT or RIGHT, see Flowchart 10.3).

4050 END DEFine UNKNOWN

5000 DEFine FuNction LEFT
5010	 UNKNOWN X%-1,Y%
5020	 IF MEMORY(Х%-1,YX) =CC THEN XD%=-1

YD%=0 : RETurn –1

5030	 RETurn 0

:

3030
3060
3070
3120
3130
3160
3170
3220

IF XD%=0 THEN
IF LEFT THEN RETurn	 0
IF RIGHT THEN RETurn 0

END IF
IF YD%=0 THEN

IF UP THEN RETur-n 0
IF DOWN THEN RETurn 0

END IF
5040 END DEFine LEFT

154

Figure 10.1: Coping with Corners.

RETURN

Flowchart 10.3: Cutting the Checks.

• Chapter 10 Of Mice and Men
Artificial Intelligence on the Sinclair OL

Jinxing at junctions
Our mouse will now move round corners OK, but if he reaches a junction
then he will always move LEFT or UP, if they are possible, as these
possibilities are always checked first. Such predictable behaviour can get
him going round in circles, so it would be better if we introduced random
selection from the two possible directions in each case, so that he does not
always give the same priority. LR% (LEFT—RIGHT) and UD% (UP—
DOWN) variables are chosen at random as for 2, and used to reverse the
order in which the directions are checked (see Flowchart 10.4).

3000 DEFine FuNction CHECK
3020 CC=6
3030	 IF XD%=0 THEN
3040	 LR%=RNDt1 TO 2)
3050	 IF LR%=1 THEN
3060	 IF LEFT THEN RETurn 0
3070	 IF RIGHT THEN RETurn 0
3080	 ELSE
3090	 IF RIGHT THEN RETurn 0

156

Flowchart 10.4: Jinxing at Junctions.

Chapter 10 Of Mice and MenArtificial Intelligence on the Sinclair QL

3100	 IF LEFT THEN RETurn 0

3110	 END IF
3120	 END IF
$130	 IF YD%=0 THEN

3140	 UD%жRND(1 TO 2)
3150	 IF UD%=1 THEN
31b0	 IF UP THEN RETurn 0

3170	 IF DOWN THEN RETurn 0
3180	 ELSE
3190	 IF DOWN THEN RETurn 0
3200	 IF UP THEN RETurn 0

$210	 END IF
3220	 END IF
3240	 RETurn —1
3250 END DEFine CHECK

If you try that out several times on a maze containing a square (eg Figure
10.2) then you will notice that now the same path is not always followed.

Backtracking
Now IF all the checks are negative, AND the next maze position contains
0 (indicating a wall rather than an unchecked position) then the mouse's
only alternative is to go into reverse (multiplying the current XDO7o and
YD% variables by —1 — see Flowchart 10.5).

Flowchart 10.5: Backtracking.

158 1 9

Artificial Intelligence on the Sinclair SQL
	 Chapter 10 Of Mice and Men

150 UNKNOWN X+XD%, Y'/.+YD;:
160 IF CHECK ND MÁZ ε (X%+ κ D'/., Y'/. +YDy.) =0

THEN XD%=XD%* – i s YDy=YD'!.* -1

He will now reverse when a dead end is reached, and continue to check
until an alternative pathway is found.

Where no mouse has gone before
It seems sensible to give a higher priority to parts of the maze which have
not already been visited, as the odds in favour of success are biased
towards the unknown.

In the program so far the areas he has not visited, but which are valid
paths. are marked as white (colour 6), and those visited once are marked
in the MEMORY as green. We can arrange so that when the mouse
backtracks the trail colour is changed from green to red. This is easily
done by adding a FOR loop which alters the value of CC in the CHECK
routine. Now, as the loop decrements by 2 each time it repeats, white is
checked for first. followed by green (4) and, as a last resort, red (2). Once
the first match is found we RETurn so that we now have effectively
produced the colour priority white > green > red.

3020 FOR CC=6 TO 2 STEP-2
з2з0 END FOR CC

Speed merchant?
Although the progress of the mouse is now slow but sure', you might
consider that it would be better not to bother to make detailed checks on
the surroundings IF the path ahead was shown to be clear (ie colour 6).
Adding the following line speeds the mouse up considerably, as he now
onl y makes checks when that is absolutely necessary (Figure 10.3).

The disadvantages with this approach are that he becomes more
predictable and that he will always go straight on at a junction when that is
possible. In particular, side branches will not be found without back-
tracking. How important that is in specific situations depends on the
deviousness of your maze, which of course is up to you!

?010	 IF МEМORY(X%+XD%,Y%+YD%)=b THEN RETurn 0

Figure 10.2: Jinxing at Junctions.

16Π
	 161

Artificial Intelligence on the Sinclair OL •

`

„м;.; + Ь1 и ;l ,,, ^ ς; ^,^	 . - L; л ïπi.ι. ^τ ı :+1İ i í 1ы.„Ц- ,^ ı „^ ı lл ,i ıı ;iLıı iL ı .[lгпi'^

^'ï!!^11ñG!ы ы̂!ы ?

P141	 ^
ήİ ,)

ј
^,	 lüíiïы íïñilGï;iы ïiLύ !: ы G1.

^ r ηt 1 [!"_. Lť iñi:
	 ^^

İ !^^	 ^^iř
i!R

ıг

'''	
^!^i!ϊİ i.11 ^iŠ1!ы^ú:iì:lыl, ^u,
	 ^^! Π̂ ıı 1,.1 1^i ы1!fDG é!!:1

İİ,^	 '	 ' .
^^̂ у1!^í{ İU{^й!iл.	 1 1	 1 ;ú

19 ıCR ι M1	 м :^^ 1^!	
(;	

1	 . .:	 ı'
ı
'
μμ;

!	 1 G1GG 111ы I 1 dŘ :	 l '1	 n;^;,1! î̂1ë^;Э : λ3iÍ Эλ!π^
ріn!İέhúGл^llΠНi Ц̂	 G'^;ï^@Ta> ı ^i^ì!i:1i1!Γ!1úг ^!пpI!4i ^^i^ ñÌG1!нςWi^!1A9L;i¡¡l¡t έίil ΠűΠΓGiiı i i¡ ^ İ 1 	^^^ ι

1"	
. ı ^^1!Á11G11Fχθ w^^	 ıı .¡f1

^Giï i!1" "1GGв , Λ 	 ı :г 	 ^ ¡^, i^^
íıд li, . ^. ι ^.	 .;';,119L'1.16,G1 ыúr11l'..1,1^. , ь .;1:;;^1.G111ιi1.aliń:ιλlG ı '^i.i1 .!Чы^1í9ì^ ьi;д4::

Figure 10.3: Speed Merchant.

.
CHAPTER 11

Intelligent Use ©f Archive

The ARCHIVE intelligent database program included with the QL is a
powerful tool for manipulating records and extracting information. It is a
good example of a 'state of the art intelligent program, but to use it most
effectively you must understand clearl y how it operates.

Now whole books could (and no doubt will) be written on ARCHIVE
alone, so we will concentrate here on two aspects only. The first of these is
how to use the commands to extract the required information correctly,
and the second is how you could produce a more user-friendly shell for
the 'British Standard Idiot' to use.

Start by loading the ARCHIVE program from microdrive with:

frun mdvl_boot

Now a DlRectory of microdrive 1 should show the sample database file
included with the program (GAZET_DBF).

dir "mdv1_"

(Note that quotation marks are needed to access the microdrive from
within ARCHIVE.)

To make life easy we will use this GAZETteer database to explore the
potential of ARCHIVE, so first of all we need to actívate it with:

look "mdvl_gazet"

At this point. DISPLAY will show the layout and the first record in the
file (see Figure 11.1).

display

To move on through the file you can use:

next

and if you are browsing through the file then repeated typing of `next' can

162
163

•	 Chapter 11 Intelligent Use of.Archive

continue

will produce the record for AUSTRIA.
One feature of FIND is that it looks for a match with any part of the

record, and takes no account of surrounding characters. This can some-
times be a problem:

find "asia"
continue

i
main
AFGHANISTAN
ASIA
КABUL
F'US λ 1 T U, DARI
AFGHANI
19. 5
110
657

Artificial Intelligence on the Sinclair OL

Logical	 name :
COLIritry$:
continent$:
capi tal $:
1 angLı ages$:
cLırrency$:
pop :
gdp :
area :

Figure 11.1: First Record.	 produces first AFGHANISTAN but then AUSTRALIA, which is of
course in AustralASIA rather than simply ASIA.

On the other hand, this can be useful if you only want to match part of a

be avoided b y pressing F5, which repeats the last text in the keyboard	 record. For example 'languages' often contains the name of more than

buffer, and then ENTER. Although this feature is of limited value in this 	 one language, but you will still find matches with any pan of this.

particular case, ít is a boon when a long sequence of commands are 	 Thus:

involved.
To retrace your steps use:	 find "english"

continue

back	 continue
continue

Or for major leaps:
will eventually retrieve the BOTSWANA record where languages$ is

first	 'ENGLISH. SETSWANA', rather than simpl y 'ENGLISH'.
Another good example would be finding which countries use some

or:	 form of dollar (5) as currency.

last

Finding a match
The simplest matching command available is FIND, which searches all
fields of a record for a match with the input string.

For example:

find "europe"

will display the record for ALBANIA, which is the first occurrence of
EUROPE.

It is important to notice that the lower case input (europe) was matched
with the upper case (EUROPE), as FIND is case-independent.

To find the next match with the same string, CONTINUE is used rather
than NEXT.

Thus:

find "$"

picks AUSTRALIA (with the Ass) as the first match.
Sometimes it is advantageous to deliberately truncate an input word to

obtain all required matches. If you compare:

find "english"

with

find "engl"

you will see that the latter produces significantly more matches.

Searching specifically
SEARCH is a more specific, but also more powerful, command which

164
	 1 е

s
Artificial Intelligence on the Sinclair QL Chapter 11 Intelligent Use of Archive

requires that a specified condition is satisfied. It acts only on specified
fields, and is case-dependent, so that:

search continent$ _ "asia"

finds no matches but:

search continent$ = "ASIA"

does, whilst:

search continent$ = "AMERICA"

finds nothing as `AMERICA' is always preceded by some qualifying
letter such as `N'.

Although you cannot search to find which countries use the dollar as
the unit of currency (as the dollar string is usually embedded) you can
easily search to determine whether a number is greater or less than a
specified value. Thus whilst SEARCH is basically more exact it allows
you to be less precise in some ways!

Hence:

search area <2

gives

HONG KONG (1)
MARTINIQUE (1)

and

search area >10000

produces only

U.S.S.R (22402)

Strings can be compared as well as numbers:

search country$ >"C"

gives

CAMEROUN

(the first country beginning with a character sequence further up in
alphabetical order than the letter specified, C').

More than one condition to be satisfied may be specified. For example
how many countries in Africa use French as their sole language?

search continent$ = "AFRICA" and
languages$ = "FRENCH"

BENIN
CENTRAL AFRICAN REP.
CHAD
COMORO IS.
CONGO
GUINEA
IVORY COAST
MALI
REUNION
TOGO

What about asking which of those use the CFA FR as currency as well?
The obvious way to do that is to tack another condition on:

search continents$ = "AFRICA" and
languages$ _ "FRENCH" and
currency$ = "CFA FR"

CENTRAL AFRICAN REP.
CHAD
COMORO IS.
CONGO
IVORY COAST
TOGO

Selecting records
A more effective way of dealing with this type of problem may be to
SELECT subsets of records. The total number of records in the GAZET
file can be found by:

print count ()

where the answer is 152.
You can select countries in Africa only with:

sArtificial Intelligence on the Sinclair QL

select continent$ _ "AFRICA"

Now

print count ()

gives only 49. and the system acts as if only those records existed. Hence:

search languages$ = "FRENCH"

will now find the French-speaking-only countries in Africa, or you could
select just these with:

select languages$ = "FRENCH"
print count ()

leaving only ten countries in the file. (There is no reason why this
selection cannot be done in a single step.)

Putting things in order
If you look at the list of French-speaking African countries above, you
will see that they are in alphabetical order. This is purely fortuitous as the
whole GAZET file was originally set in alphabetical order by country, but
this ORDER can be easily modified.

Thus:

order area;a

puts them into ascending order by area as

COMORO IS.
REUNION
TOGO
BENIN
GUINEA
IVORY COAST
CONGO
CENTRAL AFRICAN REP.
MALI
CHAD

and

Chapter 11 Intelligent Use of Archive

order capital$;a

puts them into ascending order according to the name of the capital (with
ABIDJAN in the IVORY COAST top of the list).

Whether selection or searching is quicker really depends on what
particular information you are trying to extract.

To retrieve the whole file use:

reset

Partial matches
In one of the examples above we SELECTed the African countries which
have French as their sole language — but what about those who have both
French and other languages? Remember that FIND is not specific — so
wh y not select the countries in AFRICA, as before, and then find
'FRENCH'.

select continent$ = "AFRICA"
find "FRENCH"
continue

Using PROCedures
So far we have only scratched the surface of the potential of ARCHIVE
as we have only used direct commands, which have simply located and
displayed entire matching records. However, using the PROCedure
editor we can tailor more impressive sequences for specific tasks. To
enter the editor type:

edit

and when you are prompted for a PROCedure name enter:

conti

and then the following PROCedure lines which carry out an auto-
matically repeated FIND.

proc conti
cis
input "which continent? ";se

168
	

169

Artificial Intelligence on the Sinclair OL

find a$
while found()

print cauntr уАβι1 "
continuo
endwhiie

endproc

+

Flowchart 11.1: PROC conti.

λ search string (a$) is input in reply to the 'which continent?' question,
and a FIND for this is continued while FOUND() is true (see Flowchart
11.1). Now FOUND()is zero when FIND was unsuccessful, providing a
suitable loop-ending test. Notice that we have specified that only
country$ is printed, rather than the whole record, so that only the
requested information is displayed. Once the PROCedure is entered you
can press ESC to return to ARCHIVE and then run your new PROCedure
by simply entering its name:

conti

When the prompt appears enter 'asia' when a list showing only the names
of countries in ASIA will appear — but note that AUSTRALASIA has
also been found.

Chapter ii Intelligent Use of Archive

To restrict the match to 'ASIA' you can search instead. The only fine
that needs to be changed is:

find a$

which becomes

search continent$ = a$

Of course only upper case will now be matched, which can be rather a
nuisance. One way round this is always to convert your input into upper
case, and as this is a common requirement we might as well define it as a
new PROCedure called GET. Enter the editor as before and then use F3
and 'N' to create a new PROCedure.

proc get
input a$
let a$=upper(a$)
endproc

The input line in CONTI now needs to be replaced by:

print "which continent? "; : get

if both 'ASIA' and 'asía' are to be accepted. To go back to your old
CONT1 PROCedure, press ESC followed by SHIFT and TABULATE,
and then edit the line.

A more friendly (inter)face
So far you have to type the string to be matched exactly as it appears in the
record — but it would be more user-friendl y if you could be rather
vaguer. Who knows, you might even be able to convince your sceptical
relations that computers are worth talking to!

We will define a new PROCedure called TELL, which provides an
outer 'shell' so that the user never has to worry about the nitty-gritty
details of what is actually being done within ARC КIVE (Flowchart
11.2).

A major feature is that it uses an INSTR search of your input against
keywords to try to find out what you want, rather than simply accepting it
as given.

Now when you use TELL you are prompted to make an input, which
can contain anything you like. This is checked for key sequences of

s •

1'70 171

P ^Nт

/
b

λ rпficiι г[Intelligence on the Sinclair OL • • Chapter!! Intelligent Use of Archive

PRO C.
COUNTRY

PROC.
Cc7NT 2.

PR1NT

/
"WЧ 1CH
COUNTRY"

Flowchart 11.2(b): PROC tell İ ii).

NO

Flowchart 11.2(aì: Proc tell (i).

172	 173

PLEASE WILL YOU GIVE ME SOME INFORMATION AP о UT
A м ε R г CA

DO YOU MEAN
N. AMERICA
Ѕ . AMER I CA
OR C. λ MERICA
N. AMERICA
N. AMERICA

Flowchart 11.2(c): PROC cont2.

c = cOUN7()

NO

	 PRlNT	 RWт
ccuNт ()	 , COUNTR'(.$

YES

NEXT
RECORD

NO	
a1N5 R

COLJNTRs 4

!ι

f1=-1

Flowchart 11.2(d): PROC country.

characters, such as ASIA, AFRICA, AUSTRAL. and EUROPE. If you
now enter any sentence containing one of these key phrases which
describe continents, a search will be made for the appropriate match.

Thus:

ASIA
ASIAN
ASIATIC
AFRICA
AFRICAN
AUSTRALIA
AUSTRALIAN
AUSTRALASIA
AUSTRALASIAN
EUROPE
EUROPEAN

Artificial Intelligence on the Sinclair OL r • Chapter I1 Intelligent Use of Archive

SELČLТ
CONTINFNT$

WORLD INFORMATION

PLEASE ENTER YOUR (QUESTION

FIRS
RECORD

ı =
COUNT() = Ø There are 2 countries in N.AMERICA

CANADA	 U.S.A

Which country would you like to know more about?
CANADA

CANADA is in N.AMERICA
It has a population of 22.1 million,
spread over 9976000 sq km
(a population density of 2.22/s q km)
The capital is OTTAWA
and the currency is the CAN.$

Do you wish to have any
more information about N.AMERICA
YES PLEASE

Which country would you like to know more about
U.S.A.

U.S.A. is in N.AMERICA
It has a population of 215.2 million
spread over 9262000 sq km
(a population density of 22.99/sq km)
The capital is WAS Н INGTON
and the currency is the $

Do you wish to have any
more information about N.AMERICA
NO

Figure 11.2: Sample Printout from TELL PROCedure.

174
	

175

•λ rtίfic ίal Intelligence on the Sincl п ir QL Chapter 11 Intelligent Use of .4 rchive

will all be accepted.
In the case of AMERICA a more mug-trapped approach is used as the

GAZET file divides this into three distinct areas, which must be specified
precisely. Note that this depends on finding a space before AMERICA.

If a continent name is not found (b$ = "") then a check is made to see
whether the input is the name of a country by the COUNTRY
PROCedure, which checks for a match between your input and all the
country$ variables in the file. Note that this uses an odd 'logic as your
input may contain any number of words, whereas the variable in the
record is only a single phrase. Thus we look for country$ in your input
(a$) rather than vice versa.

If a match is found then a number of variables are picked from this
record and presented neatl y embedded in text. Note that this information
also contains the DERIVED population density figure which was not in
the actual record. The WHILE L (ie count()) loop will check all records
in the file, so that you can ask about more than one country at a time, but
the INKEY() check gives you an easy way out if you can't stand the
graunching sound from the microdrives any longer. If no match is found
then you are advised of this and you return to the calling PROCedure.

Where the name of a continent is found the CONТ2 PROCedure is
called, which selects the records of all those countries in this area, and
prints out their names. You are now asked which country would you like
to know more about', and the COUNTRY PROCedure is used to find
this as before. The WHILE R loop allows you to repeat your searches on
this continent.

Figure 11.2 gives a sample printout of the program.
This approach is obviously rather more friendl y , but you can see that

the hard work has had to be done in advance, and that all the INSTR
checking inevitably slows things down. Perhaps you would like to try
adding more facilities to the program so that you can check more than one
field at a time.

ARCHIVE TELL PROCedure

proc tell
reset
mode 0,6
let dummy=-1
while dummy

Cls
print
print "WORLD INFORMATION"
print

print "PLEASE ENTER YOUR OUESТ ION"
print
let b$= І ' І
print
print "? ";
get
if a$="EXI Тıı

print "BYE FOR NOW"
let dummy$=getkey()
mode 1,6
reset
return
endif

if instr(a$,"ASIA")>0
let b$="ASIA"
endif

if instr(a$,"AFRICA")>0
let Ь$="AFRICA"
endif

if instr (a$, "AUSTRAL") >0
let b$="AUSTRALASIA"
endif

if instr(a$,"EUROPE")>0
let b$ "EUROPE"
endif

if instr(" "+a$," AMERICA")>0
print
print "DO YOU МEAN?"
print "N.AMERICA"
print "S.AMERICA"
print "OR C.AMERICA?"
print
get
endif

if instr(a$,"N.AM)>0
let b$="N.AмεRICA"
endif

if i nstr (a$, "S. AM) >0
let b$="S.AМERICA"
endif

if i п str(a$,"C.AM)>0
let b$="C.AМERICA
endif

176 177

•λ rtífτ cíп l Intelligence on the Sinclair OL • Chapter!! Intelligent Use of Archive

if Ь$<>""
print b$
cout2
let r--1
while r

print
print "Which country would you
like to know more about? "
gat
print
country
print "Do you wish to have any"
print "more information about ";b$
get
if instr(a$,"YS")=0

let r=0
endif

endwhile
else
country
endif

let dummy$=getkey()
reset
endwhile

endproc

ARCHIVE CONT2 PROCedure

proc cont2
select continent$= Ь $
let c=count()
print

print "There are ";c;" countries in";b$
print
while c

if c/4=ínt(c/4)
print
endif

print country$;" ";
next
let c=c-1
endwhile

endproc

ARCHIVE COUNTRY PROCedure

proc country
first
let 1=count()
let f1=0
while I

if INSIR (a$, country$) >0
let f1=-1
print
ink 4
print country$;" is in ";continent$
print 'It has a population of ";pop;
" million,"'
print "spread over ";area;"0õÕ sq
km"
print "(a population density of ";
print str(pop/(area/1000),0,2);
"/sq km)"
print "The capital is ";capital$
print "and the currency is the ";
print cLirrency$
ink 7
endif

next
let 1=1-1
if inkey()<>""

return
endif

endwhile
if fl=()

ink 2
paper 7
print "I don't understand what you
mean"
ink 7
paper 0
endproc

178
	

179

• •
CHAPTER 12

λ Naturally Expert Salesman

In the previous chapters we have dealt from first principles with various
aspects of artificial intelligence, but in this final chapter we have linked
together many of these individual ideas into a single complete program.
The original intelligent program was the famous ELIZA, which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy, but we have resisted the temptation to follow this
lead any further and have opted instead to produce a synthetic replace-
ment for the computer salesman.

Although ELIZA-type programs which will hold a conversation with
you are not uncommon, this particular program is rather unusual in that it
combines processing of natural language with an expert system to
produce a result which should both understand your natural language
requests and make suggestions which take into account your require-
ments, the strengths and weaknesses of particular machines in 20
different areas, and a number of hard commercial facts like cost and profit
margin!

Enough words and values have already been included to make the
program interesting, but you can easily custornise it by adding your own
ideas to the DATA. (We take no responsibility for the values included so
far, which are for demonstration purposes only, or the views on particular
machines expressed by the program.) The program itself basically follows
the methods described earlier in the book and the functions of the various
PROCedures, FuNctions, variables and arrays are given in Table 12.1.

Table 12.1(a): Variables and Arrays.

SIMPLE VARIABLES

QP%	 no. of question sentences
Q%	 no. of questions
R%	 no. of rules
OB%	 no. of objects
AJ%	 no. of adjectives
AV%	 no. of adverbs
LI%	 no. of likes

181

iArtificial Intelligence on the Sinclair QL •	 Chapter 12 A Naturally Expert Salesman

AV$(AV%,6)
NV$(NV%,6)
LI$(LI%,7)
DL$(DL%.7)
Q$(Q%.20)
QP$(QP%,16)
CR(Q%)
PR(Q%)
IC(Q%)
IP(Q%)
HM$(HM%,20)
R(R%)
CO$(CO%, з0)
FE(CO%,FE%)
C(ČT%)
CS$(CS%,100)
EX$(EX%,100)
HI$(H1%,100)
LO$(LO%,100)

DL%
NJ%
NV%
HM°ó
8B η
CO%
FE °ó
CT%
CS%
EX%
HI%
LO%
LD%
ТС %
TP%
OF%
NP%
M%
OM%
S1O7o
S2%
CM°ó
SP%
ST%
PH%
IS %
RU%
XX%
TX%
PT%
TS%
BS%
HI%
LO%
SE%
SL%

ARRAYS

OB$(OB%,10)
λJ$(AJ%,6)
NJ$(NJ%,7)

no. of dislikes
no. of negative adjectives
no. of negative adverbs
no. of cheap/expensive
bank balance
no. of computers
no. of features
no. of cost ratings
no. of cost suggestions
no. of excuses
no. of high price suggestions
no. of low price suggestions
like/dislike
total cost
total profit
object flag
negative/positive
marker
object marker
AND position
BUT position
comma position
search position
search start
selected question phrase
search position
rule update value
cheap/expensive
selected excuse
selected credit warning
cost of most expensive match
cost of least expensive match
most expensive match
least expensive match
most/least
cost phrase selector

objects
adjectives
negative adjectives

adverbs
negative adverbs
likes
dislikes
question objects
question sentences
cost rate
profit rate
total cost
total profit
cheap/expensive
desire rule
computer names
feature names
cost ratings
cost suggestions
excuses

high messages
low messages

set windows

prints title
READs DATA, sets variables

selects question phrase (PH$)

looks for '©' marker in PH$

looks for &' marker in PH$

forms the question with the
question objects at the end

forms the question with the
question objects embedded

updates the rules depending
upon the word preceding
the AND_OR_BUT in your input

updates the rules if YES_RESENT
in your input

updates the rules of NO_PRESENT
in your input

SCREEN

TITLE
SETUP

PICK_QUESTION

LOO K_AT

LOOK_AND

JOIN_1

JOIN 2

AND_OR_BUT

YES_PRESEŇT

NO_PRESENT

Table 12.1(b): PROCedures and FuNctions.

PROCEDURES

182
	

183

NT_РRESENT

DOUBLE NEGATIVE

LIKES

DISLIKES

OBJECTS

ADVERBS

NEGATIVE_ADVERBS

ADJECTIVES

updates the rules if NT_PRESENT
in your input

checks for a DOŮBLE_ NEGATIVE
in your input

checks for LIKES verbs in
your input

checks for DISLIKES verbs in
your input

checks for OBJECTS in your
input

checks for ADVERBS (positive)

checks for NEGATIVE_АDVERBS

checks for ADJECTIVES (positive)

NEGATIVE_АDJECTIVES checks fot NEGATIVE_АDJECTIVES

CHEAP_EXPENSIVE

RULE_UPDATE

COST_PROFIT

SPENDING

PICK_COMPUTER

prints cheap or expensive message

updates tules

calculates total cost and profit

compares with bank balance

selects matching computer

FUNCTIONS

FIND_slash

FIND_ask

FIND_comma

FIND_AND

FIND_BUT

searches for a slash `/' in PH$

searches for an asterisk `*' in PH$

searches for a comma У in IN$

searches for 'AND' in IŇ$

searches for 'BUT' in IN$

πuпmr;nзaπ.;u^uπmmmшmeeia:;;o;; ı;uпιuiилσ^em ım!τгr,^{ ,rv ıınınuы;ij!ııη

^-^
i г

.^ ;,,,,.

j I 11

°

_г
 : #^-

j

r„d	 !i —Н-

-
^

U
j!i7pη^yπн^^^~ rt.!iИi p.ρia^^пrσ пπпım ıηNØ1(п ı+mlj ıı^ ı^I πď1^ ^`-ı1	 ,

Figure 12.1: Workings of Salesmал 's Mind.

• Chapter 12 А Naturally Expert Salesmanλ rtífτcial lntelllgence on the Sí ıı c[aír OL

Making conversation
The format of the program is that you are asked for your views on each of
a number of possible features ín turn (the exact wording of the question
being PICKed at random from a selection of available QU ЕSTION
phrases). Note that the keyword or phrase ís inserted into the sentence
where necessary and that the correct conjugation is applied, by FIND_
slash, LOOK_at, LOOK_and, FIND_ask. JOIN_1 and JOIN?.

The screen display is divided into five horizontal windows (Figure 12.1)
which are dedicated to specific purposes. Window ##0, at the bottom,

184
	

185

Artificial Intelligence on the S ίrclair OL Chapter 12 ,4 Naturall y Expert Sа lesman

receives your input sentences, which are entered in response to the
prompting questions which appear on the small window (#3) just above
it. Above this is the largest window (##1) on which a whole series of
relevant comments appear. Window#4 simply contains an advertisement
for the 'Muitimega Microstore', whilst finally the top window (##2)
displays at least part of the contents of the salesman's brain, to show the
rules on which he is basing his judgement. Of course this mav give you
more insight into a salesman's motives than usual.

Your input is examined in detail for a series of keywords, and a
DESIRE RULE array is updated according to your requests. (You
actually see the rule arrays being updated in the top screen window.)
Note that man y of the keywords are truncated so that one check can be
made for a number of similar words, and a test ís included to check that
the matching string is at the start of a word, to reduce mismatches (eg
LIKE in DISLIKE). If you are obsessed with one particular feature (eg
16-BIT PROCESSOR) then the salesman does not take you too seriously
as this is obviously a 'buzz word' gleaned from the last month's issue of
People's Computer News'.

The simplest test is whether there is YES_РRESENT or NO_РRESEN T
which add or subtract 1 from the DESIRE RULE for that feature, and íf
you mention the name of the OBJECTS (eg GRAPHICS) then a further
1 ís added to the DESIRE RULE. In addition, using positive' ADJEC-
TIVES or ADVERBS also adds to this rule, whilst a NEGATIVE_
ADJECTIVE or NEGATIVE_ADVERB subtracts from this rule.
Separating the words into different classes allows you to make more than
one change to this rule at the same time.

Thus:

YES	 adds 1

YES BASIC	 adds 2

YES BASIC NECESSARY	 adds 3

YES GOOD BASIC NECESSARY	 adds 4

Whilst:

NO	 subtracts 1

and

NO MEMORY	 subtracts 2

Furthermore verbs ate grouped as LIKES and DISLIKES: the latter
reverse the action of the rest of the words.

Thus:

I DETEST MACRODRIVES 	 subtracts 1

Both NOРRESENT and NT_PRESENT are recpgnised and most
DOUBLE_iNEGATIVEs are interpreted correctly.

Thus:

I DON'T LIKE SOUND	 subtracts 2

I DON'T DISLIKE SOUND	 adds 2

If anything appears at the start of a sentence and is followed b y a comma
then FIND_COMMA usually cuts it off and it is effectively ignored.

Thus:

NO, I DON'T WANT GOOD SOUND 	 subtracts 3

The exception is when AND_OR_вUT are included, when both parts of
the sentence are acted on independently.

Thus if the question ís:

DO YOU WANT GRAPHICS?

and the answer ís:

NO, BUT I WANT GOOD SOUND

then 1 is subtracted from the graphics rule and 2 added to the sound rule.
If the program does not find any keywords in the input then it politely

asks you to try again:

PARDON, EXCUSE ME BUT...

The program can only cope with one feature at a time so if you try to ask
fot SOUND and GRAPHICS, for example, at the same time, you will get
a request for a repeat of the question.

HANG ON — ONE THING AT A TIME

However it is possible to make comments about single features that you
are not being asked about at the time, and these entries will still update
the rules (as in the BUT example above).

186 1 Q'7

INPUT /__.__/ PRINT
REPLY /	 Í QUE5ТION/

ADD SP.τλСЕ
RESET
VARIASLFS

RU = RU +LD

Artificial Intelligence on the Sinclair QL
	

Chapter 12 A Naturall y Expert Salesman

(1)

SET UP 	 СНОО5E
ARRAY'QUESTION

ı WORDS

(1)

Flowchart 12.1(a): Computer Salesman.

NO 	

Flowchart 12.1(ь)

1 яQ

^
YcS	

"PARCgN",

I

NO 	

'ANG ON N

NO

YES	 UPDATE
CURRENT
RULE

NO

UPРАТЕ
TOTAL. GO$T

AND
i OTAL PROFIT

UPDAТΣ
OВУЕGT
RULE

Flowchart 12.1(d)

YΣ S

(2)

(з)

Flowchart 12.1(c)

Artificiai Intelligence an the Sinclair QL
	 Chapter 12 A Naturally Expert Salesman

1 9O
ı n ı

NO

END
OF г̂ Ofr

YES

NO

PICK
RАNWM
NUMBER

NO

YE S UPDATE
-ґS + i-i ı

1

U PD/iT E
BS + LO

Chapter 12 A Naturall y Expert Salesman
Artificial Intelligence on the Síncla ίr OL

Decisions
Once the Input has been decoded as far as possible we move to RULE_
UPDATE. In addition to the DESIRE RULE arra y there are two other
arrays which are linked to this. The first is the COST RULE, which gives
an indication of the cost of this particular option, and the second ís the
PROFIT RULE which indicates to the salesman how much effort it is
worth putting into selling this feature. The values for these last two arrays
are produced by multiplying the content of the corresponding rule a rray
element by factors entered originally in the DATA (see Table 12.2)
where the format is:

(phrase describing feature, cost, profit)

eg EXPANDABILITY,2,9

indicates that the cost of including EXPANDABILITY is quite low (2)
but that ít carries the potential for high profits, through sale of ex-
pansions.

(4)

NC =
NUMBER
IN PO'$

C н =

NO.

Table 12.2:	 Cost and Profit Margin of Features.

FEATURE	 COST PROFIT
CH= 6 ч41

1 GOOD BASIC 5 2

YES "ONLY
 OPT10N"/

2
3

GRAPHICS
SOUND

7
6

2
2

4 A GOOD KEYBOARD 4 2
5 FUNCTION KEYS 1 5
6 A LARGE MEMORY 3 6

YES	 ' LOW"	 	 . 7 A TAPE INTERFACE 2 2

/ 8 MACRODRIVES 2 4

NO
9 DISCS 5 8

/
10
11

EXTENSIV'E SOFTWARE
A CART RIDGE PORT

0
1

9
6

12 A JOYSTICK PORT 1 7
/' Ч 1GH^
	 / 13 АN АSSEMBLER 2 1

14 A CENTROŇICg PORT 2 5
15 AN RS232 PORT 2 6

Flowchart 12.1(e)	 16 EXPANDABILITY 2 9
17 NETWORKING 3 4
18 A 16-BIT CPU 1 7
19 MULTITASKING 5 5
20 GOOD SERVICE 1 9

193

10 SCRεEN

20 TITLE
$0 SET UP

	

40	 REPeat

50
60
70
80
90

100
110
120
130

140

150
160
170

	

180	 LD'/.=1
	190 	 OF '/.=-1

	

200	 FS%=1

	

210	 NPX=O

	220 	 RU % =0

? јІ

QUESTION
PICK_QUESTION

IF FIND slash THEN
LOOK_at
LOOK and

END IF
IF FIND ask THEN

JOIN_i
ELSε _

JOIN 2
END IF—

PRINT #$,PH$ &
INPUT #0, IN$
IN$=" " & I N$

•	 Chapter 12 A Naturally Expert SalesmanArtificial Intelligence on rhe Sinclпίr QL

After each input the salesman considers the consequences of your
requests. First of all he looks to see if your SPENDING on your require-
ments exceeds a certain proportion of your bank balance, and if so prints
out one of a series of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE
EXCEEDING YOUR CREDIT LIMIT

He also looks at how much profit he is likely to make on the sale so far,
and if this drops too low he will start to lose interest and come up with
comments like:

I HAVE AN URGENT APPOINTMENT

The highest-rated machine will always be picked out first but, if possible,
at least three machines (possibly with lower ratings) will be selected, and
the final choice made from them. Either the highest or lowest cost
computer (at random) will be selected for mention, for example:

IF YOU WANT A REAL ROLLS-ROYCE
THEN JUST LOOK AT THE .. .

and

IF YOU ARE IN THE BUDGET MARKET
THEN WHAT ABOUT THE .. .

If only one machine fits the bill the program will come up with:

or
YOUR ONLY OPTION IS THE .. .

WE CLOSE IN FIVE MINUTES

Computer Salesman
At the same time he will be more helpful with regard to which of the
available computers will fit your requirements, using PICK_COMPUTER
which draws up a short list by comparing the rating given originally to this
feature in the description of each computer with the value you put on it.
The format for the descriptions (Table 12.3) is:

Table 12.3: Computer Feature Ratings.

FEATURES

NAME 1 2 3 4 5 6 7 8	 9 10 11 12 13 14 15 16 17 18 19 20

JCN PC 7 8 8 9 8 8 8 0	 9 9 7 7 0 7 6 8 8 9 9 9

KNALT SERIOUS 6 7 6 8 8 8 8 0	 8 8 0 0 0 7 6 8 8 9 9 7

CLEARSIN МТ 9 Ч 9 7 7 8 8 9	 9 6 7 7 0 7 6 7 9 9 9 1

ACHRON ILLUSION 8 7 6 6 0 3 7 0	 5 5 0 0 6 0 0 4 1 0 0 2

BANANA IIE 3 5 2 5 0 4 6 0	 3 0 3 5 0 0 6 7 0 0 0 4

SI ELITE 8 8 8 7 7 8 8 0 7 2 7 4 0 0 6 0 0 0 Π 0

COLECTOVISION
CABBAGE 5 5 5 5 2 5 5 5	 5 1 7 7 0 0 6 5 0 9 0 0

CANDY COLOURED
COMPUTER 7 6 4 2 0 2 7 0 4 9 8 7 0 0 6 3 0 0 0 6

COMAN DEAR 64 2 8 9 7 7 6 5 0	 6 9 6 7 0 0 2 2 0 Π 0 6

ATRIA 6000Т 1 8 8 5 0 2 5 0	 7 7 7 7 0 0 6 6 0 0 0 5

(name, value of feature 1, value of feature 2, value of feature З . etc)

Ion 195

•А rtiўіcial Intelligence on the Sinclair OL • Clіпp ιeг 12 λ ,Vatu гall v Expert Sц lesman

230 М%=0 3010	 IF Q$(Q7,1)="@" THEN

240 OM%=0 3020	 РН$=РН$(1 TO IS%-1) & "ARE" & PH$

250 S 1%=0 (I5% TO)

260 52%=0 3030	 END IF

270 IF FIND_comma THEN 3040 END DEFine LOOK at

280
290

AND_Oй _ВUт
IN$=IN$(CMY+1 TO)

4000 DEFine PROCedure LOOK and
4010	 IF 0$(07,1)="&"	 THEN

300
310
320
330
340

END IF
YES PRESENT
NO_PRE5ENT
NT PRESENT
DOUВLE_NEGATIVE

4020	 РН$=РН$(1 TO IS%-1) & "IS" & PH$
(ISY TO)

4030	 END IF
4040 END DEFine LOOK and

350
360

LIKES
DISLIKES

5000 DEFine FuNction FIND ask
5010	 ^s/.=""	 INSTR PH$

IND_ as

370 OBJECTS RETurn ISY
380 ADVERBS 5030 END DEFine FIND_ask
390 NEGATIVE_ADVERBS
400 ADJECTIVES 6000 DEFine PROCedureJOIN 1

410 NEGATIVE_ADJECTIVES 6010	 РН$=РН$(1	 TO	 I5/.-2)	 II 11	 11	 &	 Q3 (Q/.) (2

420 CLS #1 TO	 LEN(Q$(Q%)))	 & PH$(IS%+1	 TO)

430 CHEAP_ EXPENSIVE 6020 END DEFine 'JOIN 1

440 IF M%<1 THEN PRINT "PARDON,	 PLEASЕ
EXCUSE	 ME BUT" : NEXT QUESTION 7000 DEFine PROCedure JOIN 2

450 IF OMY>1 THEN PRINT 11 HANG ON - ONE 7010	 PH$=РН$ & "	 " & 0$(0%)(2 TO LEN(Q$(0%)))
THING AT A TIME 11 ј NEXT QUESTION 7020 END DEFine JOIN 2

460 RULE_UPDATE
470 COST PROFIT 8000 DEFine FuNction FIND_comma

480 SPENDING 8010	 СМУ-'	 INSTR IN$

490 PICK COMPUTER 8020	 RETurn CMY

500 0%=.0%+1 8030 END DEFine FIND_comma

510 IF Q%>19 THEN 0%=0
520 END REPeat QUESTION 9000 DEFine PROCedure AND OR BUT

1000 DEFine PROCedure PICK QUESTION
1010	 РН%=RND(4 TO QPY)
1020 РН$=QР$(РН%)
1030 END DEFine PICK QU εsTION

2000 DEFine FuNction FIND_slash
2010	 ISY="/" INSTR PH$
2020 RETurn IS%
2030 END DEFine FIND slash

3000 DEFine PROCadure LOOK at

9010	 IF FIND AND + FIND BUT THEN
9020	 IF IN	 "$(1 TO 3)=^NO" THEN
9030	 R(QY)=((R(0%)*3)-3)/3
9040	 IC(Q)=((τ C(0'/.)*3)-(CR(Q%)*3 ı) ı 3
9050	 IP(QY)=((IP(О%)*3)-(PR(QY)*3))/3
9060	 ELSE
9070	 R(Q'!.)=R(Q%) +i

9080	 IC(Q%)=((IC(QY)#3)+(CR(QY)#3))/3
9090	 IP(QY)=((IP(QY)#3)+(PR(QY)#З))/3
9100	 END IF
9110	 END IF
9120 END DEFine AND OR BUT

ı n4 197

A rtificial Intelligence on the Siпclair UL • • Chapter 12 A Naturally Expert Salesman

10000 DEFins FuNct'ı on FIND_AND

10010	 S1X="AND" INSIR IN#
10020 RETurn 81%
100З0 END DEFine FIND_AND

11000 DEFine FuNction FIND BUT

11010	 S2X="BUT" INSTR IN $
11020	 RETurn 82X
11030 END DEFine FIND_9UT

11$=INS
REPeat YES

12040	 I1$=I1$(SТ% TO)
12050	 SPX="YES" INSTR I1$

12060	 IF SPX=0 THEN RETurn

12070	 RUY.=RU'1.+1

12080	 LDX=1

12090	 M%=1

12100	 ST%=SPX+1

12110	 END REPeat YES
12120 END DEFine YES_PRESENT

ST'1.=1
I1$=IN#
REPeat NO

I1#=I1A(ST'/. TO)
SP'l.="NO" INSIR I1$

IF SP%=0 THEN RETurn

М%=1
STX=5P'/.+1
NPX=NPY.+1

END REPeat NO
DEFine NO_PRESENT

14000 DEFine PROCedure NT PRESENT
14010	 STX=1
14020	 I1$=INffi

14030	 REPeat NT

14040	 I1$=I1$(STX TO)

14050	 SPX="N'T" INSIR I1$

14060	 IF SPX=0 THEN RETurn
14070	 LDX=-1
14080	 M%=1
14090	 ST%=SP'%+1
14100	 NP,:=NP%+1
14110	 END REPeat NT
14120 END DEFine NT_PRESENT

15000 DEFine PROCadure DOUBLE_NEGATIVE
15010	 IF NP%=0 THEN RETurn
15020	 IF NP% MOD 2 THEN
15030	 RU%=((RU $3)-3)/3
15040	 LDX=-1
15050	 ELSE
15060	 RUY.=RU%+1
15070	 LD7.=1
15080	 END IF
15090 END DEFine DOUBLE_NEGATIVE

16000 DEFine PROCedure LIKES
16010	 FOR N=0 TO LIX
16020	 SPY.=LI$(N) INSTR IN$
16030	 IF SP'/.>O THEN
16040	 IF IN# (SPY.-1) _" " THEN LD'/.=LD% *i

М%-1
16050	 END IF
16060 END FOR N
16070 END DEFine LIKES

17000 DEFine PROCedure DISLIKES
17010	 FOR N=0 TO DLY.
17020	 SP'Х=DL$(N) INSIR IN$
17030	 IF SPX>0 THEN
17040	 IF IN$ (SP%-1) =" " THEN LD'Х=LD'/.*-1

: RUX=RU*-1 e MX=1
17050	 END IF
17060 END FOR N
17070 END DEFine DISLIKES

18000 DEFine PROCedure OBJECTS
18010	 FOR N=0 TO OW/..
18020	 SPX=OB$(N) INSIR IN$
18030	 IF SP%>0 THEN

12000 DEFine PROCedure YES _PRESENT
12010	 ST'1.=1
12020
12030

13000 DEFine PROCedure NO_PRESENT
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120 END

198

Artificial intelligence on the Sinclair QL
	 •

18040	 IF IN$(SP%-1)s" " THEN
RU%=((RUï.*3)+(L D7.*г 3)) /3 : OF%=N :

Г%= ı : cМ%=oМ%+ ı
18050	 END IF

18060	 END FOR N
18070 END DEFine OBJECTS

19000 DEFine PROCedure ADVERBS

19010	 FOR N=0 TO AV%
19020	 SP%=AV$(N) INBTR IN$

19030	 IF SPX>0 THEN

19040	 IF IN$(8P%-1)=" " THEN
RU%=((RU ;#3)+(LD%#3))/3 : М%=1

19050	 END IF
19060 END FOR N
19070 END DEFine ADVERBS

20000 DEFine PROCedure NEGATIVE_ADVERBS

• Chapter 12 A Naturally Expert Salesmman

22050	 END IF
22060 END FOR N
22070 END DEFine NEGAТ IVE_ADJECТ IVES

23000 DEFine PROCedure CНEAP_EXPENSI чε
23010	 FOR N=0 TO НМ7
23020	 SP'/.=НМ (N) INSTR I N$
23030	 IF 8P/.>0 THEN
23040	 IF IN$(SP%-1)=" " THEN
23050	 XX%=N
23060	 IF XX'/.<2 THEN PRINT "CHEAP AND

NASTY"
23070	 IF XX'/.>=2 THEN PRINT "RATHER

EXPENSIVE"
23080	 END IF
23090	 END IF
23100	 END FOR N
23110 END DEFine CHEAP_EXPENSIVE

20010	 FOR N=0 TO NV%
20020	 SPX=NV$(N)	 INSTR IN$

20030	 IF SP'/.>0 THEN
20040	 IF IN$(SP%-1)_" " THEN LD'%=LD%*-1

RU%= ((RU''/*3)+(LD'/.*3)) /3	 :	 М%=1

20050	 END IF
20060	 END FOR N
20070 END DEFine NEGATIVE_ADVERBS

21000 DEFine PROCedure ADJECTIVES

21010	 FOR N=0 TO AJ^.
21020	 SP%=AJ$(N)	 INSTR IN$

21030	 IF SPX>0 THEN
21040	 IF IN$(SP%-1)s"	 " THEN

RU%=((RU%*3)+(LD Х*3))/3 :	 М%=1

21050	 END IF
21060	 END FOR N
21070 END DEFine ADJECTIVES

22000 DEFine PROCedure NEGATI уE_ADJECTIVES

22010	 FOR N=0 TO NJ%
22020	 SP%=NJ$(N)	 INSTR IN$

22030	 IF SPX>0 THEN
22040	 IF IN$(SК-1)=" " THEN LD'/.=LD%*-1

RU%=((RU'/.#3)+(LD'/.*3)) /3	 :	 М%=1

200

24000
24010
24020
24030

24040

24050
24060
24070

24080

24090
24100
24110
24120
24130
24140
24150
24160
24170
24180
24190
24200

DEFine PROCedure RULL_UPDATE
IF OF%>-1 THEN

R(OF%)=((R(OFX)*c3)+(RU%*3))/3
iC(OF%)=((IC(OFX) *3)+	 (СR(ОFУ.) *RU%)
*3))/3

IP(OF%)=((IP(OF%)#3)+((PR(OF'X)*RU%)
*3))/3

ELSE
R(0%)=((R(0%)*3)+(RU%*3))/3
IC (O ϊ.) _ ((IC (Q'/.) #3) + ((CR (Q%) *RU%)
*3)) /3
IP(Q%)=((IP(Q%)#3)+((PR(Q%)#RU%)
#3))/3

END IF
CLS #2
PRINT ßi2,"DESIRE"

FOR N=0 TO R%
AT $2,N*3+15,0	 :	 PRINT#2,	 R(N)

END FOR N
PRINT*2, "COST"

FOR N=0 TO R%
AT ít2, N*3+15, 1	 :	 PRINT*2,	 IC (N)

END FOR N
PRINТ$2,"PROFIT"

FOR N=0 TO R%

201

A mficial Intelligence on the Sinclair OL
	 Chapter 12 λ Van'rallv Expert Salesman

24210	 AT #2,N*3+ 15,2 : PRINT#2, IP(N)
24220	 END FOR N
24230 END DEFine RULE UPDATE

25000 DEFine PROCedure COST PROFIT
25010	 FOR N=0 TO OB%
25020	 TCX=((TCX#3)+ ι'IC(N)*3))/3
25030	 TP%=4(ТR%*3)+(IP(N)*3))/3
25040	 END FOR N
25050	 PAPER #2,0 s INK #2,7 : CSIZE #2,1,0
25060	 PRINT #2,"	 TOTAL COB ";TCX;"	 TOTAL

PROFIT ";TP%;" BANK BALANCE ";BB%;
25070	 PAPER #2,4: INK #2,0 : CSIZE #2,0,0
25080 END DEFine COST PROFIT

26000 DEFine PROCedure SPENDING
26010	 IF TP'%<0 *5 THEN TX7.=RND (EX%) : INK

#1,4 : PRINT \EX$(TXX) : INK #1,0
26020	 IF ТС 7..>ВВ%/(QX+1) THEN PTX=RND(CS%) :

INK #1,2 : PRINT \CS$(PT%) : INK #1,0
26030	 TCX=0
26040 TPX=0
26050 END DEFine SPENDING

27000 DEFine PROCedure PICK COMPUTER
27010	 FOR X=9 TO 0 STEP -1
27020	 PO#=""
27030	 FOR N=0 TO COY.
27040	 IF ((FE(N, О /..)λг 3)-(R(G%)*3))>X THEN

P0ß=P0ß & N : MX=N
27050	 END FOR N
27060	 IF LEN(PO$)<3 THEN END FOR X

27070	 TSX=0
27080	 BSX=10
27090	 FOR CH=0 TO LEN(PO$)-1

27100	 NC%=PO$(CH+1)

27110	 IF C (NC'/,) >=тS7. THEN TSX=C (NC%)
HIX=NC;:

27120	 IF C (NC%) <=BSX THEN BS'/.=C (NCL)
LOX=NCX

27130	 END FOR CH
27140	 IF HI%=L О% THEN
27150

	

	 PRINT #1,"YOUR ONLY OPTION IS
THE"

27160
	

CSIZE #1,2,1 : PRINT #1," *3*
** ";CO$(HIX); Н ***** "; :
CSIZE #1,2,0

27170
	

RETur n
27180
	

END IF
27190
	

FIß=CO$(HIX)
27200
	

LAB=CO$(LOX)
27210
	

SE'L=RND (1 TO 2)
27220
	

SLX=RND(2)
27230
	

IF SEX<>2 THEN
27240
	

PRINT #1,HIß(SL%) : CSIZE
#1,2,1 : PRINT #1," ***** "
;FI$;" *****';: CSIZE #1,2,0

27250
	

ELSE
27260
	

PRINT #1,LO$(SLX) : CSIZE
#1,2,1 : PRINT #1," ***** "
;LAW;" *****";: CSIZE #1,2,0

27270
	

END IF
27280 END DEFine PICK COMPUTER

28000 DEFine PROCedure SCREEN
28010 MODE 4
28020	 WINDOW #0,470,40,25,215
28030	 BORDER #0,5,4
28040	 PAPER #0,0
28050	 INK #0,7
28060	 CSIZE #0,2,0
28070 CLS #0
28080	 WINDOW #1,470,105,
28090	 BORDER #1,5,4
28100	 PAPER #1,7
28110	 INK #1,0
28120	 CSIZE #1,2,0
28130	 CLS #1
28140	 WINDOW #2,470,50,25,15
28150	 BORDER #2,5,4
28160	 PAPER #2,4
28170	 INK #2,0
28180	 CSIZE #2,0,0
28190	 CLS #2
28200	 OPEN #3,SCR_470X20A25X195
28210	 BORDER #3,5,4
29220	 PAPER #3,7
28230	 INK #3,0

25,90

202
	 203

•
Chapter 12 λ ,Va" і rall г Erpert.rtificial Intelligence on the Sinclair QL •

28240	 CSIZE #3,2,0
28250 CLS #3
28260	 OPEN #4,SCR_470X25A25X65
28270	 BORDER #4,2,2

28280	 PAPER #4,2

28290	 INK #4,7
28300	 CSIZE #4,2,1
28310 CLS #4
28320 END DEFine SCREEN

29000 DEFine PROCedure TITLE
29010	 PRINT #4," $$$$$	 MULTIMEGA MICROSTORE

38333")
29020 END DEFine TITLE

30000 DEFine PROCedure SETUP
30010 RESTORE

QP'%=5
0%=19
R%=Q%
08%=QX
AJ%=7
AVZ=4
LI%=3
DL%3
NJ%=8
NV%=2

88%: 100
COZ=9
FE%=19
CTZ=9
HI%=2
LOZ=2
CS%=2
EXZ=2
Тс%=0
ТР%=0
DIM 08$(OB%,10)
DIM AJ3(AJ'%,6)
DIM NJ$(NJ%,7)
DIM AV$(ЯV%,6)
DIM NV$(NV'J.,6)

30280	 DIM L ı $(LI%,7)
30290	 DIM DL$(DL У..,7)
30300	 DIM 0$(0',20)
30310	 DIM QP$(OP%,16)
30320	 DIM НМ$(HMХ ,20)
30330	 DIM R (R7.)
30340	 DIM CR (QY.)
30350	 DIM PR(OZ)
30360	 DIM IC(0%)
30370	 DIM IP(Q%)
30380	 DIM СО$(COY.,30)
30390	 DIM FE(CO%,FEZ)
30400	 DIM DF(CO%,FE%)
30410	 DAM C(CT%)
30420	 DIM CS$(C8%, ı 00)
30430	 DIM EX$(EXY.,100)
30440	 DIM HI$(HIZ,100)
30450	 DIM LO$(L0%,100)

30460 DATA "BASIC","GRAPHIC","SOUND",
"KEYBOARD","FUNCTION","MEMORY",
"TAPE","MACRODRIVE","DISC"

30470	 DATA "SOFTWARE", "CARTRIDGE",
"JOYSTICK","ASSEMBL","CENTRONIC",
"RS232","EXPAND"

30480	 DATA "NETWORK","16-BIT","MULTITASK",
"SERVICE"

30490	 DATA "GOOD"," EXCEL ","SUPER","MAGNIF",
"FIRST","FAST","ESSENT","LOT"

30500	 DATA "BAD","RUBBISH","POOR","SLOW",
"INEFFIC","FEW","WORS","LEAST","LESS"

30510	 DATA "REAL","VERY","OFTEN","NECESS",
"TRU"

30520	 DATA "NEVER","UNNECES","INFREO"
30530	 DATA "WANT","LIKE","NEED","REQUIRE"
30540	 DATA "HATE","DISLIKE","LOATHE","DETEST"
30550	 DATA "&GOOD BASIC",5,2,"@GRAPHICS",7,2,

"&SOUND",6,2,"&A GOOD KEYBOARD, 4,2
30560	 DATA "@FUNCTION KEYS",1,S,"&A LARGE

MEMORY",3,b,"&A TAPE INTERFACE",2,2
30570	 DATA "@MACRODRIVES",2,4,"@DISCS",5,8,

"&EXTENSIVE SOFTWARE", 0,9
30580	 DATA "&A CARTRIDGE PORT",1,b,"&A

JOYSTICK PORT",1,7,"&AN ASSEMBLER", 2, 1

30020
30030
30040
30050
30060
30070

30080
30090
30100
30110
30120
30130
3й 140

30150

30160
30170
30180
30190
30200
30210
30220
30230

3024ύ
30250
30260
30270

204 205

А гґіѓісйіі 1nге 11іепсе on the Síпclaír OL Chapter 12	 λ Naturally Expert Salesman

30590 DATA "&A CENTRONICS PORT",2,5,"&AN RS232 	 30820 DATA "YOU GET GOOD VALUE FOR MONEY WITH
PORT",2,6,"&EXPANDАВІ LITY",2,9,
"&NETWORKING",3,4	 30830

THE"
DATA "IF YOU WANT A FIRST CLASS RRODUCT

30600 DATA "&A 16-PIT CPU",1,7,"&MUL Т I ТASń ING" THEN YOU MUST TRY THE"
,5,5,"&GOOD SERVIC Е ",1,9	 30840 DATA "FOR STATE OF THE ART TECHNOLOGY

30610 DATA "WOULD YOU LIKE","WHAT ABOUT","HOW YOU	 CAN'T BEAT THE"
ABOUT","DO YOU WANT","DO YOU REQUIRE", 	 30850
"!# IMPORTANT"

DATA "IF YOU WANT A ROLLS ROYCE THEN

' UST	 LOOK AT THEA'
30620 DATA "CHEAP","INEXPENSIVE" 	 30860 FOR N=0 TO 0ØX
30630 DATA "DEAR","EXPENSIVE"	 3070 READ OB#(N)
30640 DATA	 "JON PC",7,8,8,9,8,8,8,0,9,9,7,7,0	 30880 END FOR N

7,6,8,8,9,9,9	 30890 FOR N=0 TO AJ%
30650 DATA	 "KNALT SERIOUS",6,7,6,8,8,8,8,0,8,	 30900

8, 0, 0, 0, 7, 6, 8, 8, 9, 9, 7 	 30910
READ AJ3t(N)

END FOR N
0660 DATA	 "CLEARSIN MT,9,9,9,7,7,8,8,9,9,6,7	 30920 FOR N=0 TO NJ?.

,7,0,7,6,7,9,9,9,1 	 30930 READ NJ$(N)
30670 DATA "ACHRON ILLUSION",8,7,6,6,0,3,7,0, 	 30940

5,5,0,0,6,0,0,4, 1,0,0,2	 30950
END FOR N
FOR N=0 TO ЯVY.

30680 DATA	 "BANANA	 IIE",3,5,2,5,0,4,6,0,3,0,3	 30960 READ AVW(N)
,5,0 ı 0,6 ı 7,0,0,0,4	 30970 END FOR N

30690 DATA	 "SI	 ELITE",8,8,8,7,7,8,8,0,7,2,7, 	 30980
4,0,0,6,0,0,0,0,0	 30990

FOR N0 TO NV%
READ NV3(N)

30700 DATA "COLECTOVISION CABBAGE",5,5,5,5, 	 31000
2,5,5,5,5, 1, 7, 7, 0, 0, 6, 5, 0, 9, 0,0	 31010

END FOR N
FOR N=0 TO LIX

30710 DATA "CANDY COLOURED COMPUTER",7,6,4,2,	 31020
0,2,7,0,4,9,8,7,0,0,6,3,0,0,0,6 	 31030

READ LI$(N)
END FOR N

30720 DATA "COMANDEAR 64",2,8,9,7,7,6,5,0,6 31040 FOR N=0 TO DL%
,9,6,7,0 ı 0,2,2,0,0,0,6 31050 READ DL$(N)

30730 DATA	 "ATRIA 60ОGT",1,8,x,5,0,2,5,0,7,7,
7,7,0,0,6,6,0,0,0,5

31060
31070

END FOR N
FOR N=0 TO 0%

30740 DATA	 10,9,8,7,6,5,4,3,2,1 31080 READ Q$(N)
30750 DATA "I THINK YOU ARE GETTING OUT OF 31090 READ CR(N)

YOUR	 PRICE RANGE" 31100 READ PR(N)
30760 DATA "THIS SPECIFICATION SEEMS TO BE 31110 END FOR N

EXCEEDING YOUR CREDIT LIMIT"	 31120 FOR N=0 TO QP?.
30770 DATA "I DON'T THINK THAT YOU CAN AFFORD	 31130 READ QP$(N)

SUCH LUXURIES"	 31140 END FOR N
30780 DATA "EXCUSE ME,	 I CAN HEAR THE PHONE	 31150 FOR N=0 TO NM?.

RINGING"	 31160 READ HM$(N)
30790 DATA "I HAVE AN URGENT APPOINTMENT" 	 31170 END FOR N
30800 DATA "WE CLOSE IN FIVE MINUTES"	 31180 FOR N=0 TO COX
30810 DATA "IF YOU ARE IN THE BUDGET MARKET	 31190 READ C0$(N)

THEN WHAT ABOUT THE ","AN INEXPENSIVE 	 31200 FOR M=0 TO FEY.
CHOICE IS THE"	 31210 READ FE(N,M)

206
	

207

Artificial iruelligence on the Síncl σír QL

31220	 END FOR М
31230	 END FOR N
31240	 FOR N=0 TO CT%
31250	 READ C(N)
31260	 END FOR N
31270	 FOR N-0 TO CS%
31280	 READ CS$(N)
31290	 END FOR N
31300	 FOR N=0 TO EX%
31310	 READ EX#<N)
31320	 END FOR N
31330	 FOR N=0 TO LOX
31340	 READ LO$(N)
31350	 END FOR N
31360	 FOR N=0 TO HI%
31370	 READ HI$(N)
31380	 END FOR N
31390	 D%=0
31400 END DEFine SEТ UP

32000 DEFine PROCedure XX
32010	 WINDOW #2,470,240,25,15
32020	 PAPER #2,7
32030	 INK $2,0
32040 CLS #2
32050 END DEFine XX

The rest is up to you
Artificial intelligence is a fascinating subject and we trust that we have
given you enough information to get you started on your own experi-
ments in this area. We have certainly enjoyed making our own ex-
plorations whilst putting this book together but we have started to
wonder how long it will be before someone designs an expert system
program which writes books... .

208

• •
Other titles from Sunshine

Artificial Intelligence on the Spectrum Computer
Keith & Steven Brain	 ISВN 0 946408 37 8	 £6.95
Spectrum Adventures
Tony Bridge & Roy Camel!

Machine Code Sprites and Graphics for the ZX Spectrum
John Durst	 ISВN 0

ZX Spectrum Astronomy
Maurice Gavin	 ISВN 0

Spectrum Machine Code Applications
ISВN 0

IssN 0

τsвN 0

ısвN 0 946408 19 X	 £6.95

^-Øıмп &Овcτı tІ . : г,Ф вooτ€5;

Graphic Art for the Commodore 64
Boris Allan	 ISВN 0 946408 15 7	 £5.95

DIY Robotics and Sensors on the Commodore Computer
John Billingsley	 [SВN 0 946408 30 0	 £6.95

Artificial Intelligence on the Commodore 64
Keith & Steven Brain 	 ГSВN 0 946408 29 7	 £6.95

Simulation Techniques on the Commodore 64
John Cochrane	 ısВN 0 946408 58 0	 £6.95

Machine Code Graphics and Sound for the Commodore 64
Mark England & David Lawrence 	 іSВN 0 946408 28 9	 £6.95

Commodore 64 Adventures
Mike Grace	 ISВN 0 946408 11 4	 £5.95

Business Applications for the Commodore 64
James Hall	 ı sВN 0 946408 12 2	 £5.95

Mathematics on the Commodore 64
Czes Kosniowski	 ISBN 0 946408 14 9	 £5.95

Advanced Programming Techniques on the Commodore 64
David Lawrence	 ISВN 0 946408 23 8	 £595

David Laine

The Working Spectrum
David Lawrence

Inside Your Spectrum
Jeff Nay lor & Diane Rogers

Master your ZX Microdrive
Andrew Pennell

946408 51 3 £6.95

946408 24 6 £695

946408 17 3 £6.95

9464ύ8 00 9 £5.95

946408 35 1 £6.95

ISВN 0 946408 07 6 £5.95

211

Atari Adventures

	

£5.95	 Tony Bridge	 ısВN 0 946408 18 1
	

£5.95
Writing Strategy Games on your Atari Computer

	

£5.95	 John White	 ISBN 0 946408 22 X
	

£5.95

Ё R4,QL BOOBá;:

Introduction to Simulation Techniques on the Sinclair QL
John Cochrane	 ISВN 0 946408 45 9	 £6.95
Quill, Easel, Archive & Abacus on the Sinclair QL
Alison McCallum-Varey	 ISВN 0 946408 55 6	 £6.95

Home Applications on your Micro
Mike Grace	 ISВN 0 946408 50 5

	
£6.95

£5.95

£5.95

£6.95

£5.95

£5.95

£5.95

£7.95

£5.95

£6.95

64
£6.95

£5.95

£6.95

Commodore 64 Disk Companion
David Lawrence & Mark England 	 ISВN 0 946408 49 1

The Working Commodore 64
David Lawrence	 ISВN 0 946408 02 5

Commodore 64 Machine Code Master
David Lawrence & Mark England 	 ISВN 0 946408 05 X

Machine Code Games Routines for the Commodore
Paul Roper	 ISВN 0 946408 47 5

Programming for Education on the Commodore 64
John Scriven & Patrick Hall 	 ISВN 0 946408 27 0

Writing Strategy Games on your Commodore 64
John White	 ISВN 0 946408 54 8

.^^^^$4ÖIfS;

Advanced Sound & Graphics for the Dragon
Keith & Steven Brain	 ISВN 0 946408 06 8
Artificial Intelligence on the Dragon Computer
Keith & Steven Brain	 ISВN 0 946408 33 5
Dragon 32 Games Master
Keith & Steven Brain

The Working Dragon
David Lawrence

The Dragon Trainer
Brian Lloyd

ISвN 0 946408 03 3

τsвN 0 946408 01 7

τsвN 0 946408 09 2

£5.95

£6.95

£5.95

£5.95

£.5.95

t^ ϊ̂4RГ$`ØбK^

Graphic Art for the Electron Computer
Boris Allan	 ISВN 0 946408 20 3

Programming for Education on the Electron Computer
John Scriven & Patrick Hall 	 ISВN 0 946408 21 1

C^^^1^IEΣ3^1^^ΦQI€S

Functional Forth for the BBC Computer
Boris Allan	 ISВN 0 946408 04 1

Graphic Art for the BBC Computer
Boris Allan	 ISВN 0 946408 08 4

DIY Robotics and Sensors for the BBC Computer
John В illingslev	 ISВN 0 946408 13 0

Essential Maths on the BBC and Electron Computer
Cžes Kosniowski 	 ISВN 0 946408 34 3
Programming for Education on the BBC Computer
John Scriven & Patrick Hail	 ISВN 0 946408 10 6

Making Music on the BBC Computer
Ian Waugh	 ISВN 0 946408 26 2

212 71Z

Sunshine alsa publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year's subscription costs f19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's sub-
scription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year's subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year's subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine
12-13 Little Newport Street
London WC2R ЗLD
01-437 4343

Telex: 296275

215

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113

