%
f

SUPERFORTH
+
REVERSI

A COMPLETE FORTH-83 SYSTEM FORTHE QL

Al]
A0IGITAL PE'ECISIUI“
Lo

By
Gerry Jackson

Published by
Freddy Vachhg

Program and decumentation ©1985 Gerry Jackson & Digital Precision

1'

2-

e

S.

&.

Introducti
1.1

e e
»

SUPERFERT

L]

PIOEJFJH!I
NN 0GR

i
-
o
im
At
T
(]
)|
o}
i

guugamww
e R O

o
®

Microdrive
4.1
4,2
4.3

The Screen
S.1
5.2
S3.3
5.4
Z.9

System ini
&.1
6.2

gl SUPERFGCRTH

EONTENTS

on .

Introduction

Loading the system

Input/ocutput to/from the svstem

Input from the keyboard

Input from microdrives and floppy disks
Backing up the system

fundamentals

The dictionary

Interpretation and compilatiopn of the input
Mumber handling

Names of SUPERFORTH words

The stack

operations
Integer arithmetic operations
Bouble length integer words
Dther aritbmetic operations
Logical operations
Stack manipulation
Conditional tests
Variables and constants
Z2.7-1 Using variables
3.7.2 Pre-defined constants
Defining new words
3.8.1 Colon definitions
3.8.2 Switehing between modes
3.8.3 Immediate words
Control structures
2.9.1 Case statement
Terminal input and ocutput
3.10.1 Scresn output
F-10.2 FKeyboard input
2.10.3 Other screen commands
3.19.4 BGraphics handling
Numeric conversion
Further memory handling

3 The return stack

and floppy disk handling

Input from standard SUFPERFORTH blocks
Input from named files

Creating a named file

Editor

Loading the editor
Entering the editor
The display

Commands available
Modifying the display

tialisation
Startup command block
System restart

Bl SUPERFDORTH

{ FORTH-83 Standard)}

1 INTREDUCTION

1.1 SUFERFDORTH is a standard FORTH-83 system with a complete
set of double-number extensions (ie; 32 bit integer working as
well as 14 bit integer working). The fundamentals of FORTH and
all the featuress of SUPERFORTH a&re described. Unlike virtually
every other FORTH software manual around, this one actually
supplants the need for a separate FORTH reference guide. To
learn and master FORTH you need nothing besides QL SUFERFORTH,
this manual and vour BL computer system.

Also included with the system are a Screen Editor for
handling SUPERFORTH source code, a floating point maths package
for deoing non-integer arithmetic and a fully documented example
game REVERSI, with 9 playing levels, which demonstrates the
capabilities of GUFERFORTH.

SUPERFORTH uses the multitasking capabilities of the L
computer: it runs as a task so that other tasks can be run
simuiltaneocusly. Also, SUFPERFORTH words may be defined as tasks
in their own right and executed simultanepusly with other
SUPERFORTH or machine code tasks.

Both in the Interpretive and in the Compiled modes,
SUFPERFORTH will execute considerably faster than SuperBASIC.

1.2 LDOADING THE SYSTEM

After switch on or resset, SUPERFORTH is loaded by
inserting the supplied cartridge into microdrive 1 and either
pressing F1 or F2 or typing

LRUN MDVI_BOOT

When the system has finished leoading, a message is printed:
press CONTROL C { ie; hold down CTRL and press C) and a
flashing cursor indicates that SUFPERFORTH is waiting for input
from the keyboard. é&s supplied, the Screen Editor will also be
loaded using the Start-up command block facility described
later, in section b6.

1.3 INPUT/ CUTPUT TO/FROM THE SUPERFORTH SYSTEM

&s with SuperBaASIC, input to SUPERFORTH can come from
the keyboard or microdrives (or floppy disks) and output can
tte directed to the TV { or Monitor)}, microdrives or printer.
Input to SUPERFORTH is in the form of Twords" which are
essentially strings of characters separated by spaces: a word
can be a name, number, command or character and can contain any
valid ASCII character.

Since SUPERFORTH is run as a task, keybpard input may be
switched betwesn SUPERFORTH and SuperBASIC at will by pressing
Control C: eg; to list the directory of a microdrive.

{2

(]

SUFPERFORTH FUNDAMENTALS

Z.1 THE DICTIONARY

The SUFERFDORTH system as supplied consists of a set of
SUPERFORTH words pre—compiled intoc a dictionary. Using the
SUFERFORTH system consists of either

(a} executing these pre—compiled words by typing them at
the kevboard: this is using the SUFPERFORTH system as an
interpreter and is called Interpretive mode.

(b} compiling new words into the dicticnary for later
execution: this is usually called Compilation mode.

it is because new definitions can be compiled and then
executed that SUPERFORTH systems are so much faster than
SupsrBASIC at executing programs. SuperBASIC always runs as an
interpreter: ie; each line pf the program always has to be
analysed before it can be executed.

A SUPERFCRTH program consists of a set of new
definitions, compiled intc the SUFERFORTH dictionary, which are
executed by typing one word which calls the others as execution
demands.

2.2 INTERPRETATION AND COMPILATION OF THE INFUT

Whern a word is entered in the input stream, ie; from the
keyboard or microdrive, SUPERFORTH first of all searches for
this word in the dictionary. If it is found then it is either
executed (if in Interpretive mode » or compiled { i+ in
Compilation mode). If it is not Ffound in the dictionary,
SUFERFORTH attempts to convert it into a number using the
current number base. 1f this is not possible, an error is
reported, and control returned to the keyboard, soc that the user
can caorrect the fault.

2.3 NUMBER HANDL ING

All numbers, which have besn entered, are treated as
integers (see the floating point package description for real
numbars), either 1& bit integers or double length 32 Dbit
integers. The two are distinguished on input by inclusion of a
decimal point in the number for a 32 bit integer: eg; 1234 is
treated by SUPERFORTH as a 16 bit number, and 1.234 as a 32 bit
number.

The point has no significance except to indicate that it
is a double—number; however, the number of digits to the right
of the point is stored in the variable DPL (see later)} so
that the user can implement real arithmetic if desired: eg; the
numbers 12345,, 1234.%5, 1.2345 and L,0012345 will &all be
treated as the double-number 12345, but DPL will contain the
values 0, 1, 4 and 7 respectively.

Single length (1& bit)} integers have a wvalue in the
range —-32768 to +32747 it signed, or 0 to 85335 i+ unsigned.
Double length (32 bit) integers have a value in the rarnge
~21473483T648 to 2147483647 i+ signed or 0O to 42949457193 iF
unsigned. Negative numbers are preceded by a =~ sign without a
space between the — and the number: eg; -—-123 . FPositive

assume that the stack contents are displayed in this way unless
you are explicitly asked to type . or a similar word to cutput
the TOS. You can revert back to the ok by typing

ASSIGN FROMFPT TO-DO ok <ENMTEK>

In subsequent descriptions of SUPERFORTH words vyou will
come across the descriptor (nl nZ2 —— n3)} which represents
the contents of the stack before and after the operation: ie;

{ before ~—- after)}, nZ being the T08, nl the 205 and n3 the
result of the operation. Hence the example above would be
reprasented as { 123 234 —— 357 1 for +

A more complex example might say
{ ml n2 RE N8 ——— NI n& ?
In this case, before the word is executed, nd4 is the TOS5, nS the
205, nZ the 308 and nl the 408S. After execution, ndé is the new
TGS and nS the new 2085.

T SUPERFDRTH OFERATIONS

.1 INTEGER ARITHMETIC OFERATIONS

First of all we will describe the integer arithmetic
operations which operate on numbers held on the stack.
SUPERFORTH words in this category are

+ — % /MOD / MOD NEGATE
which operate on 146 bit integers, and

D+ D- DMEGATE
which operate on double-length ¢ 22 bit) integers. Words that
use double-length integers have dl1,d2 etc in their stack
description instead of nl,n2 estc.

More complex arithmetic operations will be considered in
Section 3.3.

+ { nl n2 —— n3) as described above. This adds the TOS
nl to the NOS n2 to give the sum n3: 24g;
100 23 +

leaves 123 on the stack (if you have assigned FROMFPT
to do .S as previously described, yvou will see this).
Type . to get rid of the 123, otherwise the stack will
eventually fill up and an error message will result.

- { ni n2 ——— a3 } subtracts n2 +rom nl to le=save the
difference n3: eag;
100. 23 - leaves 77 on the stack
23 100 - leaves =77 on the stack
* (nl n2 —-— n3)} multiplies nil by n2 to leave the
product n3: &9:3
123 3 * leaves 36% on the stack

Note that the product is still a 16 bit integer. There
are other multiplication words that will leave bigger
products; these are described later.

/mMoD {ni n2 -—— n3 nd) divides ni by nZ to leave the
quotient nd4 and the remainder nl: 2g;°
i6 7 /MOD leaves 3 1 on the stack
The division is floored, which means that the guotient
is always the nearest integer below or equal tothe
true rgal guotient, and the remainder satisfies the

eguation
nt = (n2 * nd } + n3
This is true for both positive and negative numbers:
egs
-i0 7 /MOD gives nd4=-2 and ni=4
10 -7 /MOD gives n4=-2 and n3=-%4
-10 -7 /MOD gives nd4=1 and n3I=—3
/ { nl n2 ——— nZ) divides nl by n2 to leave the

gquotient n3: =23
120 30 7/ leaves 4 on the stack
1Z6 30 / leaves 4 on the stack
Any remainder is lost.

i

and ul = 12
ABS { Nl =—— n2)2 nZ is the absolute value of nl, like
the BASIC function ABS
ag; 123 ABS gives n2=123
-i23 ABRS gives n2Z=1Z3
DaBS { d} =—— d2 }): a double—-number equivalent of AES
Bg; -123456. DABS D. prints out 1234356
MAX f nt M2 ——— n3 } leaves the larger of nl and nZ as n3
egs: 23 124 mMAX gives nIi=124
123 —-124 MAX gives n3I=123
124 123 MAX gives n3=12Z4
=123 -124 MAX gives n3=—-123
BMAX { dil d2 --— d3 }: a double-number equivalent of MAX
eg: —123A4S546. —-123457. DMAX D. prints -123456
MIN { nl n2 — n3 } leaves the smaller of nl and n2 as nS
egs; 127 124 MIN gives n3=123
123 —-124 MIN gives n3=-124
-124 —-123 MINM gives n3=—-124
DMIN { dl d2 ——— d3): a double—-number eqgivalent of MIN
I+ (n =-——n+l1)} adds 1 to the TOS. It is equivalent tao
the sequence 1 +
aq; 12T 1+ gives 124
=123 1+ gives =122
1= {n =—— n=1) subtracts 1 from the TOS
2+ {n ——— n+2)} adds 2 to the TOS
2= {n ——— n=2) subtracts 2 from the TOS
2% {nl ——n2) multiplies nl by 2 to give n2. This is
much faster than the equivalent 2 *
g3 123 2% gives nZ=Z44
DZ* { di ——— d2Z): a double—-number equivalent of 2Z*%
27 { nl —— n2) divides nl by 2 toc give n2, Again, this
is much faster than the equivalent 2 /
egs 123 2/ gives n2=&1
D2/ { dl —=— dZ) a double-number eguivalent of 2/

J.4 LOGICAL OPERATIONS

Four logical operations on numbers on the top of the stack are
described here.

AND { unli unl —--=-= un3)3 the bitwise logical AND of uni
and un?2 is left as un3. This is useful for masking off
unwanted bits 4in a number: eg:; it we want to select
the bottom = bits of &9 ,then &2 7 AND gives uni=3.

Also provided are double integer eguivalents of some of these:

ZDROF {d —— 3: similar tc DROF

2DUF (di —— di dl s similar to DUF

ZOVER (dl d2 === di d2 dl)2 similar to OVER
2ROT (dil d2 d3 —— g2 d= d1): similar to ROT
ZSWAR { dil d2 === d2 d1 }: similar toc SWAF

Z.6 CONDITIONAL TESTS

There are many words provided which compare numbers on
the stack and leave a true or false result (usualiy called a
tlag } as the T0S5. The two values of this flag are:

FALLSE — represented by a zero

TRUE - represented by any non-zero value

The words described below always leave the TOS as a O for FALSE,
and -1 { bitg all is } for TRUE

Comparison operators are

< { nl n2 -— flag) true if nl < n2
= (nl nZ --— flag) true if nl = n2
> { nl N2 —— flag) true i+ nil > nZ
<= { nl n2 —— flag) true if nt < R2 or nl = n2
= { nl n2 ——— flag) true if n1 > n2 or nl = n2
<X { rl N2 -— flag } true if nl is not equal tao nZ
U< (unl un2 —— flag } true if unsigmed unl < uni
ux> (unl un2 —— flag)} true it uvnsigned unl > ounZ
< { ni ==~ flag } trus 1§ ni < O
o= { ml -—— flag ? true if nl = 0O
ok { nl —— flag) true if nl1 > ©
D< { di d2 -—— flag) true if dl < d2
= { di d1l —— flag)} true if dl = d2
DU { udl ud2 ——— flag } true if unsigned udl < ud2
Do= { di —— Flag) true if dl = @
examples are:
1 2 < gives TOS = —1
-1 =2 < gives TGS = 0O
-2 1 < gives TOS = —1
1 &> gives TO5 = -1
-1 OG> gives TOS = O
1 2 W gives TOS = -1
-1 2 Uug gives TOS = 0 { because, as an

unsigned number, -1 looks like
&3535)

.8 DEFINING NEW WORDS

Up to now, we have only typed in existing words to bhe
executed immediately: this is SUFERFORTH working in its
Interpretive mode. As in BASIC, programs can be storsd for later
execution. In SUPERFORTH this is achieved by compiling new

detinitions intos the dictionary. However, in contrast to
SuperBASIC, when the stored SUFERFORTH program is executed it
runs very much faster because it has been compiled (in

SuperBASIC the stored program is interpreted and so runs more
slowly).

3.8.1 Colon definitions

The simplest mathod of compiling new word definitions
into the dictionary is to use colon definitions, so called
because the word : is sxecuted.

eg: 1 SQUARED DUP +

compiles a word called SOUARED intop the dictionary. This new
word SEUARED can now be treated like any other SUPERFORTH word
and can be executed or compiled. Note that it needs a number on
the stack to square. Typing

I BEUARED gives TOS5
and i1 SQUARED gives TO5

=
121

In the definition typed in above, the following actions occur:

{ajl » is executed to switch SUPERFORTH to Compile mode and
to create a new dictionary entry. It takes the next word as the
name of the definition.

{b) BUP is the next word read in, but, since SUPERFURTH is
now in Compile mode, it is compiled into the new definition
SEUARED instead of being exscuted.

{c) *# is treated in the same way as DUP, ie; compiled

{d> $ is then executed to terminate the definition and to
switch SUPERFORTH back into Interpretive mode. (Note that 3 is
executed and not compiled, because it is a special word called
an immediate word, of which more will be =aid later).

When SRUARED is executed, the words that were between
SEUARED and ; are executed in turn, which has the effect of
squaring the number on top of the stack.

: and ; must always occur in pairs and in that order.
If ; is used without a preceding 3, an error message will
result. EColon definitions can be spread over more than one
line: you will not, however, get the prompt ok in the middlie of
the definition. '

Now SQUARED can be used in other definitions: =9;

: TO_THE_FOURTH SQUARED SEUARED ;
then 2 TO_THE_FOURTH gives TOS = 146

A complete SUFERFUORTH program coensists of word definitions lilke

/5

these: the later ones use earlier ones as necessary and the
final word runs the program: egs; in the accompanying game,
REVERDI, there is a final definition called REVERSI which, when
executed, causes the BL to play the game. A word must be defined
before it can be used in the dictiocnary.

I¥f vyou make a misgtake in a definition, you can delste
the whole word from the dictionary by using FORGET
eg; typing
FORGET SRQUARED

deletes SUUARED and any later words from the dicticnary. If you
now try to execute SGUARED you will get an error message. Note
that TO_THE_FOURTH has alsoc been deletsd by the above command.

3.8.2 Switching between modes

Whilst in the middie of a c¢olon definition vyou can
switch SUPERFORTH between Compile and Interpretive modes using
the words [and 1, which switch to Interpretive and to Compile
mode respectively, eqgj;

TEST1 1 DUP + . 3 is simply compiled
TESTZ 1 L 123 . 1 DUP + . 3

will compile the same actions but will print cut 123 after you
press ENTER

Z.9.3 Immediate words

Some words are executed even if they occur in the
middle of a colon definition. You have already met two of these:
3 and [. Such words are called immadiate words., IF you want to
make one of youwr definitions immediate, simply type the word
IMMEDIATE after the definition, =g

ot NOW 123 . 3 IMMEDIATE
and T TEST 1 2 + NOW . 3
will not compile NOW but execute it and print out 123

immediately. Typing TEST prints out 3 { don't forget toc FGRGET
these words!).

16

{38

Other words associated with DO ... LOOPs are (they must be used
inside a DO ... LOOF or BD ... +LOOF):

I (=== n) leaves the value of the loop index on the
stack, =g; e 10 0 DO I . LOOF ... inside a colon
definition will print out the numbers 0 to 2

J { === mn)3 like I, but leaves the next ocuter DO ...
LOOF index. DO ... LOOFPs can be nested, eg;

sea 3O DD20DO J . LOOF LOOF ...
will print out the sequence 0 0 1 1 2 2 3 3 4 4

K { ~—=n): 1like I and J, except that it leaves the
index of the second outer loop.

LEAVE This is used to prematurely terminate a DO ... LOOF.
When LEAVE is executed, it branches to the word
+2llowing LOOF or +00F, eg:

ese QO DO I . I 4 > IF LEAVE THEN LOOP ...
will print out the numbers 0 1 2 3 4 5

e 100 DD I 4 > IF LEAVE THEN I . LOOP ...
will print oot ¢ 1 2 5 4

3.9.1 Ease statement

To avoid the use of many IF statements, when a
multiway decision is needed on the wvalue on the top of the
stack, a CASE statement is provided. An exampie of the use of
CASE is (it can only be used in a colon definition):

: TEST CASE 1 OF ." one" ENDOF
2 OF ." two" ENDOF
%% OF ." ninety nine"” ENDUF

. DEFAULT ." default”

ENDCASE 3
Now type 1 TEET prints out one

29 TEST prints cut ninety nine
3 TEST prints out default

CASE ENDCASE { n ~-——)} mark the start and end of' 'the
statement.

oF { nil n2 «~— nil } tests pl against n2. If equal, the
words up to the next ENDOF are executed; if not.,

control passes to just beyond the next ENDGF.
ENDOF { =———) marks the end of an OF ... ENDOF sequenca.

BEFAULT {n —— 1)} marks tha start of the default sequence to
be executed if none of the OF tests was equal.

U. { un -—)z 1like ., except that un is printed as an

unsigned number, eg;
123 U. prints 123

-123 U. prints &5313

U.R tunn —)2 like .R, except that un is printed as an
unsigned number.

Words associated with thes2 number—-printing words ares:

BASE (~~— ad): a user variable that holds the current
base for number conversion, both input and output. Use
@ and ' in the usual way to read and load its value.

DECIMAL { ==) lgads decimal 10 into BASE

HEX { ——)} loads decimal 16 into BASE

Words that output characters and text to the screen are:

-t (== }1: used in the +Form .{ ccc...cl it prints ocut
all the characters ccc...c, not including the space
aftter .(
eg; -t Hello) prints Hello
It is most useful when compiling from microdrive or
+ioppy disc.

. " { —=): like ., except that it prints characters up
to a delimiting " and it can only be used in a colon
definition. It compiles the message into the
dictionary, eg;

3 MESSAGE ." Hello there" ; MESSAGE

CR (——— 3} oputputs a new line { carriage return, line
feed) o that subsequent cutput starts on a new line.

EMIT { n ———)} outputs the least significant 8 bits of TOS
as an ASLII character to the screen, g%
&5 EMIT prints A
&b EMIT prints B
4% EMIT prints +
SPACE {(=—) prints a space character
SPACES {n — 1) prints n SPACE characters
TYFE { ad n ——— } prints n characters from memory, where ad
is the address of the first character (lowest
address) in memory. This is normally used in

conjunction with the next word COUNT .

Fefore COUNT is defined, we will look at how strings are stored
in SUFERFORTH. They are stored as a sequence of characters, one
per byte, in consecutive memory locations. In the byte before
the first character in the string there is stored a count of the
number of characters in the string, giving a maximum string

buffer; the capacity of TIB is 85 bytes.
Now for multiple character input:

EXFECT { ad n —-=--) receives n characters or fawer if ENTER
is pressed garlier, and stores them at address ad and
consecutive higher addresses. All characters are
digplaved as entered and can be edited in the usual
way. The number of characters is stored in variable

SFaN .

QUERY { =—) Up to 80 characters are read from the keyboard
into TiB. The definition of GUERY includes the
sequence TIB 85 EXPECT

#TIB is loaded with the number of characters. *IN and
BiLK (spe section 4) are set to O .

Now a word to scan the characters input by EXPECT or GQUERY:

WORD { n ———ad Y: n is the ASCII code for a delimiting
character. WORD looks through the input stream { key-
board, migrodrive or floppy disc) from the position
indicated by the wvalue of >IN , idgnoring leading
delimiters n, and transferzs other characters into
memary until the first trailing delimiter n 1s read.
The characters accepted are stored as a counted
string, as described above for screen output, at
address ad . The value of »IN is adjusted to point to
the character just beyond the delimiter. The action of
WORD is terminated if the end of the input is reached.
If this happens before any characters are read, the
character count is zero. The stored string is followed
by one space character, not included in the count.

Z

Cis (———) clears the current output window. This is an
execution vector (see section 8).

CSIZE {nl n2 --—) gsets the character size in the current
output window to width nl (range ¢ to 3) and height
nZ { O or 1).

CUREOR Ent nZ —-——=—) positions the cursor using pixel
cocrdinates relative to the top left corner of the
window., ni and n2 arse the x and vy coordinates
respectivel y.

CURSOR_ON (—— } switches the cursor on when expecting input.

CURSOR_OFF (———) switches the cursor off.

FLASH BN (——=) turns the flash state on. This only works in B
colouwr mode (see MODE .

FLASH_OFF { -——)} turns the flash state off, eg:

8 MODE CLS
FLASH DN ." Flashing” FLASH_OFF

INK { n ———) sats the colour of the ink in the current
window to n .

MODE {nm ——— } sets the display mode for the GL to either 4
or 8 colour mode. Because of the way the @GL works,
this affects all windows and clears the screen (see
SuperBASIC MODE).

FAFER { n — } saets the colour of the paper in the current
window to n .

STRIP { n ———)} sets the colour of the sirip in the current
window to n,

Sle H 7 FAPER 7 STRIF Q INK
gives black ink on white paper.

Fan { n =——) pans the whole of the current output window
n pixels,; right if n is positive, left i+ negative.

FPAN_LINE (n -——)} pans the whole line containing the cursor by
n pixels right or left as for PAN .

PAN_RLINE (n —-——=) pans the right htand end of the cursor iine
by n pixels right or left as for FAN .

SCROLL { m =-———) scrolls the whole of the current output
window by n pixels:

n positive scrolls downwards
n negative scrolls upwards.

SCROLL_TOF (n ———)3 like SCROLL, but only scrolls the top of
the window, not including the cursor line.

SCROLL _BOTTOM {(np ———): like SCROLL, but scrolls the bottom of

the window, not including the cursor line.

254

FILL_ON

FILL OFF

FOINT

RECOLOUR

SCALE

{

_ X coordinate of centre
{ see SuperBASIC CIRCLE)

{ =—— J turns the graphics +ill on (see SuperBASIC
FILL

—-—=) turns the graphics +ill of+f. Because of a
limitation of the GL, you should always turn the +ilil
off after drawing the shape, even if the next shape is
to be filled,

{ ad —) draws a 1line relative to the graphics
origin. ad is the address of a list of & floating
point parameters in this order:

¥ coordinate of end of line

X coocrdinate of end of line

¥ coordinate of start of line

X coordinate of start of line

¢ ad —)} plots & point relative to the graphics
origin. ad 1is the address of 2 +flgating point
parameters in this order:

Y coordinate of point

X coordinate of point

(ad —— 1z like SuperBASIC RECOL, this recolours the
current output window: ad is the address of a list of
8 bytes which specify the new colours, in the order
black, blue, red, magenta, green, cyan, yellow and
white.

{ ad =-——) sets the scale and worigin of the graphics
coordinate system in the current output window. ad is
the address of a list of 3 floating point parameters
in this order:
Y coordinate of bottom line of window
X coordinate of lefthand pixel o window
length of Y axis '
the default origin is (0,0) and the default height 10C

Py

Words to convert from ASCII strings to integers are:

CONVERT

NUMBER

{ dl adl —-- d2 ad?Z): the character string beginning
at adi+l is converted and accumulated into dl to give
d2, by converting the string into digits, character by
character until a naoan—-convertible character is
reached. As gach charcter is converted, di 1is
multipliied by BASE and the digit added to it. adl is
the address of the first non-cenvertible character.

{ ad -—— d) converts the count and character string
at ad into double-number d using the value held in
BASE. If conversion is not possible, an error message
is printed. The string may contain a preceding minus
sign, &4

: CONVERT_AND_PRINT 32 WORD (read a worg !
NUMBER D. H (convert and print it }

CONVERT_AND_PRINT 123

: TEST_CONVERT
32 WORD { read a word }

CONVERT { convert it)

E@ EMIT SFACE { print character)

. 3 { print double number)}
O ¢ TEST_CONVERT 4321765/ prints S 4T217&T
10. TEST_CONVERT 123. prints . 10123

Another conversion word is:

5~->b

{in -——— d) This converts a single integer to a double
integer, the sign being retained.

28

ERASE { ad un —— J: like BLANK, except that each bvyie is
set to zero.

FILL ¢ ad un n ~—— }: wun bytes of memory, starting at
address ad upwards, are set to the least significant
byte of n.

Z.13 THE RETURN STACK

When a SUPERFORTH word is called +from another SUPERFORTH word,
the position to which program control will return when that
word is complieted is stored on a second stack called the return
stack. While the contents of this return stack are usually of no
concern to the programmer, it can be used with caution to
temporarily save values from the main stack. Words handling
this are as follows:

>R {n —=—— 3 transfers TE5 to the return stack.

R> { =——— n)} transfers an integer from the return stack
to TO0S, removing n from the return stack.

RE (—-——) reads the top of the return stack toc TOS and
ls2aves the value orn the return stack.

There are restrictions on where and how these words are used., If
misused, they are likely to crash the system. The rules are:

taj *R, R> and R2 must only be compiled in a colon definition,
never executed from the keyvboard.

(b) inside a colon definition, *R and R> must occur in that

order and must zalways occur in pairs as execution of that zoloen
definition proceeds; ie; for every >R executed, an K> must be
executed before ;5 or EXIT is exscuted.

(c) R@ must be used between »R and R> to be meaningful. As many
RE@s as needed can be used before R> .

(d) the >R and R> pair must not cross a DO... LOOF or +L0O0OP; ie;
the pair must occur either outside or inside the loop. IFf they
occur inside the loop, the SUPERFORTH words I, J and K must not
be used between the *R R> pair, and the R>» must occur before any
LEAVE occurs.

An example of their use is a possible definition of ROT:

: ROT >R SWAP R> SWAP 3

4. MICRODRIVE AOND FLOFFY DISK HANMDL ING

Az well as compiling FORTH from the keyboard,
SUFERFORTH will also compile FORTH source code stored on
microdrive cartridges or floppy disks. As supplied, SUFERFORTH
will use microdrives as the standard backing store: if vou have
made a backup copy f(see 1.68) on floppy disk, the default will
bhave been changed to +floppvy.

There are two ways of compiling from mass storage { as
we will refer to microdrive or flioppy disk from now on), one
using standard SUPERFORTH blocks and the other using named filss.

4.1 INFUT FROM STANDARD SUFERFORTH BLOCHS

The standard way of storing SUFERFORTH code on mass
storage is to use standard size blocks of 1024 bytes: this method
is used in SUPERFORTH. Each block is given a number in the range
1 to 65535 by the user and it is the responsibility of the user
to keep track of the block numbers used. SUPERFORTH code or data
can be entered into blocks using the supplied Screen Editor and
saved to mass storage. Normally a SUPERFORTH program is stored in
consecutively numbered blocks. When a block is used, SUPERFORTH
reads it from mass storage into a block buffer: i+ it is changed
in any way (for example by using the Editor), when another block
is fetched from mass storage the new version of the first block
is automatically saved and the original delsated.

SUPERFORTH decides whether input is +to come +from the
keyboard or mass storage by examining the contents of the user
variable BLK , which, if zero, defines input as coming from the
keyboard, or, if non—-zeroc, defines input as coming from the block
number contained in BLK .

When a bleock is reguested, SUPERFUORTH +first of all
tries to read it from a default device, egz; MDV1_ . If it is not
found there, SUFPERFORTH then tries the other (of +twoc ¥} MDV or
FILF, but does not change the default drive. If still not found,
an error is reported on the displavy.

Because the operating system of the 6B8L buffers all
input/output to mass storage, in contrast to most FORTH systems
orly one block buffer is provided in the SUFERFORTH dictionary.

Blocks are stored on microdrive in small files named,
for example, BLK12Z for block 123, and, on floppy disk, FLPLIZ3
for block 123.

fis usual, there are many words provided to handlie mass
storage using standard blocks:

BR/BUF { =—— n): a constant holding the number of bytes per
buffer, this is set to 1024 and ought not to be
changed.

BLK (—— ad Yz a variable holding the block number

currently being used as the source of input. I+ BLK
haolde O, input is taken from the keyboard (or a named
file — see later).

UFDATE (¢ =——-—) marks the block buffer as having been updated,
so that SAVE-BUFFERS, or the action of BLDCK and
BUFFER, will save the buffer to the default mass
storage device:
2g; UPDATE SAVE-BUFFERS ensures that a block is saved
cn the default device. '

4.2 INFUT FROM NAMED FILES

Another way of inputting SUPERFORTH sowrce code is from
. named files. This 1is not a standard FORTH method, but is
convenient and fast when & program has been developed. The method
makes use of the way input can be redirected in the EL to another
channel. This method is used to load the Scresn Editor, the game
REVERZSI and the floating point maths package.

Note that the word PROMPT is directed to execute no operation
during the loading, otherwise the screen would fill up with'ok’'s.
Also, since the input is being read one line at a time into TIR,
no line in the named file should be longer than 8% characters;
iey there should be a carriage return or line feed character
every BO characters or fewer. Comments must not extend cover more
than one line.

Words provided to handle this are:

#FILE (=—— ad): a double variable used to hold the double
integer channel 1ID of the named +ile being used for
input. It is loaded by LOAD_FILE . I+ for some reason
the load fails, then the channel may be closed by:

#FILE 2€ CLOSE

END _FILE { ——) must be employed at the end of the file being
used for input, to redirect the input stream to the
keyboard and toc close the channel.

LORD_FILE (==) 15 used in the form
LOAD_FILE MDV1_editor_+th
to, for example, load the Screen Editor. It redirects
input From the named file and saves the channel 1D in
#FEILE .

4.3 CREATIMG & MAMED FILE

There are twno ways to do this:
{a) use the utility contaimed in block 4 to compact consecutive
blocks into a file. To use this to save blocks Z0 to 40 on the
default mass storage device, in a Ffile named example_+th on
MDVi_, for example, type:

4 LDAD
50 60 SAVE_FILE MDV1_example_fth

Of course, any valid +File name may be used on any device. You
must ensure that END_FILE is included at the very end of the last
block.

ib) use ®8BUILL to generate the file. To do this you must use the

S. THE SCREEN EDITOR

The Editer is a full screen editor, which can be used
to enter and edit standard SUPERFORTH blocks gach containing
1024 characters of SUPERFORTH source c¢opde or data. Text is
inserted simply by positioning the cursor and typing the
reguired characters. Commands are available to edit the text and
to assist in saving blocks on microdrives.

S.1 LOADING THE EDITOR
As supplied, the EBEditor is automatically loaded atter
SUFERFORTH is loaded. I+ this is changed, or if you have removed
the EBEditor by using FORGET, it can be loaded by tvpings
LOAD_FILE MDVi_EDITOR_FTH

3.2 ENTERINGS THE EDITOR

To edit an existing block, eqg; block &78, type:
&78 EDIT

which will enter the Editor and make the full range of commands
described below available. To create and edit a new block, =qg3
block %32, type:

932 BUFFER DROP

F32 EDIT

2. > THE DISPLAY

The display in the Editor has three windows:
ta) at the top, the title and message window
{b} in the middle, the text window. This will display all 10Z4
characters of the block as 1& lines of &4 characters each.
However, in the default mcode, only S& characters may be seen at
any one time, the rest being seen by scrolling the display
sideways. This happens automatically as the cursor is moved.
This display may be redefined - see below.
{c} at the bottom, the line store window, which can be used to
hold one or two 1lines temporarily as they are moved about a
bBlock or between blocks.

5.4 COoMMANDS AVAILABLE

Various Editor commands are inveked by single or
multiple key presses. If a displavyable character key is pressed,
it is inserted at the cursor position with the rest of that 1line
and, optionally, the next line being moved to the right, the
last character being lost from the end. In the description below
the cursor control or arrow keys are called <left>, <right>,
<up» and <down>. The command keys are as follows:

<lett>,<right>,<upi,<down>
move the cursor around the screen.

CTRL <leftt>
deletes the character toc the left of the cursor.

Note 1. If the current block has been modified in any way, it
is saved to the default microdrive before the now
block is read.

Mote Z. You are asked for the block number in the top window.
I+ vyou want to abort this command, pressing ENTER,
without any other number, will return vyou to the olid
Block.

Note 3. I¥ vou do not like the above choice of command kevs ,
they can be redefined by editing the source code file
of the Editer, using QUILL. You will need to import
the +ile

editor_+th into GUILL.
Edit the key numbers in the large CASE statement in
the word called EDIT, nrear the end of the file. Then
print it to a file as described in section 4 {(do it on
& copy of the original, but be carsful !'}.

3.5 MODIFYING THE DISFLAY

If youuo have a monitor for the display, which is
capable of clearly displaying 80 characters per line, then you
may wish to modify the default settings of the Editor windows
and see the whole of the SUFPERFORTH block at once, without the
sideways scrolling. When the editor is 1loaded, the first thing
it does is to load Block 3, which defines the windows and sets
the display parameters. To define vour own display, simply edit
block 3 to define window sizes, colours, character sizes etc.
The three display windows are called #1, #2Z, and #3, starting
from the top. Change the constant C/D to &4 to see the whale &4
characters per line.

Again, edit a copy of Block 2 and be careful: editing the Editor
can sasily leave you without an editor !

I+ you wish to alter the number of characters per line
te noen—standard values; the following constants need to be
changed:

/L characters per linei default is &4

csD characters per display; default is 56 or &4
{ you must ensure that C/D is less than or
equal to C/L 3

L/B lines per block; default is 15

E/L and L/B are in the SUFERFDRTH dictionmary and can b2 changed
either by using ' and >BODY or by redefining them in block 3.

2%

5. SYSTEM INITIALISATICN

6.1 STARTUP COMMAND BLOCK

fAfter initialisation, or executicon of COLD , SUPERFORTH loads
and executes block 1, which is used to:

(a} detine the consocle channel which is to be uwuzed as ithe
default channel for the display and keyboard.

(bhy define the paper,ink and strip colows Ffor ths default
channel.

[£=0 I define the character size to be printed in the detault
channel.

(d) do anything else the user cares teo do; for example, as
supplied, the Screen Editor is automatically lgaded. This can
save some lengthy typing—-in of command sequences whenever
SUFERFORTH is loaded.

This facility allows the user to select the display
most suited to his requirements; for example, 1f he has a
monitor, he will most probably want to define the cptiomn that
gives him 85 characters a line, and employ a different set of
colours to the user who has a TV display. To change the supplied
settings, use the Screen Editor to modify block 13 it is best to
modifty a copy of block 1, to avoid accidents.

I+ block 1 is left blank or deleted, the system still
loads correctly. If deleted, an error message will be displayed:
simply ignore it. A new block 1 can be created using the editor,
or by typing 1 BUFFER DROFP UFDATE SAVE-BUFFERS.

&.2 SYSTEM RESTART

There are three ways of restarting the system, giving
varying degrees of re—-initialisation. These are defined with
four words and another which clears the data stack.

ABORT { sew =—=)} gclears the data stack and performs the
function of GUIT . ABORT is an execution vector,
therefore the user may (with caution) redefine its
action.

ABORT" { flag ———) is used in the form
ABORT® cccc™
so that, when it is exscuted, if the flag is true,
then the message represented by characters cccc is
displayed and ABORT executad. If the flag is falss,
the flag is dropped and exscution continues.

COLD {(... =———) completely re—initialises the system: the
data and return stacks are cleared, the dictionary
restored to the initial state and block 1 executed.

BUIT { ——) clears the return stack, sets Interpretive
mode and returns contrel toc the kevboard.

SP! { ——)} cipars the data stack.

o™y

7. ERROR HANDH ING AND MESSAGES

There are many errcr conditions detectad by
SURERFORTH. When these occcur, the last word read from the input
stream is output followed by a ?. A message is writien to the
display, execution aborted and control returned to the keyboard.
The stack is left unchanged so that the user can possibly
amalyse +the data held there to identify the cause of error. Ths
messages output, their corresponding error number and their
causes are now described.

7.1 ERROR _MESSAGES

G non—-existent name or invalid number
when a word is not recognised and cannot be converted
into a2 number using the current value of BASE .

[y

Compilation mode only
when an attempt is made to execute a word while in
Compilation mode, eqQ; j

2 Execution mode only
when the system should be in Execution mode, g5 &t
the end of a mass storage block when control is
returned to the keyboard.

3 control structure error
when an &rror is made in a control structure, egs;
ee. DO ... IF ... LOGF ... {(iey there is a missing
THEN or ELSE ... THEN before LOOF).

4 stack mis—-match in definition
at the =start of a colon definition the depth of the
stack is stored. When ; is executed, this value is
compared to the current depth: if they differ, this
message is ocutput. This often detects a missing THEN
in anm IF statement.

= use only when LOADiIing
whan an attempt is made to execute the word —> from
the keyboard or named file.

() stack empty
whenever control is returned to the keyboard the depth
of the stack is checked. IFf negative, this message is
output and the stack pointer reset to the correct
value.

7 stack full
as for stack empty, except that the stack is too full.
There is room for 128 14 bit integers on the stack.

8 not found

when a word following * or FIND is not found in the
dictionarv.
g in protected dicticnary

when an attempt is made to FORGET beyond the value of

3

ERROR { n ———) isgues 2rror message n and returns control
to the kevboard.

If the ussr detects an error while his pgrogram is
running, and wants to print out one of the error messages
discussed above, this can be done by, =g3

& ERROR to print ‘stack empty’ etc.
or —4 ERROR to print ODGS errgr ‘Out of range’ etc.

7.4 WARNIRNGS

One of two warnings may be issued. Since these may not
result Ffrom error, but from circumstances intended by the user,
no action results other than the issue of the warning itself.
The two messages are:

10 redefining <namex
when a word called <name> already exists in the
current vocabulary and is being superseded by another
version.

22 Mow in SUPERFORTH wvocabulary
when FORGET has been used +to forget past the top of
the current wvocabulary, SUPERFORTH detects this,
tidies up the various linkages, selects the SUPERFORTH
vocabulary and repaorts the fact.

You will have noted that the series of error and warning numbers
have gaps: the missing numbers are used to print wvarious system
mMEessages.

41

8. MORE ADVANCED TECHNIQUES

2.1 COMPILATION — ARDING TO THE DICTIDNARY

We have already discussed some complling words such as

: 3 CONSTANT and VARIABLE and their double lengih eguiwvalents.
Mow we pursue the subject Ffurther to examine other ways of

adding to

the dicticrmary and other words assoctated with

compilation.

L

CCOMFILE]

c,

ALLOT

COMPILE

CREATE

{ ———)} sets Interpretive mode, usually within a colon
definition (see LITERAL below for an example).

{ =———) sets Compilation mode, usually within a colonp
definition (see LITERAL).

{ ———)} can only be used in Compilation mode and is

used in the form
[COMPILE] <namex

to force compilation of <nameX, which is the next worg
in the input stream. It is used to force compilation
of an immediate word which would otherwise be executed
instead of being compiled: eg; in a colon definition,
the sequence a=s L[COMPILE] LITERAL would compile a
call to LITERAL .

{n -——) compiles the TOS inteo the next two availabis
bytes in the dictionary.

{n =—-——) compiles the least significant byte of n
into the next available byte in the dictionary.

{ o -)} allopcates n bytes in the dictionary and
updates the address of the next avilable location. The
contents of the allotted bytes are undefined.

{ == 1} used in the form
: <namelr ... COMPILE <namel®> ... 3

When <namel> is executed, COMFILE compiles the
compilation address of <name2’ instead of executing
it; <namel’> is usually immediate.

{ ===) is a defining word used irn the form
EREATE <namex

to create an entry in the dictionary called <namer .
When <name> is later exscuted, the address of <name>
‘s parameter +ield is left on the stack: eg: to CREATE
a dictionary entry called FRED arnd to allocate & bytes
to it, we type

EREATE FRED & ALLST

Or, if we want to store a message in the form of a
counted string,

CREATE MESSABE S C, 72 C, 10f £, 1808 €, 108 C, 111 C,

HERE

IMMEDIATE

LITERAL

RECURSE

SMUDGE

STATE

{ —= ad) leaves the address of the next available
dictiocnary location.

{ =-——) changes the last wocrd defined in the
dietionary intc an immediate word.

{n ——): when compiling, it compiles the TI5 as a
literal which, when the word being defined is later
exgcuted, will leave n as the T05. It is often used in
conjunction with £ and 1 to deo calculations in the
middle of defining a new word , =g3

ees L 100 31 + T % 1 LITERAL ...

will compile 3IFT as a literal. When the ward
containing this is executed, 392 will be lefi on the
stack.

In fact, whenever you have used & number in a
definition, it has been compiled as a literal without
you realising it.

{ -———) is used in Compilation mode only, o
recursively compile the word currently being defined.
This cannot be done by 3ust typing the name, eqs

: CALLS_ITSELF DUP O> IF DUP 1-—- CALLS_ITSELF THEN . ;

will not compile because CALLS_ITSELF does not exist
iry the dictionary until ; is executed, and so the
compilation fails. However, replacing the sescond
EALLS ITSELF with RECURSE will give a word which
orints an ascending list of numbers. Egy try

S CALLS_ITSELF

{ ——— } is used either to enable or to disable
recognition of the latest entry in the dictionary i+
it was previously disabled or enabled respectively:
eg:

: TEST 3 SMUDGE TEST will work correctly
then SMUDGE TEST will not find TEST
and again SMUDGE TEST will work.
The normal use of SMUDGE is that when a new definition
has failed to compile, it is left disabled (to prevent
inadvertent sxecution of the word). Tha sequence
SMUDGE FORGET <mame> then FOREBETs the faulty word.
[=1a : FARULTY IF 3 will not compile
FORBET FALULTY wiil not delete it
SMUDGBE FORGET FAULTY will delste it

{ ——— ad) is a variable which defines the Compilation
mode: STATE holds O when interpreting, and -1 whan
compiling.

e

= DICTIONARY AND VOCABULARY MAMAGGEMEMT

There is & series eof words which allow vou to manage

and handle dictionary entries. You can search the dicticnary for

entries

by name, and, perhaps most powerful of all, you can

declare separate vocabularies of words.

e.35.1

>EODY

EXECUTE

FENCE

FInMD

Dictionarvy management

(=== &d } is used in the form
<name

to search the dictionary +or <namar. I+ <pame: is
found, then ad is the compilation address of <name>
{ iey the address which is compiled inta the
dictionary when <name’ occurs in a colon definition J.
If <namer is not found, error message 8 “ not found "
is displavyed: eg;

DUP U. prints the compilation
address of DUF ., See below for more examples.

{ ==—— ad 1} is used in compilation mode only: it is
used in the form
L1 <pamex

to search the dictionary {for <name> . I+ <namer is
found, then the compilation address of <namelr is
compiled into the dictionary as a literal, ie: when
later executed, this compilation address is left on
the stack (see LITERAL }.

{ adl -—- &ad2) econverts the compilation addrsss adl
of a dictiomary entry into a parameter field address
{ in fact, it ig the same as =Z+). A common use of

this is to change the value of constants in
conjunction with ° or £°31, eg;
123 COMSTANT FRED FRED . displays 123
454 ° FRED >BODY ! changes FRED
FRED . : displays 436

L’Y can be used similarly, inside a colon definition.

(ad —) executes the word whose compilation address
is ad. If ad iz not a valid compilation address, the
system is very likely toc crash: eg:
© DUFP EXECUTE does exactly the same as
DR

{ =——= ad) is a user variable used to hold the address
beyond which FORBET may not ocperate. It is usad to
protect against inadvertent deletions from the
dictionary. I¥ vouw want +to protect some dictionary
entries in this way, atter compiling them type
HERE FENCE !

This protection can be cleared by changing the
coantents of FENCE suitably. If an attempt is made to
FORGET beyond FEMNCE, error message % " in protected
dictionary " 1s displaved.

{ adl -—— ad2Z n ’: like ", this is used to search the

b

to executs a word which displays an srror message.

SUFERFORTH ¢ ~———) makes the EBUPERFORTH wvocabulary the
vocabulary to be searched +irst of all. This is the
primary vocabulary in which ail the suppligd words are
situated and is, in fact, the only vocabulary until
either the user defines & new one or the Editor is
lpaded. Note that this word is NOT immediate: previous
FORTH standards, =g; FORTH 79, had FORTH as an;
immediate wordy; FORTH 83 does not.

FORTH-82 (—-——)} e@nsures that a standard FDORTH 83 system is
available. If you FORBET past this word, vou ars very
likely to crash +the system. FENCE is initially set
just past this word, to protect it.

VOCABULARY (—-—=) is a defining word used in the form
VOCABULARY <name’
to define a new vocabulary which, when executed, will
make <name> the first vocabulary to be ssarchesd when
interpreting or compiling words.

An example of the use of vocabularies isi

FORTH DEFINITIONS { makes FORTH the compilation wvocabulary and
the first searched)

vaCaABULARY SOCCER (creates a vocabulary named SQCCER)

VOCABULARY RUBBY { creates a vogcabulary named RUGBY)

SOCCER DEFINITIONS (new dictionary entries now go in the
SOCCER vocabulary)

: Batt ." is round" i { defines the ball s shapes)}

: TEAME ." have 11 men 3 (the number of players)

RUGEY DEFINITIONS { new entries go in the RUGBY vocabulary)

BALL ." is oval® { defines the ball ‘s shape)
TEAMS ." have 135 men ; { the nun, er of players)

{ note that you get no " redefining warning messagas).
Now type:

FORTH DEFINITIONS

BALL ({ gives an error message, &s does TEAMS,
because they are not in the SUPERFORTH
vocabulary)

but now, typing:

SOCCER BALL displays is round
TEAMS displays have 11 men

This is because typing SOCCER makes it the Ffirst wvocabulary

searched, so +that SOCCER's definitions of BALL and TEAME are
found. Now try:

RUSEY BALL displays is oval
TEAMS displays have i5 men

Mow the RUEBBY vocabulary is the first to be searched.

2. FLOATING FOINT MATHS PACKABE

A Ffloating point package is provided in & separate
file, which is not included in the main dictionary. This is
because most applicaticons do not need floating point facilities.
The package is lcaded by typing:

LOAD_FILE MDVI_FPMATHS _FTH

Words are provided to give a wide range of fleoating
point maths operations using QDOS calls. The QL s floating point
riumber format is used, which takes six bvtes of memory +or sach
floating point number. Where possible, the relevant integer word
of FORTH B2 is preceded by an F, to give an eguivalent cperatiocn
on floating point numbers on the stack. Words provided are { fp
refers to a six byte floating point numbsr)3

FORTH 83 £QUIVALENT

FDUP { fg ——— fp fp DuUF
FODROF (fp ———) DPROF
FSWAF { fpl fp2 ——— fp2 fptl ? SWar
FOVER { #pl fp2 ——— fpl fp2 Fpl } OVER
Fa (ad —-—— Fp 1} @
F (fp ad —— t
F>R (fp —— >R
FR> { ——— ¥p 2} R
FROT (fpl +p2 fp3 ——— fp2 p3 +pl) ROT
FRICK { fp...fp n —— fp...fp g) FPICK
FROLL ¢ fp...fp n —— fp...¥fp) ROLL
Fo= { fp —— flag) o=
Fo< { ¥ ==— flag) 0
Fo- { fp ——— +iag > 0
P (fpl ¥p2 ——— Flag) <
Fx { fpl fp2 -—— Fflag) ¥
F= { fpl fp2 ——— flag) =
F&UNSTANT (fp -———) CONSTANT
creates a floating point
constant.
FVARIABLE (——) VARIARLE

creates a fleating point
variable.

Operations on floating pouint numbers ars :

F+ (¥pl +p2Z ——— p3) does fpl+¥fp2 to give 53

F— ¢ fpl fp2 ——— #p3IT) does fpi—fp2 to gQive fp3

Fx { fpl fp2 ——— $p3) does fplil*fp2 to give fp3
)

F/ (fpl fp2 ——— £p3= does fpl/fpZ to give +p3
FaRS (fp -—— fp!t) similar to FORTH 83 AEBS
FMEBGATE (45 ——— —¥p similar to FORTH 83 NEGATE

47

1g. SFECIAL i FACILITIES

12,1 USE OF 81 CHANNELS

The BL is able to direct input and output from/tc any
input or output device attached to the 9L simply by using the
appropriate channel number or channel 1D, There arse several
SUFPERFORTH words provided o handle this capability. First of
all, there are some general channel handling words: you shouwid
note that the channel ID is a double length integer. so that 28
and 2! sheuld be used in conjunction with ZVARIGELEs to
manipul ate them. Also note the convention adopted of calling the
2VARIABLEs used to hold chamrnel IDs by a name beginning with a #
symbal, 2g: ®IN.

#DEFAULT € ——= d)3 a double length caonstant used to hold the
default channel 1D, this is 1loaded by block 1 as
supplied and is the channel 1D lcaded intoc #IM and
#IUT whenever an error occurs. This ensures that a
fault always returns control to the keyboard and
display. #DEFAULT is loaded with a suitable value
prior to block 1 being loaded.

#IN (——— &ad }: a double length user variable used to hold
the channel ID of the cwurrent keyboard input stream
{ not the mass storage stream). By manipulating
this, input may be obtained from other sources: this
is the technique used by LOAD _FILE to load from a
namad file.

#OUT { =~ ad }: similar to #IN, except that it holds ths
channel ID of the current output device. Outpet may be
redirected by manipulating this, which is the
technique used to output to the printer.

€1 OSE (d -~=—)} closes the channel whose ID is on top of the
stack. Always be careful to close channels when vyou
have finished with them, to avoid profligate use of
the EL s RAM.

CREN {n—-——d) is used in the form, for example,
O OPEN CON_1B0XZAASZXSE

to open a consocle chamnel. The channel ID is lett on
top of the stack usually to be saved in a variable.
Any valid device name, for SCreen windows,
microdrives, floppy discs, serial interfaces etc can
be used, but vyou must wuse the correct syntax as
defined in the GBL User Guide: eqg;
O OPEN MDVLI_BLKZ? { opens a channel to file BLK??)
O OFEN SCR_1BOX2&6A52X182 { opens a screen window)
The parameter n used before OFEN is there primarily
for microdrive Ffiles; it should bz © Ffor other
devices. For microdrive Ffiles it should have the
following values:

old { exclusive } file

old { shared) file

new { exclusive } file

directory

Bkl O

SA

0.2 MULTI-TASKING

It is possible to multi-task both SUFERFORTH programs, which
are compiled and created while SUPERFORTH is running, and
mactiine code programs, which have been created independently of
SUPERFORTH and stored on microdrive or floppy disc. Facilities
are provided to create, activate, suspend and remove these
tasks.

A SUPERFOGRTH task is provided on block 3S: a clock
gispiay, which is used in examples below. To load, tvype

S LODAD which loads but does not run the clock, for
which see below.

10.2.1 Job identity

Whenever a task or job is activated on the GL it is
allocated & double—-number identifying it. This double-number is
then used to manage the task. If a task wishes toc refer to
itself it can use a double-—number -1 as the Jjob identity. Two
wiords are provided to utilise job identity:

FIOBE_ID § ~—— d) is used in the form
?I0B_ID <name>
to +ind the job identity of a SUPERFORTH task created
using JGB described below. It can not be used to find
the identity nf machine code tasks.
egs ?JOB_ID CLOCK

JOB_1IiD (—— ad)z a double variable which holds the identity
of a machine code task which is activated using EXEC,
see below. If vyou wish to manage this task vou will
probably need to save this value in another double
varijiable.
eq JOB_ID Za leaves the double number
job identity in the stack after EXEC <{name’

1G.2.2 Creating tasks
The words available to create SUPERFORTH tasks are

JOB (ad nl n2 n3 ~——) : used in the form
J0B <namel> RUNS <name2r>
to create a dictionary entry called <namel> which,
when executed, will cause <name2’> to be run as a
multi-tasked program; <nameiX> must already exist. Eg:
see hlock 2 for:
JOB CLOCK RUNS GLOCK
which creates a task called "~ CLOCK which, when
activated, will run a SUFERFORTH word called GLOCK.
Note that the task is not yet activated: this must be
done using START or ACTIVATE (see below).
ad is the address of the job's USER variables; ad=Q {¥f
there is none.
nl is the number of long-words needed for the retarn
stack { ie; ni¥*4 is the number of bytes)
n2 is the number of words nesded for the data stack
(ie; n2%2 is the number of bykes }
nZ is the job's priority (I to 127

$2

SLEEF

SUSFEND

SUSPEND_ME

suspends the clock for 10 seconds, after which it
restarts. I n=—1 the suspension i=s indefinite.

£ —~—) is used by a task to suspend itsslf
indefinitely by changing its priority to O. This i3
compiled automatically at the end of a SUFPERFORTH task
By RUNS (to prevent a job "+falling off the erd®).

{ o ===) is used in the form
SUSFEND <NAMEZ>
to suspend task <namer for n fiftieths of a second.
Eg; 1000 SUSPEND CLOCK
suspends the clock for 20 seconds.

{ n ———) suspends the current task for n fifitieths
of a second.

RELLEASE { =——) is used in the form
RELEASE <name’>
to restart <namer.
Egs; —1 SUSFEND CLBCK stops the cliock
RELEASE CLOCK restarts it.
UMFREEZE (d -——) restarts the task whose idemtity iz d .
10.2.5 Changing a task’'s priority
PRIORITY (dn —-—— 3} changes the priority of the task whose
identity is d ton. n is in the range 127 { lowest
Y to I { highest). If n=0, the task is suspended.
PFRIORITY _OF { n ———) is used in the form
PRIORITY_OF <namei
to change the priocrity of task <pame’ tc n. »n has the
same meaning as in PRIGORITY, eg:
25 PRIDORITY_OF CLUOCK
changes the clock’'s priority to 25.
10.2.6 Rempoving tasks
BYE { ===) is used by a task to remove itself fram the
system. Typing in BYE removes SUPERFORTH from the
system. You will need to press Control © to retwn to
the SuperBASIC interpreter.
KIil { =———) is used in the form
KILL <nameX
to step and remove task <name?> from the system. It
must pot be restarted by using START etc.
EEMDVE { d —) stops and removes the task whose identiity is

d from the system. Do not restart it.

gAY

-

SET_TIME (d ==~) sets the time to double-number d seconds.

TIME (=== g) leaves the time on top of the stack as a
double-number in seconds.

In addition to these, a utility block is provided to enable you

to set the date and time., This is leaded and exeguted by typing
2 LGAD

which, when loaded, reguests the yesar estc. All repliss must be

integers (eg; MAY is month S). The prompt and response seguence

can be bypassed i+ yvou simply type ENTER in responss to Y2ar?

10.5 SERIAL INTERFACE/EBA&UD RATE

One word is included toc adjiust the bsasud rate of the REZIIZ
interfaces:

BaUD { n ——)} changes the baud rate to n
eg; 9600 BAUD changes it to 600 baud

S

11. DETAILS OF SUPERFORTH IMPLEMENTATION

11,1 MEMORY MEP

DF SUPERFORTH uses over &BK bytes of memory. It is
fully relocatable and the actual logcations it occupies depend on
what other tasks are running and whether extended RAM is fitted
to the @L. The locations available to a standard SUFERFORTH
program are O to &3535 relative to an absolute address held in
register &2 of the &BOOB microprocessor. The SUFERFORTH
dictionary occcupies locaticons 3I2748 upwards. Locations +rom
lapproximately) 42000 tp 65535 and © to 31738 are available o
the user, but the user can guite happily uss the system without
worrving about addresses (unless, of course, the space is
completely +Filled up: which, given the compactness of
SUPERFEBRTH, would imply a wvery big application indeed). The
memory map is:

locations 32768 to 42000 (approximately) SUPERFORTH dicticnary

42000 (approx.) to 63533
and 8] to 31738 the user dictionary

S1T7E9 to 22747 the block butter

Some code and the error messages are situated outside the
dictionary, to maximise the space available for the user.

11.2 THE STACKS

These are situated outside the dictionary area {for
added preotection) and just below the dictionary in the GL's
memory. fhe return stack is immediately below the dictionary and
there is room for 3S12 bytes, which is enough for 128 calls to
SUPERFORTH secondaries. The data stack is just below the return
stack and has room for 204 bytes or 128 integers. :

11.= DICTIONARY STRUCTURE

This information is ‘supplied for the desdicated

SUFERFORTH enthusiast, who is familiar with FORTH systems, and
therefore no attempt is made to explain the facts.

Eactr word in the dictionary has a header which contains the
following i{in this order):

{a) two bytes for a iink field to the previous entry in the
dictionary.

(k) one byte for the number of characters in the name of the
word, Hit 7 of this byte is sety bit & is the immediate
flag and bit S the smudge bit.

(E=0 1 bytes { maximum 31 } for characters of the name: the last
byte has bit 7 set. -

{d} two bytes for the code pointer.

(&) then the parameter field, as long as necessary.

12 EEVERS]T

Umlike the producers of the wvast majority of FORTH
gsyetems on the market, we believe it is essential to provide the
user with an example of a well written, well dccumented FORTH
program. If studied, it is far more instructive than the siaple
examplas which are all that are usually given. With this in
mind, we have supplied you with a copy of the well known game
REYERESL, accompanied by & fully commented, well laid out listing
of the the program, which is written entirely in FORTH. Indeed,
the game could well have been sold in its own right. FPlease riote
that the version supplied on the microcartridge iz an
improvement on the documented version.

To lowad and run the game, type in:
LOAD_FILE MDV1_reversi_+th

Reversi, alsc known as Othello, is around 1GO years old and is
now a well established game, with regular worlid championships
and regiocnal championships.

The aim of the game is to end up with the most pisces on the
8x8 board. You and your opponent make mpoves alternately, using
pieces which are black on ocne side and white on the othsr. Tha
player who is black will always place them with black facing up,
and the white player with white facing up.

To make a move, you must place a new piece such that you trap
one or more of your opponent’s pieces between the new pisce and
one or more of your own pieces, in a continuous (ie; no
intervening vacant squares) straight line aiong a row, column

or diagonal. You can only play on a vacant sgquare — this is wihy
the game cannpot in any case last more than &4 moves excluding
passes { vyou "pass® i+ ygu cannot make any move — it is then

vour opponent’s twn J. The move is completed by changing all
the trapped pieces to your own colour { ie; by flipping them).
If this sounds at all complex do not worry — SUFER REVERSI wiil
not permit you to make an illegal move, sa by actually playing
vod will soon pick up the game. Remember - a move must result in
at least one flip!

The game is usually started with four pieces pliaced in the
centre (as shown when yow run the game), but SUPER REVERSI
gives vyou the cption of setting up your own starting gposition.
Black always moves first - you are given the option at the
beginning of the game to be either Black or White. Do not jump
to the conclusion that the +first player necessarily has an
advantage — Reversi is a far more subtle game than that!

The game finishes when either all pieces have been plaved or
when neither player can move. The player who has the most pieces
showing on the board is then the winner { draws are hence
possible) — SUPER REVERSI keeps track of the number of pisces
for each side throughout the game. Note that it is only at the
final position that the number of pieces of a particular colocur
decides the outcome - garlier on, it is not necessarily good
strategy to maximise the number of pieces of vyour colour, for
the simple reason that &0 do so0 would give vyour opponent more
pieces to flip over at a2 later stage! OF cowrse, you must have
at lgast one piece on the board or else vou will ihave to pass
for the rest of the game { 1§ vou think for & minute, you will

e

e

\

If you have just begun playing SUPER REVERSI, herse are some
tips that should improve your playing strength: Y
{a) Do not ’'grab’ material - position is more important than
material until the last stages of the game.
(b} In the beginning of the game, try to stay within the central
4x4 sgquare area. 1he first player to move out of this area is
aften at a disadvantage.
ic! The most valuable sguares are the cornar sguares as once
pocupied their occupier can (obviously) never be +lipped. I+ the
loss of a corner is inevitable then play should be directed
towards blocking its effectiveness { &g; the corner Al is much
lass useful for Hlack if Black also has A3 and White has AZ).
(d} Edge sguares cther than corners are somewhat dangerous to
occupy, especially those immediately adjacent to corner sgquarss.
They can provide an avenue of attack for youwr opponant
culminating in his occupying a corner sguare.
{e? &t every stage of the game try to make moves that, while
not contradicting (a)-{d} above, reduce the number of options
apen to your opponent to a minimum.
{f) Long diagonals are useful only if a corner on that diagonal
has been secured, or if the diagonals are for some other reason
immune from attack.
€= Squares immediately next to corners (egj; B2} ars best left
alone.
(h} Remember to count on your opponent playing well. Do not
rely on the 8L making oversights!

To interpret the final score, refer +to the following table
twhich assumes that &4 pieces are on the board):

I2-32 Drawn

3331 to 3529 NMarrowly won

F6—28 to IB-2& Comfortably won
29-Z5 to 41-23 Strongly won

42-22 to 49-15 A Smashing victory
S0-14 or better A Whitewash'! :

We wish you the very best of 1luck playing Digital Precision
SUFER REVERSI — you areg doing pretty well if you can beat it on
lavel Z and very well indeed i+ you can beat it at level 7 { the

programmer — who received advice from Reversi experts in order
to write the program — has himself yet to win, without cheating,
on level 4 !!). In tests against other versions of REVERSI and

OTHELLO Ffor the Spectrum, GL, BBC micro and other compuiers (
playving on egual time, at levels above those for beginners)
Digital Precision SUPER REVERSI won every single tim@c..a0....

12.1 EaME LISTING

The complete listing of SUFER REVERSI +ollows. It is advisable
to study the program carefully — it demonstrates SUFERFORTH in
dynamic action!

62

{ Nnow we repeat the process for the letters A tc H)
{ along the bottom edge , very similar soc no further 2
{ comments }

&3 430 24T

3/3]

I 172 CURSDER

DUF EMIT 1+ 25 { lettaers 325 pixels amar-t
+L0O0OF DRGF

{ now we draw the horizontal lines, ?
{ BLOCK_FItL is faster than LINE 3

173 (the bottom end of the line
333 { the top end of the line)
18] (ZZ3+5%17 > 173 50 we lcop & times 1}

1 { the line colour)

202 ¢ the width, ie the line iength ?

i { the height }

237 (the X start coordinate }

I { the ¥ coordinats)

BLDCK_FILL { draw the line)

17 { 17 pixels apart ?
+L0OF

¢ similarly draw the vertical lines)

444 237
Do

1 2 136 1 33 BLOCK_FILL 25
+ 0OF 2 0 CSIZE ;

HEX { convert to hexadecimal mode for now J

{ FP converts a positive integer to floating poaint format, so i
{ does not need the flpating point package)

: FP DUP

iF { not zero }
G { the provisional exponent)
SWAP -10Q (decimal -1&)
BEGIN
OVER 4000 U< { repeat until top bit is a 1)
WHILE
SWAF 2% (shift it 1 place left
SWaP 1- { decrement the exponent for ?
{ mach place shifted)
REFEAT \
81F + { add the fiddle factor !)}
EL.SE ¢ integer is zero
Q0 (gives floating zero)
THEN H
DECIMAL { back to decimal)

{ now lots of variables that are used)

VARRIARBLE C_COL
VARIAZLE F_EOL
VARIABLE COLOUR
VYARIABLE F_SCORE
VARIAELE C_SCORE
VARIABLE MENM
VARIABLE COMP
VARIABLE - FLAYER

computer ‘s colour)

human player ‘s colour }
temporary colour store)
player’'s score)

computer 's score }

number of pieces on the bDoard J
holds the computer ‘s last move }
the player 's last move | '

LT T]

HEX

CREATE SOU_VALUES { values in hex)}

1010, 1418 , 1016, 1010 , 1010 , 2D19 , 2iiF , 1F2L ,
12D , 1019 , i111B , 1{EiB , iBii , 1910 , 211B , Z1iF |
1F21 , 1B21 , 10iF , 1BiF , ©OO7 , LFi1E , iF10 , 1FI1E ,
1FOY , DGIF , tBIF , 1021 , 1B21 , 1FiF , 211B , 2110 ,
1?11 , 1Bi1B , 1B1B , 1119 , 102D , 1921 , iFiF , 2119 ,
2010, 1010 , 1010 , 1010 , 1010 , 1010 ,

DECIMAL

now an array defining word which creates a board array)
there will be one of these for esach level of move locked)
ahead by the 0L, seven in all. there are 7?1 squares in

each board, numbersed ¢ to 90, the playing sguares are)
rnumbered 1¢ to 17, 19 to 26, etc. A one dimensional array
is used, rather than a two dimensional array, to avoid)
multiplications, which are slow whatever the language ussd)
te program the game, to index the board array only a simple)
addition is nes=sded)

P L

3 BD_ARRAY CREATE SIZE ALLOT { 22 bytes per board
DOES> (OVER S5IZE i1- U> IF 3 '
{ ." Board array access error " BUIT THEN »
Fe

-
¥

{ the SUFERFORTH code commented out in ED_ARRAY checks the
index)

{ used when a board is accessed, it was very usaful in)

{ development of this program but iz not needed in the final)
(version and so is removed to avoid slowing the games down

{ now define the Y boards one for sach depth of search }
numberad PO to P7, P for position)

BD_ARRAY FO_BOARD ED_ARRAY P1_BOARD BD_ARRAY PZ_BOARD -
BD_ARRAY F3_BUOARD BD_ARRAY F4_BOARD BD_ARRAY PS_BOARD
BD_ARRAY P&_BOARD

VARIABLE BOARD_AD used to indirectly execute one of)
above board arrays, so that common)
code can be used to access them)

Execution vectors can be used)

e R

BOARD BOARD_AD @ EXECUTE 3
accesses the board whose code field address is loaded into 3
variable BOARD_AD , which will be loaded using the word {°1)

e, AR

SCORE calculates ard displays the number of pisces belonging)
¢ to each player)

: SCORE
& F_SCORE §
O C_sCoRE ! zero the scores } Ny
81 1G examine all the sqguares on the beoard!
Do

that camn be occupiad)

e e e

I EBOARD Ca get the sguare’'s wvalue)
bup 1& < cccupliad i+ lass than 156)
iF '

F_COL & = { is it the human's celour)

66

{ three variables for every depth of search,

{ boards, described for FO,

ie for all seven

same for the rest

VARIABLE PO_MOVES { points to FO's move l1ist)
VARIABLE PO_3IZE { holds size of FO's move list
VaRIABLE PU_FTR { points to move being considered)
VARIABLE Fi1_MOVES VARIARLE F1_SIZE VARIABLE F1_PFTR
YARIABLE F2_MOVES YARIABLE P2Z2_SIZE VARIABLE F2_F7TR
VARIABLE PZ_MOVES VARIABLE PE_BIIE VARIARBLE FI_FPTR
YARIABLE FP4_MOVES VARIAEBLE P4_SIZE VARIARLE F4_FTR
VARIABLE PS_MOVES VYARIABLE FS_SIZE VARIAEBLE FT_FTIR
VaGRIABLE PS_MOVES VARIABLE F&_SIZE VARIABLE F&_FTR

: INIT-BCOARD { injitialises the screen »

L g e S e

{ called at

#MAIN DRAW_SCR DRAW_SIDES
€31 PO_BOARD BOARD_AD !

SaU_VALUES © BDARD SIZE CMOVE

SQU_VALUES START_RODARD SIZE CMOVE

0 MOVE_NG !

-1 BFLAG !

40 DRAW_PIECE 41 DRAW_PIECE
49 DRAW_PIECE S0 DRAW_FIECE
HTITLE

0 90 10 O O BLDCK_FILL

7 90 10 90 O BLOCK_FILL ;

(
{
(
{
{

£
£
£
(
{

£
£

the start of every game)
draws screen and board 2
points to position O)

zo0 BOARD accesses that)
copies initial sguare
values to position O)

(¢ and to the board
holding the start position!
zero move number 1}

clear the guit game fiag ?
draw the four starting)
pieces)

draw the black and white 1}
rectangles in #TITLE }

EVALUATE calculates the value for a given move whizh is)

square value + w % men captured

)

where w is 1 for moves 1 to 54 and 2 aftter that. 3
It is called possibly a few times for a given move but the)
square value is added in only once }

The move value is later modified by subtracting the number

of moves the opponent can make ?

EVALUATE {(il R2 N3 ——— nl nZ n3
i ni sguare number of move ?
{ n2 =tep sae CHECH _B_ways) _
¢ n3 sguare number of ling end } -

MEN @ 11 / 3 ~ 1 MAY
MEN_FLIFFED @ *
NEW_MOVE &

IF

—~ e

PICK BOARD C& 1& — +
NEW_MOVE !

S17E_PTR @ +!

PICK MOVE_AD @ @ C!

(% W agpa P

I R T N e

factor w above 7
times men captursed
TRUE

-

i¥ & newWw move

new move SO)
add i square v
clear naw move
increase mové Li
save tha mové)

i

ELEE
." I don't know"
THEN
250 SUSPEND ME O { and stop for o seconds)
r COMP_COL £ _COL @ COLOUR ! 3 (saves QL's colow in CGLOUR 3
T PLAY_COL P COL @ COLGUR ! 3 (same for the player)

: INITPO E£°2 PO_BCARD BOARD_AD ! 3
(initialises the BOARD %o the position O board)

EXVEC: OQFPERATION { used to +lip pieces or make = move)

this next word starts at a square and checks in one diresction)
to see i+t that sguare can be used for a move,it the sguare is!)
empty and next to a square of the cpponent’'s colour then it i
carries on until it finds it's own colour ie vaiid or an)
square, which may be off the board, ie; invalid

e

: CHECK_1_WAY nl rZ ——— nil N2 J { ni = square number)

(
{ N2 = step value for the reguired ?
{ direction, see CHECK_8_WAYS)
DUFP »R { save step on return stack ?
ZDUFP + BOARD Ca ¢ get value of adjacent sguare }
DUF 156 < { if it is pccocupied ...)
IF COLOUR @ <> { ... with the opposite colour)
iF 1 MEN_FLIPFED ! (then set men captured 3
BEGIM { and carry on looking
RE@ + (move to next square)
ZDUP +
BOARD C& (and access board)
BPUF 16 < (if occupied ... !}
iF COLOUR @ = { and ocur coclour)
IF Ra@ OFERATION { then evaluate or £lip i
ELSE { else increment captured)
1 MEN_FLIFPED +! O (and continue icop)
THEN
ELSE { not cccupied so invalid move)
DROF ~1 { set +lag to exit loop ')
THEN
UNTIL (end of loop ?
THEN DUF
THEN ZDROP R> 3 £ and tidy up stacks)

(1]

YOUR_GO$ CLRMSE .“

FYMOVE { print
SCORED CE DUFP O
IF 16 - 2 /MOD SW

#MOVES C_TAR @

45 + EMIT 49 +

C_TAR @ CR7?

19 2000 BEEFR
ELSE

CROF CLRMSG .7

S0 S0C0 BEEP

O DLD_SKILL !

200 SUSPEND_ME
THEN 3

FULL { —— flag ?
f_SCORE @ C_SCORE

FLIFP_FIECES

DVER 2 PICK +
BYER ©< -

L o T T e T e B e T e B]

Iz PICK

DO
RED_PIECES & O
IF COLOUR &

ER

Your move { eg HEZ ENMTER 3" CR CR
gress O to list coptions”

s the BL's move if any in #MOVES)

{ if B has a valid move
A { convert tao XY coords Y o L=
TAR -
EMIT { and print them ? Caa

{ with a possible new 1ine !} -
{ and signal the mcve) -

I can't go"
{ otherwise do this)
{ don’'t know the best reply
{ and wait for 4 seconds

(TRUE i¥ the board is full
@ + 54 = ;
nl N2 N3 — nl R2 n3 ¥ { stack is as tor’d

EVALUATE, exscution vector OFERATION)
executes either of these two words to !
evaluate or make the move }

gives the end piece of the line)
subtracts 1 if step is negative to avoid
highlighting an existing piece)

the start square }

= { if not drawing in red)
(ocoupy the =quare with)

I BCARD C! { the correct colour :
THEM
I DRAW_MAN DUF { draw the piece and repeat the)
+L00F ; { rest of the line) B
FLIF { ad -~) { makes the move held at ad }

ASSIGN OFPERATION

C@& ?DUF
IF CHECK_B_WAYS

MAKE_MOVE {
{

ASSIBN DRAW_MAN T
FLIF 3 {

DRAW_ALL _MEN ¢
\
#BDARD CLS DRAW_S
80 10
DOI 8+ I
DO I BCARD
IF I DRA
LOOF 9
+L GOF
SCORE 3 ¢

TO-DO FLIF_FPIECES { ensures the move)
{ is made and not evaluated)

LY

{ i+ a valid move is at ad 4

THEN { then make the move ?
ad ——— } (makes a mocve on one of the)
boards PO to P7 does not draw the board)

a-o0 DROP { ensure no pieces are drawn)
and make the move at ad j

usad when a move is retracted to redraw)

the whole board)

IDES { clear and draw a blank board }
{ for svery sguare)}

cE 14 <« { which is sccocupliad
W _FIECE THEN { draw the piece } -

and print the new score

LSS

LEFT -25 L/R
RIGHT 25 L/R

Ay
-

maves 1 square left)
moves 1 square right)

‘an
]

adiusts ¥ by n pixels up or diwn)

uso {n ——= 3 {
Y & + { get ¥ and add n 3
126 + 136 MOD { ensures rolls round top and bnttmm 3
Y ! SET_3QU i { save and load square }

up —-17 usp
BawWMN 17 UrD

 moves 1 sguare up }
{ moves 1 sguare down)

ar twa

PUT_FIECE ({n —)} { places a piece of colour n on the)
{ playing board FO)}

#MAIN SRUARE & BROARD C! { store colour in the board)
SAUARE @ DRAW_PIECE #BOARD ; { and draw it on the display)

PUT_BLACK O PUT_FIELCE
FUT_WHITE 7 PUT_PIECE

{ places a black piesce ?
{ places a white piece)

L LT Y

EMFTY { blanks a sguare }
4 PUT_PIECE { plares and draws a green piece ie blamk 1}
S6U_VALUES SOUARE @ + Ca € is the square a centra oane)
BUP 16 < (ie < 146 in SEU_VALLES, if sg)

IF BROP 3I7 THEN {
{(board of 37 which is high)
SQUARE @ ROARD C! ; { load board with the value
CLERR { clears the whole beoard o the original)
{ starting position)
SaU_VALUES o BOARD SIZE CMOVE (initialise the board
DRAW_ALL MEN { draw all thes m=n
#EBOARD INIT_CSOR 3 { and centre the cursor }

the next prints the options availabie in #MESS)
SET_HELP CLRMSE O 1 AT ." Arrow keys move the cursor"
ER ." W or B places a white/black pisce”

CR ." N tlears the sgquare”
CR ." € clears the board"
CR ." ESC to terminate” 5
SET_FOSITION { obeys the keys to set a position) .
#MOVES CLE { clear the moves window) -
IMITPC { ensure setting board FO 3
INIT_CSOR { centre the cursor }
SET_HELF { print the options
DRAW_ALL _MEN #BOARD (draw all the men)
BREGIN
X @y & CURSOR { position the cursor)}
CURBOR_ON KEY CURSOR_OFF DUP £ get a key !
CASE 172 OF LEFT ENDGF { left arraw }
200 OF RIGHT ENDOF { right arrow }
208 OF UwP ENDOF (up arrow
214 OF DOWN ENDOF ¢ down arrow)
& UF O FUT_FIECE ENDOF (B for biack 3
87 OF 7 FUT_PIECE ENDOF { W for white)
78 OF EMPTY ENDGF (N for none
&7 OF CLEAR ENDOF { C
27 CF ENDOF { EBC to exit)
DEFAULT _ | N _ T
ENDCASE .. . 27 =, _ (repeat until ESG .o B

UNTIL

then alliocate a value to the playing)

3

Y4

L1}

e e AT e A e gy e

B

DRAW_RED (R =)
DUF BOARD C@
SWAF 2 OVER BOARD C!
DUF DRAW_PIECE

draws the piece in fFed)’
get the colour of the piece)
and store a red p1ECE ol
draw it) -

=

o ey

BOARD C' ; (¢ and restore the original cnimgr)
DRAW_MEN { ad =———) (draws the piece con sguars n)
(by first drawing it in red for 3 seconds)
{ and thenr in it’'s proper colour 3
DUF Ce { get the move if any ie not zeroc -
IF ASSIGN DRAW_MAN TO-DO DRAW_RED (ves draw in red)
-1 RED_FIECES ! (set the red flag '
DUF FLIP (and draw them

#MOVES 150 SUSPEND_ME (and wait 3 seconds) -
THEN
ASSIBN DRAW_MAN TO-DD DRAW_PIECE (now draw the proper)

O RED_PIECES ! FLIF { colours and clear the flag !
SCORE #MOVES { print the new score)

. MCVE {nl n2 -~ 3 { grints a move
AT PO_PTR @ Ca { get the move from PC’'s list
10 = 9 /MOD SWAP &5 + { and convert to ASCII ... }
EMIT 49 + EMIT ; (v and print it ?

BESTE { prints the BL's best move so far)
SKILL @ 2 > ¢ only if piaying level > 2 3 o
IF #MESS 24 1t ,MOVE (print it)} .
(" SCOREQ 2+ @ 4 R .y * { and it's valus }
THEN : I <:“ - L

MOVEF (prints the 8L 's move)
SKILL @ 2 » { only if plaving level > 2)
IF #MESS 24 3 .MOVE THENM 3

COMP-MBVE { generates & list of moves)
ASSIGN OFERATION TO-DO EVALUATE { ensure evaluation)
GEN_MOVES { and generate the moves)

after this point there are a whole series of words which are
identical or very similar and which are rumbered O to &,)
there is one word for esach level of search Dr'ply,)

g PS_SCORE calculates the value of a move at ply 3. It)
would be more elegant to have written the program rEtLrszvely}
so that the same code could have been used but, would have)
been much more difficult to understand, this is left as am
exercise for the future. Whers these EEt of & ar 7 1dent1:al }
words occur, only the first is explained)

the next 7 words generate a list of moves from each ,oszt1un 3
PO to P&)
GENFO_MOVES _

INITRPO (ensure we use FO_BLDARDST

HEAP & DUF { get the address- ¥ Lthe- work area)

FO_MOVES ' FO_FTR ! (and ensura the 115t DF maveg starts }
{ there ?

FO_PTR MOVE_AD ! { point MOVE_AD ta FO. pm*n*er Y

0 Po_SIZE ! { initialise the licst sizes €0 zeroc

PO_SIYE SITE_PTR ! { point SIZE_FTR to PO_SIZZ)

¢ G PFO_MOVEES @ 2¢ { make first move ¢ in case no moves !}

CEMP-MOVE { and generate the list of moves !
FO_FTR @& 2+ 2+ P1_MOVES ! :; (ensure the Pl acve list)

I
As

{

an

move has besn found,
TEST_PFP1_SCORE {nl —)} ¢

IF 24 2 .M0veE
26 TAR DUF . (" 4 R .*»)*
THEN

SCOREC 2+ @ 2DUR =

nl

= new_move;yal
SCOREl & SKILL @ 2 & (get SCOREY1 and i+ skill
{ we print the move and.
value in brach

i

-
-
L

P
-_

t

[

next we test move values to see if a higher value**cﬁ-u SE
if so updats the apprcpr*ate SEDHc }

2
G

s

{ get OL's move valuéiaﬁaul¥

)

i
=)

= 7

{ new value we randomly seisct)
{ one of these kv !

IF ZDROFP TIME DROF 1 AND O THEN >

iF
SLOREY @ PO_PTR @ @ SCORED 2!
BESTS
P_BEST? @ P_BEST !
THEN 3

TEST_P2_SCORE
SCOREZ @ DUP SCOREL @ <
IF DUF SCOREL !
F1_PTR & C® F_BEST? !
THEN
SCOREQ 2+ @ < 3

{ using the 8L's clock to choose)

{ updatE_ELfs;bési
{ and print it)

{ —=—— +1lag) o
(i SCOREZ < SCORELl then
{ update SCORE:L '
{ and player’s pa551bie hest)

{ update plaver’'s provxs:ona’
{ best reply

mEve!

}

{ flag is TRUE i¥ SCGRE;_-& SCDRED }

{ ie; we can apply the alpha-beta algurzthm'-EEE belnw 3

TEST_P3_SCORE { =—— flag)

i

.{..= R

SCORET €@ DUP (get PZ move value and save larger of)
move valué as'PE 3

ECCREZ @ MAX SCOREZ !

{ this and F2

{ move value I
if a better move found)

SCOREL @ > -3 { flag is TRUE

the next 3 are uncommanted:they are s*mxlar +u TEST P¢ SC

TEST_F4_SCORE
SCORE4 @ DUP SCORES € MIN SCORES !

TEST_PS_SCORE

SCORES @ DUP SCORE4 @ MAX SCORE4 !

TEST_P6_SCORE
PS_SCORE + DUP SCORES @ MIN SCORES

SCORES @ =

SCORE4 @

SCOREZ-@ <% -3

e

=

(o

gé E ¥

=

7§

e e M : P el

! ncw a sat of words to 1n't*a‘xse and generate.a ..st sf mcves;
{ from & given positicon. Rgain aill vety_szwxzan Lﬁ

: BET_PO_MOVES
I2748 O SCOREQ 3t

‘nltza*lse SCOREC to +He mms :
negative integer and it's wave te O)
ensure using the Gl = :a‘aur)y
generate the list of moves !}

get and duplicate *He'.lat size }
alsc the addrsss of t%e move list)

COMP_COL
SENPO_MOVES
FO_SIZE @ DUP
FO_MOVES @ DUF

R]

o

PO_FTR ! to initialise PO_PTR } ...
SORT_HI { and sort the list in order -l -
DuFR L > skKILL @ 1 > ANMD ; { flag is TRUE. 1? list is 3}
{ longer than 1 move and SKILL ¥ {ie need

{ to go on to position P2 2

: GET_P1_MOVES o
COoMP_EMt FPO-—-PY ({ set player’ 's colour and. copy !
FO_PTR & MAKE MOVE { the PO bgard to the .P1l 'koard }

{ and make the PO _move.)
PLAY_COL. GEMNFI_MOVES P1_SBIZE & i a5 akhove)}
F_FTR SUR_SIZE { subtract no. of ‘moves from the
(PO value . =2tc as above H
puUF P1 MOVES @ DUF Ce P_BEST? ! DUF e
F1_FTR ! SORT_HI 32757 SCOREL ! SKILL & 2 = ; -'ﬁjﬁt

et

GET_FPZ2_MOIVES

BLAY_COL P1->FZ P1_PTR @ MAKE_WMOVE,0 %
COMP_COL GENPZ_MOVES P2_SIZE @ PL_PTR SUB 8ize’
DUP P2_MOVES @ DLF R

PZ2_PTR ! SORT_HI 22748 SLORE2 ' BRILL € 3.2 .3

: GET_F3I_MOVES
'CoMP_COL P2-3PT P2.FTR @ MAKE_MOVE
PLAY_COL GENPI_MOVES FI_GIZE @ P2_PTR SUB_ST
DUP P3_MOVES @ DUF e
FI_PTR ! SORT_HI 32747 SCORET ! SKILL & 4_3-3; ..

s - e - o UL

GET_P4_MOVES -
PLAY_COL P3-3F4 P3_PTR @ MAKE_MOVE n
COMP_COL GENF4_MOVES F4_SIZE @ P3_PTR SUB_SIZE-. . . =
DUF F4_MOVES @ DUP LTl T
F4_PTR ! SORT_HI 32768 SCORE4 ! SKILL @ & >3

[- T

: GET_PS_MOVES G smee s e s
COMPE_COL P4-3PS Fa_PTR @ MAKE_ MOVE' ;I;.T'ZTTI“.fL.'
PLAY_COL SENPS_MOVES PS_SIZE & P4 _FTR SUE_SIZ o
DUF PS_MOVES € DUP

A

PS_PTR ! SORT_HI 32767 SCORES ! SKILL.®@ 8 3.3 ;. .
: BEST_P&_MOVE (this differs from the abuve‘:cgﬁﬁ;*n that)
{ this is the last level and S0 we stsp wbEH wa 2
(have tha highest valued move). e

BLAY_COL PST3Fs PS_PTR @ MAKE_MOVE -0 . ° 7
coMe_COL SEMPe_MOVES Pe_SIZE & 55 _PTR SUB_STIE
F&_MOVES @ MIBH I .

24‘ @ HR‘ Z“Eﬂp ':’.- . ; -, T _: o - f‘“"::.l.

: PRUNE?Tji nf :F—'hf (S I { ¥H1§.Hét'aé% iF we prune thes move !
€ list or not prhﬂ_ng occurs on plaving leveﬂﬁ S F 2
1 MQX FFUNE @ MIN 0 L};(if PRUNE <.n. we. kesp .t lose ni

BET_PC_MOVES

IF O
PG GET_Pi_MOVES .
MOVES ¢ print
IF 1 MAaXx
PRUNE @ 2% MIN O £
€
DO GET_PI_MOVES
I PRUNE? !
DB BET_P3_MOVEZ | (
IF PRUNE? {
TRY _454&_MOVES
ELSE DROF
PZ_SCORE ESLORES
THEN
TEST_PS_SCORE
IF LEAVE THEN
4 P2 _PTR +!
L.O0F
ELSE DROF
P2_SCORE SCUOREZ !
THEN
TEST_PZ_ECCRE
IF LEAVE THEMN
4 PL_PTR +!
LooP
EL5E DROP
Fi_SCORE SCOREYL ¢
F1_MOVES 2 C& "
P_BEST? ! {
THEM
TEST_P1_5CCRE {
4 FO_PTR +! {
LoaF
E! SE DRLCF
PO_PTR @ 22 SCCRESG 2t {
THEM H B,
: 50 T -t generate
SKILL @ OLD_SKILL ! P
CLRMSG ." My move " SKELL @
IF _ o -
4 SPACES ." best so far®
8 SPACES ." just consider
12 BFACES ." considering®
THEN
BEST_MOVE {
MyYMOYE (
L°2 PC_BOARD EBOARD_AT ! £
COomMP_COL {
SECOREC SAVE_MDOVE {
DRAW_MEN {
SCOREQ Ce Dome 1 ; {
r FP_CR? ({ goes to a

#MOVES P_TAR @ CRT ;

CH ¢ eime
A

i QCGQE& Y
{ get the mcve1ld5{-ﬁg~
{ it level * 1 dgo déeper ¥
{ to get the Fl-umows Tist)
Fo move .under :;ﬂsiderat G 2
(if level - 2 gp desper)
prune to le-ﬁuves 4‘ ievels !
g or 7Y LT
i_ﬂet_tJe B2 move
Tevel..» ¥ go desper
and g2t the F3 move lis
if level » 4 .go. desper)
(carry on formplies 4,5,4)
level 4—)__“ﬁ;,m
calculate ihenﬂu move
value and save it)
is thizs bettasr 7)
yes léave this dogp)
else gc on Lo nex *1Ea move)

list 3

=5
i£ !
=
-

)

P i e T e N s

i

tevel u.) ' '",- -
ca.:ulate—tbe Pﬂvmcve 1
value and save ;% %-
is this bet terwﬂ-a-i
yes leave this lopp oy

W e i ey e iy

else gz on to next FZ move)
£ level 2 3
{ :a.ch,ate the PI valua)

save it and 1‘ hetter, save as'}
the player’'s best. L<

is this
move on.

bBettzr 7 2
toc nexi move)

ievel 1

s and make&\the ”Lus.mnq: 2
cupy S%ILLthtcuBLD SKIL_ }e
2 = £ rﬁy AF Jegg}

ed" CR

get ithe best UL 's move !
make the move)

reset to FPO_2DARD

sat O ‘s golour !

save thz move in GAME)
draw the new position }

and save the move in COMFE
line ¥ iz whits !}

aeEw glayer

8L

: FISST_mMove {.all-the ‘4. possibklia-first auas;aﬁéix’
{ equally strong sa choose at ra“ﬂﬁm -----
CoMP_COL { set Gl's colour L0 voow
TIiME DROP T AMD <" sl Cuse~Clock To-get acd Irasdom)
: (mumber ¢ to IxyTr VTE
CASE . { which use t6 =e‘éc”“a
¢ OF 32 ENDOF 2.0 DLW TET
1 OF 42 ENDOF TR W
Z DF 42 ENDCF R
= 0OF SE EMDOF FE
DEFAULT. { can’'t oceur ¥F7a_
ENDCASE BRI R T R
SCORED C! MYMOVE { store theigowsd, .pake it 2
SCOREC EAVE_MOVE (save it . afd’lF “L_7
DRAW _MEN 3 { difaw. it }II-I T
: REVERSI (executing this Elays“the game)
BESIN EENEAU
g8 MODE { =2t B. cslnur msde 3
INIT-BOARD ¢ initialisethe board
HEADER (the name-of” the game !
MEEW { choice of . tolours ?
#MOVES CLS (clear tha moves window
SET_TABE { set tabs amnd 'print names !}
SKILL? i chpose playing level »
COLOUR @ WHITE = (if_ the player is white }
IF FIRST_MOVE THEN (the L gowes first)
BEGIM 1T
PLAY_COL .t set player2-tolpups iz
PLAYER-MOVE { and let him move) = r
WIN { is the gams’ c?ErP}*
IF _!‘ - Pl S .o
ELBE { no, ng¢ the GOL go .
COMFP_COL eERmELL .
60 ThIE
WIN { is the game cver § . -7
THEN B P JITa
» UNTIL { repeat until it is)
&AME_OVER { print result)
ABAIND - . . - : {dplay again J S L
UNTIEL . _~_o . - LT W LI, ErSsL P oLawm sral okt
FINISH j; (nn, t1dy up and Finishad o - .x

HERE HEAP ! 1000 ALLOT ¢ allocate 1DQﬁ—by*és £ WOFRiRG™ area)

(now open a big window and clEsr A4t thidl gets ¥idiof any
{ mess that may be outside the playing aresa; then cld®e it @
0 OFEN SCR_S1ZXIZS&A0X0 2DUFR #OUT 2@ ESNAP #BUT 2!
S PAFER -CLE #OUT 2¢ CLOSE . o = oD agnal
EMD FILE REVERGI (erd~a§.i.le-and,p1ay the game)
{ note the order and thev nusEt e on i}

{ the same line) LEMET T

L7 [

\3

.R
IS

- 4

O

1904

O

o>

1

1+

1-

2CONSTANT

2DROP

2DuUp

208

20VER

2R0OT

2

2%

2+

s

2/

2a

3

K2

AZa

ABORT

ABORT"

ABSOLUTE RAM ADDRESSES

ABS

ACTIVATE

ACTIVATION OF TASKS

At

ACe

ADDING WORDS

ADJUST_TIME

ALLOT

AND

ARC

ARITHMETICAL. OPERATIONS

ASSIEN

AT

Al

AR

BACKING UP
- BASE

BAUD RATE

BAUD

BEEPING

BEEP

BEGIN

BLANK

INDEX

3.10.1
3.10.1
3.10.14
3.10.1
3.10.1
3.7.2
3.6

N

N

K

NMEG.\I\JGHMH\IUIU!UIUILI\JHH\IB"O‘

A

0D £ (A = b o o O~ O (A O A A A G G G (A A G BT G A G G A A O
MRNKN WU

Sllloo‘.—h‘llll.llllll.lllllllll
T I I I

-1

{0
[y
N

“
IS

3.10.4
3.1 et
8.2
3.10.3
3.12
3.12
1.8
3.10.1
1¢.4
10.5
10.3
10.3
3.9
.12

seq

7S

DOUBLE LENGTH INTEGERS
DOUBLE LENGTH OPERATIONS
DOUBLE NUMBERS

Do

bPL

DROP

DUF

DUL

D+

D—

D<

0=

EDITOR COMMANDS

ERITOR DISPLAY

EDITOR ENTRY

EDITOR LOADING

EDITOR

EDIT

ELSE

EMIT

EMPTY-BLIFFERS

ENDCASE

ENDOF

END_FILE

ERASE

ERRORS - USER DETECTED
ERROR HANDLING

ERROR MESSAGES

ERROR

EXECUTE

EXECUTION VEETORS
EXEC

EXIT

EXPECT

EXVEC:

FENCE

FILE INPUT

FILL _OFF R ' T
FILL_DN

FILL

FIND

FLASH_OFF

FLASH_ON

FLOATING POINT OPERATIONS
FLOPPY DISK BACKING UP
FLOPPY DISK HANDLING
FLPS_

FLPZ_

FLP

FLUSH

FORGET

FORTH

FORTH-83

FREEZIE

GAME - REVERSI
GRAPHICS HANDL ING

-
2.3 i a
3.2 ;-
Sea DOUBLE LEN@{
.9 B ory L E
2.3 ©p
3.3 b Ezé:
3.5 N
3.6 i‘;":.'
5.2 5,17
3.2 ey
3.6 T.oi.z
3.6 Tav iy
5.4
5.3‘5-5 .:,C:‘
5.2 5=
5.1 “¢
S :o7
5.2 ¥ :}
3.9 ;
3.10.1 R
4.1 Z
3.%9.1 v oo-
3.9.1 s oo
4.2 RS
sz, o1
7.3 s .
7 T :
7.2
7.3 :
8.3.1
8.2 Tz
10.2.3 .
8.1 ©e
3.10.2 v
8.2 oo
B.3.1 Tl
3.2 R
" 3.10.47 b
3.10.4 s
3.12 - -
8.3.1 PP
3.10.3 R
3.10.3 s
9 st seq Y
1.6 bt
5 Lt
4.1)
4,1 L
4.1 =
4.1 =
8.3.2 T
B8.3.2 7
8.3.2 g
10.2.4 ol
12 T
3.10.4 '

+ INTEGERS

m
i

ST
KRR

o

IR

r

T-ﬁ S

Wi TRA LA

i wz»’mr

S 4

w4 :z*nn 3 9
IE N EE R ..~ p__wﬂ;.mﬂ_.w 1._%“”%."“«&“%“ mw.u.M w nww n u -3

u_.ﬂ. ?m,i...v\ »m..a W!.

ﬂ..ﬂﬂfhm“ Mr._ewmn {___.

m] U w

i L

Ny ,W.E

= A N

i R

R o <
bt ! - W i
o 1 .
i & 3 -
% 1Ty]
i il kS
-4

E..,:I::.:...; -...c ..u_?..a; dar.::._.: -4 I...r:..‘,.if A

«..1._..» -~ ruﬁ e e - [PR . W [
I e L u« s ..L .&E « ..".._ e - u_.kn..mwa i wn LI
el m ﬂ. [a A S 'S S i LR i 1 4 v »r.,:n. oy -

i R I T I L v
- B} N Y ST . i L

E M} i

2 —
-y .1 22 v 2 ..1.1. 1.

oo v O -03 ™
3.;1.3-oc,1¢f1.7q;e‘1.1.;nu3.b1*6,aAu3.;1.é.aq_E w;7.1.41-1

g

Q¢

(n i}

&

8333333333333333333333E333&&Lw138833 ﬁurl
———

D

‘llil.

mn

L] [

*/MOD
%/
+L0ODP
S
i
L 1
-1
-2
=TRAILING
>IN
>R
?DUP
ERROR
?J0B_1D
CCOMPILE]

¢
*
-
>
?
i
a

S0

.SIGN 3.11 otz
SILENCE _ 10.3 I
'SINBLE LENGTH INTEGERS 2.3 TLr
SLEEP 10.2.4 -z
SMUDGE o 8.1 et
. SDUND GENERATION 10.3 oo
. SOUND 10.4 1L
. SPACES _ 3.10.1 DLTLE
SPACES - CARE IN USE 1.4,2.4 P
" SPAN ST T T T TE10.2T - - s
SP! _ 6.2 P
STACK RETURN 3.13 LT
STACK 2.5,3.5,11.2 °
STARTUP COMMAND BLOCK 6.1 o
. STARTUP See System Initialisation
START 10.2.3 s
STATE 8.1 ==
STRINGS 3.10.1 -
STRIP . o 30 1003 "
SUPERFORTH PROGRAMS 2.1 L
‘SUSPENDING TASKS 10.2.4 3
SUSPEND_ME 10.2.4 -
 SUSPEND 10.2.4 . =
SWAP ; o 3.3 LA
SWITCHING BETWEEN MODES 3.8.2 e
SWITCHING ON 1.2 T
SWITCHING ' SUPERFORTH ON* 1.3 s
SYSTEM INITIALISATION & -
SYSTEM START 6.2 - -
s~>D 3.1
TAB 3.10.3
THEN 3.9)
TIB 3.10.2 CL®
TIMEDUT 10.1 g
TIME 10.4 Lz
TOs 2.3
' TC-DO 8.3
TYPE 3.10.1
UPPER' CASE LETTERS 2.4
VARIABLES, 3.7
VOCABULARIES 8.3.2
WARNINGS 7.4
WORDS 1.3
WORDS - DEFINING 3.8 ey,
WORDS ~ DESCRIPTIONS 2.5 _E_LSQQ
! 8 0 .c;_ '52“--.,15 s AT ?«{'-,“?E: ‘il b %i-’": .
£DEFAULT LS TR Rl N ML) Al Let b b
£FILE o N AR
£IN 10. ¢ v :
£0UT 10.1 Fa——s e
£PRINT 10.1.2
£8 3.11
£T1B 3.10.2
£ 3.1t

£> 3.11

L%

H.

HERE

HEX:

HEX

HGLD

ID.

IDENTITY BF TASKS
IF '
5IMHEDIATE WORD
IMHEDIATE N
INITIALISATIDN

3.10.1

8.1

3.10.1% -
JI.10.1 - T
3.11

8.3.1

10.2.1

3.9 -
3.8.1,3.8.3 “--

8.1 -

See SYSTEM INITIQLIQATIQN
3.10.3 -

ETIFRT I B
v -
E B R |

INPUT

FROM FILES

INPUT FROM STD FORTH BLOCKS

INPUT INTERPRETATION
INPUT NUMBER HANDLING
INPUT REDIRECTION
INPUT

INTEGER OPERATIONS
INTERPRETIVE MODE

1

JOB_1D

 JOB CREATION

JOB "IDENTITY

JOB -

3

KEYBDARD INPUT
KEYBOARD quns
KEYROW

KEY

KILL

K

LATEST

LEAVE

LINE

LISTING OF REVERSI .
LIST -

LITERAL

LOADING NAMED FILES
LOADING THE EDITOR
LOADING THE SYSTEM
LOAD_FILE

LODAD - .

LOGICAL OPERATIONS
LOoPS

LOOP

LOWER CASE LETTERS
L/B

MACHINE CODE INSTRUCTIONS
MAX - -

MDV1_

MDVZ2_

MDV

' MEMORY HANDL.ING
MEMORY MAP
MICRODRIVE HANDLING
MIN

MODE

MCD

WHURrUBRBBEBUS BANWWWUBR=~ A b

[]
- e
Q
L]
4

4.2
4.1
2.2
2.3
i0.1.1
1.3

J.1 @t seqg

2.1
3.9
10.2.1
10.2.2
10.2.1
10.2.2
3.9

1.4,3.10.2°

3.10.2
3.10.2
3.10.2
10.2.5
3.9

| I] a []
s MR R MR OOBRR RN N

E .

4 8 8 pi b 4 8 @ &
o

Jo Y

[
[o
[y
[]

. wpeo

LTI

L TS
3

L2

.......

R
T
v

5
P PETIR

[3]

1 -

&6

BLK 4,1 .
BLOCKS 4.1 v
;gtucK-F?LL FHILSTY »%@%g'ﬁz_ 5wt
 BORDER 3.10.4
BUFFER 4.1
" BYE 10.2.5
B/BUF 4.1
' CASE 3.9.1
CIRCLE 3.10.4
CLOSE 10.1
CLS 3.10.3
| CMOVE 3.12
CMOVE> 3.12
- £0LD 6.2
'COLON DEFINITIONS 3.8.1
'COMMAND BLOCK 6.1
COMPILATION MODE 2.1
COMPILE 8.1
CONDITIONAL TESTS 3.6
CONSTANTS 3.7
CONTROL STRUCTURES 3.9
CONVERT 3.11
COUNT 3.10.1
_CREATE 8.1 _
CR 3.10.1 “he e
CS1ZE 3.10.3 wn T ET
CURSOR_OFF 3.10.3
CURSOR_DON 3.10.3
CURSOR 3.10.3
c! 3.7.1
c, 8.1 r
C/D 5.5 -
c/L 4,1 :
ce 3.7.1 -
D.R 3.10.1 .
D. 3.10.1 men e
DO= 3.6 o7
D2 3.3 e
D2/ 3.3 s
DABS 3.3 o
DATE 10.4 Lireer
DATES 10.4 s
DAYS 10.4 Tt C e ae)
DECIMAL 3.10.1 FEEIE O SALL Ten SR ;
DEFALL.T 3.9.1 = CE e e
DEFINING NEW WORDS 3.8 . LT <
DEFINITIONS 8.3.2 - -
DEPTH 3.5 s -
DICTIONARY MANAGEMENT 8.3.1 -t ;
DICTIONARY STRUCTURE 11. .l -
DICTIONARY 2.1 s -
DMAX 3.3 - xw e o
DMIN 3.3 Sal.B Rt It
DNEGATE 3.2 e RS
DOES> 8.1 - i

1

W -
-

u

v -
4
e

[

—

4

-
v -

{23

s PLQYE&*@QEE~:: :”“‘-atlsws_*he playar to make his move)
BEEIM s s S@pTooT DT . . :
PLﬁ? _CoL - i { set player ‘s colpur }
ToASS TGN D”ERAT'GN ““—DU EUALLATE { only evaluate when }
SENPO_MOVES <~ 0 omLr { check if h2 can move)
=oLRQEMOVES 8 28 - - ¢ if he can then !
IF BGET_MOVE DULF { get his move)
IF PLAYER C! - { if he has made a3 move:
PO _MOVES @ { clgar top =of FO move list 3
G OYER !
FO_FTR +.:o- R { initialize FO_PFPTR !
-1 NEW_MBOYVE ! { ensure a ngw nove |
< oPEAYERTL@C S { get player ‘s move !
DUF BO2RD L€ 135 > { and check if he has ?
IF CHECK_B_WAYS { made 3 valid move)
PQ_MUUES | Ca8 o=
=nn s THE S
IF CLRMSE { if not, tell him ¥
sz ."or. Illegal move, try again
whTLo = 10075000 BEER { with a rude necise
= or o 20150 BUSREND _ME { wait 3 sscond= @
XL #MOVES { and clear his move)
Senv . v R _TAR @ TAR 2 ERPALES O ¢ from #MOVEE 2
Tite . T ELBE s ¢ mpve is wvalid)
. L PLAYER SAVE_MOVE { sp save it }
£z v i. DRAW_MEN —1- { draw the new position?
-2l P_CR7 ' (possibly a new line)
THEM
ELSHE-3+C TFEN—W (player has swapped sides so leave)
ELSE { =.ZT omro oronL o { he can't go so ¥
QO PLAYER™ !=n>e - - { clear PLAYER)
CLRMSE . You can t go " £ and tell him ?
-50. 500G. BEEP { audibly 3}
200 EUSPEND ME -1 { wait 4 sgconds)
& _CR? (possibly a new line)
THEM ~ELLomIoEC :
UNTIL 3 { repet urmtil valid move or can’t go)
: WIN Z Y= f£lag) B
COMP @ PLAYER & +.0= FULL OR { flag is true to)
{ indicate end of game, ie &4 pieces on the board or neither 1}
{ side car move 3 - oo
: AGAINT { does he want another game)

22~ CERMBGES 2 A= "—Anu"her ;ar‘e ? A Y/N _)_ "o
-~ CURSOR ﬂNZfEX HSDH E - -

o BRIM» s Ll -
C AL ﬁﬁwiﬂ T ’ o
s GAME DV¢R { if he hasq t qu't print the result in)
ran wms ol big letters - :
-z QFL&& - ‘:_. : A T i
IF CLAMSE L
T L LC8IZE 7 1 AT
= SCORE @ C_SCORE @ 2DUP = -
IF .* Game drawn® 20R0F
ELSE > IF L% . You win" ELSE
THEN 2 o cafdE T UL . ¢
200 SUSPEND' MEF © el ews b o
THEN &

:i{bi“n MQVEE 'Z'ﬁ works on ply 4,5 and & see BEST_MOVE

{ lecep for all P3 moves
Fd_ NGUES { get list of F4 moves)
' { if playing level > & go ceeper
‘D””NE“ " { possibly prune nc. of moves !
"ET PS_MOVE { get list aof PSS moves)
_ 1 oMAX O { if level > B go de=eper ?
T DO BEST_P&_MOVE { and get best move at ply &
_ TEST _P&_BCORE ¢ and test it and exit i+
“E. 0 IF LEAYE THEN { we can leave this loop now
S s & PS_FTR 4 { or move on to next FE move }

- LgoE
“ELLSE DROF

-

lavels 7,8 so caiculate and

i}

~Z.- 52l pslarORE SCORES ! { load PS value)
THEN
TEST_PS_SCORE { is the FS move better 7)
©IF LEAVE THEN { yes we lsave this loop now)
4 P4_PTR +! (. else we go on to next P4 move)
__igep -
e ELSE DROF { levels 5,46 so calculate and)
=4 _SCORE SCDORE4 ! { load 4 value }
THEM
TEST_F4_SCORE { is the F4 move better 7)
IF LEAVE THEN { yes, leave this locp now)
4 Pa PTR +! ¢ else go on to next PS move)

[

ndw we have the word’ which finds the GL°s best move, it)
earches to a depth depending on the selected skill lavel)
level 1 searches toc a2 depth of &t move 2

noves
1

and &
ar¢ j=§

[

3
}
L1 }
)
H

-3
0, I i Bk
SV T RN

Li

. (1)) B
levels 3 and 7 prune the number of moves sxamined Lo makes)
the L move faster while still searching deeper)

The alpha-beta algorithm is used to make the ssarches
faster, a detailed descripticn is bsyond the scope of this)
deacr‘pt‘crﬁjaee for' example ‘" Computer Bamesmanship " by 3
David Lewys-Basically it terminates a search through a 1list)
of moves i¥ it finds a move that is better than sonz an)
‘opponent ‘carr force, by SE‘EEtlﬁg ancther move which has been)
{ previcusly examined)

{
{
{
£
{
£
{
€
{
¢
{
{
¢
{
{
(
¢

o3 HIGH i nml ad === nl ad n2) { finds the position n2 of the!

1
i
bind!

‘highest valued move in the list at ad, nl is the
number of moves in the list)

——

DUk 2+ 2+ { gat address of next mcve)

DVER S PICK { —— n! adi adZ adl ni
__buF 1 > { only do i+ more than one mcve)
ey

loop for nl-1 moves 2

it the next < current }
then save Lhe n=at 2

ang move to the next move)
and respegat !}

arnd tidy up stack !

DO »R RE T+ @
) OVER 2+ @ <

77 7 - IF R» DROS DUF YR THEN
ST 7 2+ 2+ Re
LOCF
- ELSE DROF

T THEN SWAF DROP ;

P A el e

3 SORT_HI {npad ——) (sorts a move list at ad with)
{ n moves into order,; highest at the tep
CCQVER 1 o (only if meore than 1 move)
- IF OVER 1 loep n—1 times)

Do HIGH
N *R DUF 2& RE& 2@
= 4 PICK 2! R» 2!
SWAF 1- SWAP 2+ 2+
LOgP
THEN 2DROF ;

find position of highest 7
and swap with the tep of)
the list)

and repeat for the next move
in the list }

-

R R

{ the next few copy & position to another board for analysis)
{ o anothEﬁ"dgp;h_cf szarch)

BO— 3P
C- 3 FO_BOARD >BODY
£’3 PL_BOARD
GUF EOGRRD_AD !
»BODY SIZE CMOVE ;

copies PO to P1 3}

get addrazss of board FO)

and codg field address of Fl
ensure beccmes curtvrent board }
and copy PO to P1)

E L A

Pi->F2 o see FO-FPL)
- L1 FL_BOARD »BODY ["1 PZ_EDARD DUF EBODARD_AD !
>BODY SIZE CMOVE

P;“)Pa .
1 R BOARD EODY L3 P3_BOARD DUP BOARD_AD !
“BQDY SIZE CMDUE_;

ue

F3-3F4
[3 PS_HOARD »BODY
»BODY SIZE CMOVE ;

™
N
[

P4 _EBOARE DUF BOARD_AD

F4->PS ,
L] P4_ROARD “EDDY L[] PS_EOARD DUP BOARD_AD !
~>Euny_51;s_gwuve :

1 PSS-S - o _
£°1 PS_BUARD »BODY [1 P& EOARD DUP EBDARD_AD
>aipy STZE C”GVE H o
¢ SuUB_SIZE {nad — n 2
{ subtracts the size of a aove list From 3
o . o . - ¢ the move value in the next higher move I
ST S E :Tuﬁlst i adjusts value for mobility)
R il i Y =13 4 addrass of move valug)
Y QUER NEGﬁTr’SWQP ¥1- 3 "< ¢ and subtrsct mofrom it)

. um

Sl
=

{

-
*

4
»

: { starts after the FC list :
GENPL_MOVES { sese GEMFO_MOVES)
E 1 r._BQARD BECARD_AD !
F1 MDVES @ PLI_FPTR ! P1_PTR MOVE_AD !
S) g1 8l ' FP1_S5IIE SILE PFTR ! © O F1_MOVES
v"GﬁF MOVE P1_FTR & 2+ 2+ P2 _MOVES ! 3

I
]

fsmph MOVE
L3 P:_BUARD BOARD_AD !

. P2_MOVES @ PZ_FTR ! F2_PTR MOVE_AD !
.0 P2_SIZE ! PZ_SIZE SIZEFTR ' G © P2_MOVES & 2!
COMP-MOVE P2_FTR @ 2+ 2+ PI_MOVES !

s;mpz_mavse
£°3 PI_BOARD BOARD_AD !
FPI_MOVES @ PI_PTR ! PI_FTR MOVE_AD !
@ PI_SIZE ! PI_SIZE SIZE PTR ! O O F3_MOVES @ 2!
COMP-MOVE P3_FPTR @ 2+ 2+ P4_MOVES ! ;

GENP4_MOVES
£] P4_ROARD BOARD_AD !
F4_MOVES & P4_PTR ! P4_PTR MOVE_AD !
0 P4_SIZE ! P4_SIZE SIZE_PTR ! O ¢ P4_MOVES
- COMP-MOVE F4_PTR @ 2+ 2+ PS_MOVES !

(]

. GENPS_MOVES

"] P5_BOARRD EBOARD_AD !
-PS_MOVES @ PS_PTR ! P3_FPTR MOVE_AD !
.0 PS_SIZE ' PSI_SIZE SIZE FTR ! 0 0 PI_MOVES @ &!
COMP-MOVE PS_ FTR @ 2+ 2+ F&_MOVES ! ;g

_GENF6&6_MOVES
--[’1 P&_BOARD BOARD_AD ! P&_MOVES &

PS&_PTR ! P&4_PTR MOVE_AD ' O P&_SIZE !
- . F6_SIZE SIIE_PTR ! O O FA_MOVES & 2! COMP-MOVE ;

pow- Wwe work ocut move values by alternately subtracting and
adding values from the next higher move: what is good for the!
opponent is bad for you so subtract his value)

=1 _8SCORE (===~ n) { zalculate Fl move’'s value]
PO_PTR @ 2+ @ { get FO move's value)
F1_PTR @ 2+ & { and P1 move’'s valus)}
-3 { and subtract)
P2_SCORE £ — n
Fl1_SCORE { get Pl move's value)

PZ_PTR @ 2+ & + 3 { and add F2 move’'s value

next 3 very similar)

FI_SCORE FZ_BCORE PI_FTR @ 2+ & —
F4_SCORE PIZ_SCORE P3_PTR & 2+ @ +
=5_SCORE F4_SCORE PS_FPTR €@ 2+ @ -

wn 'ad ap

SCCRE (print the new szore }

G BOARD START_BOARD SIZE CHMOVE { copy position to the I
-0 MOVE_NO ! 3 (start and zero the move number }

- OPTICNS { prints the cptions avajilable on the)
: { plaver’'s turn >
CLRMSG G & AT

- _a" X sxchange colours 7?2 best move" CR
o-m-.+% 5 set up board 2 guit game" CR
.? R retract move L skill l=vel”™ CR
.Y ESC return to SUPERFORTH" CR
-1 press any key to continue”

LEY DROF H

s 7OPTION {nl n2 — Flag)} (selects an option }
* { depending on nil+ni)
CASE 8B OF SWAF_SIDES ENDCF €)

82 OF RETRACT ENMDOF
81 OF QUIT_GAME ENDOF
&3 OF .BEST ENDOF

76 OF BKILL? © ENDCOF
g% OF SET_POSITIGON ¢ ENDOF

X
SO
Q)
7o)
L
5
772 OF .OPTIONS O ENDDF o

A AT . W el g, gy

27 OF ABANDON ENDOF ESC 3
DEFAULT © anything slse)
ENDCASE ;

6ET_KEY CURSOR_ON KEY CURBOR_OFF 3

: GET_MOVE { gets the player 's move or option }
BEGIN -
YOUR_G0O% print message)

$MOVES P_TAB @ DUP TAE
2 SPACES TAB
BET_KEY &5 — DUF 8 U< 0=
IF &5 7OPTION
ELSE DUP &5 + EMIT
10 + BET_KEY
49 - DUF 8 U< 0=
. IF SWAP DROP 45 70PTION
ELSE DUF 49 + EMIT

positiaon cursor and }

blank any characters there’
if the key is not & to H 3}
check for opticn }

else print A to H }

get another key 3

i+ rot 1 to B

check i+ option)

plese print 1 tog 8)

R T e e e

g % + BET_KEY 10 - 7DUF { Iook for ENTER 3
IF SWaAaP DROFP 10 70FPTION { if mot check optiacn ?
ELSE -1 (if none of these ansure)
THEN { repeat the loop until a }
THENM (valid move is read)
THEMN
UNTIL 3
2. M%BUW { reguests the colours)

CLRMEG ." Po you wish to play " CR
" black or white 7 (H or W) *
WHITE BLACK

.- CUREER_ON KEY CURSOR_OFF { get a key ?
CLRMSG &6 = (i¥f a W then set the }
IF CSWAF THEN { colours appropriately)

OVER COLOUR ! C_COL ! P_COL ! ;

i SWAF_SIDES ({ called to swap sides ie cheat !)

F_CCOL 6 C_COL & P_COL ' C_CBL ¢ { swap the coiours }
i PLAYER ! { to ensure the BL plays)
P_Tak @ C_TAB @ FP_TAE ! C_TaAB ! { swaps the tabs for
) { #$MOVES)
SET_TAES { and swaps the titles)
) 0O -1 ; (flags to esnsure we leave GET_MOVE
1 RETRACT (the optiocn tog takee back a move)

START_BOARD O PO_BEOARD SIZE CMOME { copy the starting)
{ board to F4)
CINITPO (select PO board)
O DLD_SKILL ! { the G@L won't know the best reply)
-1 MOVE_NO +! { go back one move)
MOVE MO 2 Q< { if it is now negative, we are at ?
{ starting positicn so @
IF 0 MOVE_NO ! { clear move number)
100 S000 BEEFR { make a rude noise)
CLRMSE { output a message ?
52 AT ." At starting position”
150 SUSPEND_ME { for 3 seconds }
. ELSE MOVE_NO @ 0> { octherwise if at lszast ons move on)
S IF MOVE_NO @ O { for every move mads 3
_ DO I GAME Ce DUP 127 = make the move in GAME)
= IF WHITE ELSE BLACK THEN play the correct 3}

ey e,

COLOUR ! colour, save the move’
127 AND FLAYER £ in FLAYER }
PLAYER MAKE_MOVE { and make the move without)
LOOr (drawing it
THEN
SWaF_BIDES ZDROF { swap colours)}
DRAW_ALL _MEN { and draw the new board)
#MOVES CLS { clear the moves)}
THEHM
FLAY_COL O { the flags to exit BET_MIVE)
ASEIGN OPERATION TO-DD EVALUATE ; { reassign CFERATION

QUIT_GAME © GFLAG ! O PLAYER ! © COMF ! & -1 ;
(leaves the current game and regquests anocther)

{ variables for setting up a new board)

VARIABLE SQUARE { holds the square number of the curscr
VARIABLE X { the X and Y coordinates of the curscer)
VARIABLE ¥ (in #BOARD)
: INIT_CSOR ¢ initialises the cursor and square)

40 SRUARE ' 83 X ! 73 Y ' 3

SET_srU! cocnverts the XY pisel coordinates to @}
a squars number and loade SOUARE ;
each sguare 25 pixels wide)

fiddle factor, ¥ 0 at top, sguare 1)
at bottom 3

“
o
+

e T S o B .]

v &= 17 / each sguare 17 gixels high @
7 ¥ - times the squares per row and subtract)
SEUARE ! g te leave and store the square number)

L/R {n == 3 adjusts X by n pixels lett or right)
X e + o get X and add n)

200 + ZO0 MBOD

ensures rolls round left and right
X ' SET_SOU 3

and save and load SQUARE)

P B

71

BT L R Ly

-

CHECK _Z_WAYS { nl nZ

CHECK_1_WAY
NEGATE CHECK_1_WAY ;

n

-—=nl —-nZ i { checks whether =z)
¢ move on sguare ni is valid in direction:
{ nZ and direction -nZ ?

{
(

checks in one dirsction eg NW)
and the opposite way =g S5E)

The next word uses the linear square numbering system to)
check in B dirsctions, ko move north, say, a step of 7 is 2
needed eg sguarse 10 + 2 gives sguare 19, adding another 9)
gives 2B =stc, this moves north on the board, the directions !

are defined by steps)

% rmaorth - south b

i east =1 west)

10 north-=ast =10 south-west }

8 nerth-west -8 south—east

CHECK _g_WAYS {n ——)} { checks whether a mcve on sgquarel

{ iz valid in all 8 directions.

1 CHECK_Z_WAYS
B - CHECK_Z_WAYS
1+ CHECK_Z_MAYS
24+ CHECK_2_WAYS
2DROF 3

GEN_MOVES

80 10
oI 8 + I
DE -1 NEW_MOVE !
I BOARD C& 15 >

L B T T T

IF I CHECK_3_WAY
THEN
LGOF e
+L O00F j
FINISH L { to re

#MEES T 1 BORDER CLS
H#MAIN O 20 AT 3

L T T o B

moves in 8 given position by
testing every sguare on the board
outer and inner loops used to aveoid
testing off-board squares =g 13 ’

{

{
= {
{
{
{
turn

{
{

checks east and west }

then south and north 3}

then north-east and socuth—west)
and south—east and nerth—-wsst)
tidy up stack ?

{ generates the list of wvali

A e R e

set new move ftlag

if¥ square is empty ... !}

then check in 8 directions to
see if it is a valid move)

and repeat for the rest the row:
and the rest of the rows

toa SBUPERFERTH, tidieses the screen

clear #HMESS and the border 1}
and position the cursor 3

ABANDON FIMISH ." Game abandoned " AEDRT

the abandon game message

}

ER7? { decides whether to go to a new line }
{ in the moves window }
1¢ = { new line i+¥ the tab is 10 }
IF CR SFACE THEN i { SFACE forces the BL to new iine
SKILL? { reguests the level of skill desired by the
{ player and sets the tree pruning flag 3

CLRMSG ." Level of ski
BEGIN DROF

11 ¢

1 to 9 3" CR O
¢ drop an invaliid key

EURSCOR_ON KEY CURSUOR_OFF { get a key ?

4% — DUF 2 U<
UNTIL
1+ SWILL ! SET_TAES
SKILL @ DUP © = SWAF 7
IF & ELSE 100 THEN FRU

= OR

NE !

{ until in the range 1 to 7 @

{ save in BSKILL and display }
{ ipn #HTITLE, 1+ T or 7 2
3 { then set the prune flag :

¢

T

(1}

4 MOVE_AD @ +! ¢

MOVE @D @ @ 2— ° {
ELSE
MOVE_AD @ @

2= +! (

THEN 3

HEARDER { writes
#MOIN F 1 CS5IZE {
& 120 24 {58 2 BLOCK _FILL
1682 & CUREOR

the name at

move on the move list 7
pointer, 4 bytes gper nove)
save the move’'s value !

move alrszady in iist so i
ot axtrs vaiue b

the scresn Lop)
in large charactzrs :

ar yellow backgroung !

at the top centre

& STRIF ." REVERSI”
9 BTRIP 2 © CSIZE 3

BFF Z+ 2@ CLOSE g

CLOSE_ALL
£E°3 #TITLE OFF
L3 #MOVES OFF
CL*"1 #SCORE OFF
£°1 #MESS COFF
£’1 #BOARD OFF
SAVE_MOVE { ad
in
ad

DiiF C&

COLOUR @

IF 128 + THEN
MOVE_NO @ BAME C!
1 MOVE_ND +! ;

SET_TARS
{ col
2 10
C_COL @ BLACK =
IF SWAP THEN
C_TAE ' P_TaB !
#TITLE O Z5 CURSOR
SKILL @
C_COL @ BLACK =
IF .» fQLs*”
-1 HUMAN"
Ei EE
. HiMAN
THENM 3

grsr .

print it

T e]

{ ad

-—

(closes channel whose ID j

{ is at address +2Z as saved by #CON)

{ closes all display windows)

——— ad }
array BAME,
points to the move)

{ get the move }

it the colour is white)
then add 1238 }

save move in BAME

and increment

R

umry headings)

{ columns 2 and 1¢)

(if QL's ecolour is black)
(then reverse the tabs J
{ and save in wvariables }
{ position cursor in #TITLE)
(get playing level)
{ i¥ QL is black
{ print QL +irst)
{ then the octher)

CLRMSG #MESE 1 1 BURDER CLS O 1 AT j
clears the message window and sets the cursor position

- BEST

{ variable P_BEST >

CLRMSG OLD_SKILL @ 1
F

F_BEST & .°
10 - 9 /MOD SWAP
65 + EMIT 49 + EMIT

¥Your best move is
{ converts o XY grid reterance)

= (OLD_SKILL »
i so it prints

it out 1}

{ and prints thsam

{ else the other way round)

the move number)

3

{ prints the plaver’ s bsst move as held

{ saves the move being made)
+ 128 i+ a white move }

{ sets the tabs for #TITLE and prints the)

i

1 i+ tke GL kngws 2

and restore strip anc sizes’

IF
1 P_SCORE (yes, prepare to add to b
{ player 's score

ELSE { octherwise the 8L 's score 3}
i €_SCORE
THEN
+! { and add it }
ELSE { square is empty so deo nothing
DROP
THEM
[
#5CORE { output toc #SCORE
F_SCORE & C_SCORE & 2DUP + MEM ! { save the fotal number:
{ of men
C_COL @ WHITE = { swap the scores if the QL is white
IF SWAP THEN
24 14 CURSOR . { and print the two scores at the

120 14 CURSOR . { the correct position ?}

PUT_COORD (used by DRAW_FIECE to copy the circle)
(parameters to PARAMETERS for CIRCLE)
FARAMETERS + & CMOVE ;

{ the next draws a coloured circle on the board orr the screen)

DRAW_FIECE {(n ——)
#MAIN
DUF 10 - 9 /MOD

where n is the square number }
draw on #MAIN 3

converts the sguare number to an }
LY reference to access Y_CEN and
X_LCEN to draw the circle

copy the Y centre coordinate)

and the X centre)

Y_CEN {8 PUT_COCRD
X_CEN 24 PUT_COORD

T T R

BOARD Ce get the sguares value)

IR to set the ink colour 3
PARAMETERS { the address of the parametsrs
FILL_ON ECIRCLE FILL_OFF ¢ draw a disc 3

1 INK H { and restore ink colour }

{ now an execution vector that is used to sxecute DRQN_PIECE ?

{ or not, it is used so that we can later use some words that @
{ may or may not need to actually draw a piece)

EXVEC: DRAW_MAN

{ more variables)

VARIABLE HEAF (base of wark area)
{ six to hold the move values of different level positions)
ZVARIABLE SCORED VARIABLE SCOREL VARIABLE SCOREZ
YARIABLE SCOREZ VARIABLE SCORES VARIABLE SCORES
VARIABLE MOVE_AD { points to a position’'s move list

VARIABLE SIZE_PTR i
VARIABLE SKILL 2 SKILL !
VARIABLE C_TAE

VARIABLE FP_TAR

VARIABLE P_BESTT
VARIABLE P_BEST
VARIABLE OLD_SKILL
VARIABLE RED:FIECES

points to a move list’'s size
the playing level)

0L 's tab waluw for #MOVES)
player 's tab value
provisiocnal player 's best move ?
best move)

previous playing level }
deftines temporary red pieces }

e T T T T S

VAR IABLE

VARIAEBLE
VARIARLE
VARIARLE
VAERIABLE

MEN_FLIFFED

in one direction for a move)

the number of pileces flipped over

)

NEW_MOVE a flag to indicate a new move)
QFLAG

MOVE_ND the move number)

FRUNE indicates whether the list of moves

7 CONSTANT WHITE
2 CONSTANT BLACK
2 CONSTANT SIZE

{
{
¢
{ a flag to indicate GQuit game)
¢
(
(

is pruned or not @

the value of white used by the &L

the value of black)

{
{
{ the number of bytes needed toc hold
{

a game position

ARRAY CREATE ALLOT DOESY + 3
creates a byte array which when executed adds the index to)

stack)

&4 ARRAY

GAME

{
- { the array start address, the size of the array is on the
{

(used to store the moves made)

CREATE START_BOARD 92 ALLOT (used to hold the starting)

e

: FP, FP

FRARRAY

T 5 1

FFARRAY X_CEN

185 FF
260 FP

{ position of a game= }

CREATE DOES> SWAF & % + 3
used to create an array of floating point numbers,
which is & bytes long }

H { compiles a floating point number)

{ an array of the % coordinates of the }

}

each of

3

}

3

{ centres of the playing sguares, usad to)

{ draw the pieces)
. 203 FP, 222 FP, 241 FF,
s 279 FP, 297 FP, 3135 FF,

({ similarly for the Y coordinates 3}

FPARRAY Y_CEN 82 FP, 100 FP, 117 FF, 134 FP,

15

2 FF, 169 FP, 185 FP, 202 FF,

EREATE FPARAMETERS ¢ FP, &6 FF, | FP, O FF, O FF,

{ the parameter list for CIRCLE : see the SIHPERFORTH marnual)

(now use a temporary area of RAM to set the SCALE of the)
{ display, the n

HERE S00 + 18 O FILL

244 FP HERE 512 + 2!
DROF HERE 500 + SCALE

of the

T R e

indicates how good it is,
the value stored.

edges,

ext words are executed not compiled)

{ clear it)

{ and set the scaie }

this makes off-board detection easy.)

These values are compiled into an array which is copied
to the starting position of every game.)

3

{ pixel numbers }

{ thé scale factor in FF tormat

3

}

next we allcocate to every sguare of the board a value which)
the squares value is 148 less than
When a game is played & valus of less than !}
16 indicates it is occupied and gives it’'s colour, a valus)
of more tham 1& means unoccupied, squal to 14 is off the
"board there are 92 squares, &4 to play on, and 28 round 3

)

)

{ REVERSI version 1.2 copyright 1%85 G6.W.Jackson }
CLS 3 1 C5IZE CR . (LOADING REVERSI) CR 1 © CSIZE

#CON is a defining word that creates and opens a)
digplay window and saves the channel ID. When the)
newly created word is executed it makes that window)
the input/output window by loading it s chamnel ID)
into #IMN and #OUT)

: #CON ZCONSTANT
DOES>» 2@ ZDUP

#IN 2!
#OUT 2! ;

creates a double length constant)
lsaves the channel as T0S, twice |
which it loads into #IN 2

and #0UT)

gy e

{ now we open all the windows used in the game)

@ OPEN SCR__1BOXS0AS2X 44 #CON $TITLE (the red title window }
¢ DPEN CON_18GXBOASZXIS #COM #MDVES { for the moves
© DPEN SCR_1BOXZAASZXITZ #CON #HSCORE { for the score 1}
O OFEN CON_420X54A52X199 #CON #MESS { for messages and)

{ information
G OPEN CON_202X136A268X44 #CON #BDARD (the playing bogard)}
#FOUT Z2E #COMN HMAIN { covering the whole screen 3

INIT_SCR DUF PAPER STRIP INK DUF BUORDER j;
initialise screens, used by the below words to set the)
colour and border of each display window)

g, B

: DRAW_SCR #MAIN makes #MAIN the current window)

{
< { the border width }
i (the ink colour)
S { the paper and strip colour i
INIT_SCR { set the above parameters)
cLs { and clear the windaow)

£

now oo the same for the rest of tha
{ windows)

#TITLE © 7 2 INIT_SCR CLS

#MOVES © 1 & INIT_SCR CLS

HSCORE € 7 1 INIT_BCR CLS

36 2 CURSDR ." SCORE" { print the heading ?
#MESS 1 1 S INMIT_SCR CLS
$#BOARD O 1 4 INIT_SCR CLS H

{ DRAW_SIDES draws the grid of the playing board and prints)}
{ the square coordinates round the sides)

: DRAW_SIDES #MAIN done on #MA&IN because the letters &)

numbers are ocutside #BOARD)

{
{
S6 { the ABCII code for B)
173 £ the end pixel Y coordinate 7
3% { the start pizel Y I
oo { lopop to print numbers 8 to 1)
222 1 CURSBCR { position the pixel cursor)
DUF EMIT { print the digit ?
i- { decrement the ASCII code
i7 { the loop step, digits are 17 pinels)
{ apart vertically)
+1 O0P { and repeat for the next digit
DROP { drop the TOS, no longer nesded

A

realise why!).

. You make a move by typing the grid reference of the move: for
T example, HZ, followed by ENTER. Any other key either selects one

of the command options listed below or cancels the move. Note
that commands are accspited in upper case onily — so i+ you are
lpaving the computer unattended in the middle of an important
game., press CAFS LOCK to ensure the position and game are not
tampered with! Press CAPS LOCK agsin to re—snable command entrvy.

»eae Display Options

-+« Exchange sides (ie; chest!}

--s» Setup a new position

Retract one or more moves {is; cheak!)
.- Hint - Suggest a move (ie; cheat!}
saee Guit the game - ie; Resign
«=e= Change skill level

ESC Return to SUPERFGRTH
CTRL+C Return t5 SuperBASIC

MmEDDm =0

Mogte that the O option makes the above tabkle redundant - you
need not have the manual open to play Reversi.

There are 9 playing levels ranging from the easiest at level 1
tp the hardest at level 9§ (in which the L has a 7 move
lopk—ahead !)., On levels 3 and above, while the BL is thinking,
it displays the move currently being examined, the best move so
far and the last move considered: with these last two it aisc
displays a value which indicates how good the move is (the
higher the value the better for the 8L). This makes waiting for
the &L to move very interesting even when it is set to long
playing times!

The levels (and the approximate time taken) are:

i ... Beginner 0.1 seconds
2 ... Movice 2 seconds
S esna Intermediate 30 seconds
4 ... Fairly strong 1 minute
S ... Strong 2.9 minutes

‘8 we.a Very Strong L= minutes
7 es.. Master 10 minutes
8 Expert 30 minutes
P 2s.ea Champion 1.5 hours

Wher a move is made, the pieces affected are dispiaved in red
for a few seconds, so that yvou can the move s effect.

I¥ you want to see the computer play against itself, press X
repeatedly.

Setup mode (5 is useful either to soclve Reversi problems or
to return to a position that had to be abandoned. Any position
may be setup but some may not be much fun (i3 the empty board,
which will of course result in a drawn game!). The keys to be
used for setup are displayed on the setup screen, but here is a
list of them anyway:s

Arrow Keys <... Move the cursor
W0 Put a White piece on the sguare
B FPut a Biack piece on the sguare
C +.... €lear the board
N Elear the square
Esc .-.. Terminate setup made

The system uses indirect threaded code: ie; sach cail
to a secondary points to the code pointer of that secondary,

~which itself points toc the code to be executsd for that word.

1.4 INFORMATION FOR MACHIME CODE USERS

DF SUPERFORTH uses the following registers,; which,:if
useg by some machine code, must be saved before and restor=d
atter the machine code:

HOLL holds the SUFERFORTH address (ie; 16 bit relative to
AZ) of the USER variables.
Al.L is the IF, or interpretive pointer, that points to the

parameter field of the SUFERFORTH word currently being
executad. Al.L is pushed cnto the return stack when a
secchdary is called.

AZ.L holds the absolute address of location © in the
SUPERFORTH dictionary: all SUPERFORTH addresses are
relative to AZ.L

a3.L is the data stack pointer. It holds an absoclute
address angd points ko the second item on the stack.

f4.L is the return stack pointer, an absolute address.

A7.L is used as an internal stack pointer +to temporarily
beld data during GDPOS calls. It is also used by 2D0S.

DZ.W is the top of the data stack.

In addition to thess, the other registers are used for various
operations and cannot be guaranteed to remain uncorrupted, but
changing them in a machine coded definition will not matter.

I+ a machine code word is inserted, 1t must end with the
following code (in HEX) or a branch to such a sequence, which
is the well known NEXT sequence:

HEX I219 MOVE.W {(A1)+,D1
IA72 MOVE.W Q{(AZ,D1.W) A5
1000
4EF2 JMP DEAZLAD. W)
DO0o ’

11,5 ABSOLUTE RAM ADDRESSES

The absolute address of +the dictionary is beld as a
double variable in SUPERFORTH location 32776: ie; typing

I2774H 24

will lgave the absolute address of SUPERFORTH location 327468 as
a double-number on the stack. This may vary when the SUFERFORTH
system is loaded, depending on what other tasks are running
before SUFPERFORTH is loaded and whether extended RAM is fitted
to the &L.

10.3 SOUND GENERATICN

Some SUPERFORTH words are provided to facilitate use of the BL's
sound generator; these include simple beeps and a defining word.

BEEP { nl N2 —-——) generates a single tone: nl is the pitch
{ in the range © to 255) and nZ2 the duration (in
units of 72 microsecs Y. If nZ is zero, the sound will
continue imdefinitely until amother BEEF or SILENCE .

Eg; S J000 BEEFR

BEEFING { === flag } tests the sound generator and leaves the
flag TRUE i+ sSound is being generated, otherwise
FALSE.

SILENCE {(———)} silences the socund generator.

SOUND {nlin2 nZnd nS n&n7nB ——) is a defining word

used in the form

SOUND <namex
to enter a word called <namer> in the dictionary which,
when exscuted, will generate the sound defined by
parameters nl to N8, which are { see GL User Guide):

nl fuzziness range © to 15

n2 randomness range O to 1I

N3 wrap range © to 15

n4 step grad_y range -8 to 7

N3 duration range { teo A35E0
néd interval grad_x range O ko &353TC
n7 pitch 2 range 0 to 255
n8 pitch 1 range O to 2355

Eg; © 0 15 1 1300 100 30 1 S0OUND ZAF
Now tvype ZAF to generate the sound (this sound
is already in the dictionary).

10.4 TIME AND DATE

Words are included to enable vou to set and read the internal
ciock of the GOL. All times are expressed in seconds and affect
the time and date.

ADJUST_TIME { d -—— } adds double-—number 4 to the time. d is in
seconds and may be naegative, e9;:
100, ADJUST_TIME adds 100 seconds

DATES® { —— ad)} leaves the address of a string representing
the date and time on top of the stack. The string is
stored in the standard SUFERFORTH format, ie; the
first byte is the number of characters:

DATE# COUNT TYPE prints the date and time
DATEEZ 12 + § TYPE prints the time only

LRAY® (=== ag i: as DATEF, except that the string is the
day of the week, eg: '
DAYF COUNT TYPE

sS4

RUNS
OWN_USERS
OWN_FAD

OWN_TIR
OWN_BUF

10.2.3

ACTIVATE

EXEC

START

{ -~) must only be used after JOE (see above }

{ ——= ad }
{ ad —— ad }
(¢ ad ——- ad }
{ ad ——— ad)

These four words reserve dictionary space +or USER
variables, PAD; TIB and a block buffer respectively.
ad in all cases is the address of the USER variabie
area. OWN_USERS must be used immediately besfore the
ather three, which are optional: eg; a seguence might
be:

OWN_USERS QUWN_FAD B 16 1 JOB FRED RUNS MARY

If a task inputs data or outputs data, it must use its
own USER variables and FPAD (for output } and TIB
{ for input . An input buffer must be used 1if datas is
to be read from mass storage by the task.

An additional requirement for tasks using WORD and the
graphics words ARC, CIRCLE, LINE, FOINT and SCRLE is
an area of dictionary for working (faor an arithmetic
stack for QDCOS). To allocate this, add:

F10 ALLOT
after the task is created using JOB ... RUNS ...

Task activation

{dl d2 m —-—=1} is used to start a task with jpb
identity d2. di1 = & Ffor the current job to continue
and -1 to suspend the current job until the activated
job is finished {(do not use di = -1 with CLOCK

because CLOCK never terminates). n is the new task’'s
priority: 1 is the highest priority and 127 the lowest
priority.

Eg; 0 O ?J0B_1D CLDOCK 15 ACTIVATE

starts the clock.

{ ———) is used to activate a machine codes task from
mass storage, just like SuperBASIC EXEC. The new
task’'s identity is left in variable JOB_ID .

Egs; EXEC MDV1_TASK { assuming a task named
TRSK is held on MDVI_).

{ dnl -) is used as START <namel to start an
inactive job with priority nil. If d is G, the current
job contipues; if¥ d is -1, the current Jjob is

suspended indefinitelvy.
Eg; to start the clgck with priority 10 { assuming the
clock has never been activated J:

0 0 10 START CLOCK

10.2.4 Buspendinag and restarting tasks

FREEZE

{dn -——) suspends a task with identity d for n
fiftieths of a second, =29:
*J0B_ID CLOEK SO0 FREEZE

S2

TIMEQUT { === n J): a constant defining the timeout of an input
orr ocutput opsration, it iz initially -1, which means

that input and output cperations will
indefinitely if the input or output device is

ready or has no data. If TIMEQUT is positive,

walit

not
it

detines the length of time the GBL will wait for input
or output in fiftieths of a second. This may be used,

for example, to read the kevboard but mot wait

if ne

key has been pressed. Alwavs be careseful to restore it

te -1 afterwards.

1g,.1.1 Redirection of input/output

This may be achieved using the above words inn the following way,

for example to output to a new screen windows

2VARIABLE #MEEBSAGES
O OPEN SCR_4ZOX44ASZAZIOF? $MESBEAGES 2!

and whenever you want to output to this window vou wuse the

sequence (of course, you can define a word to do this J:
#MESSAGES 28 #0OUT 2!

any output now goes to this new window. T revert o the

original, type:
H#DEFAULT #GUT 2!

A similar sequence is used to redirect input.

10.1.2 Pripter cperation

Certain words are already provided which perform the

redirection, enabling you to output to the printer:

#PRINT® (—— ad }: a double variable used to hold the channel
ID for the printer.

PRINTER_IS (-—-——)} defines the characteristics of vour printer

{see2 the (L User Buide for details), opens a channel
to the printer and saves the channel ID in double

variable #PRINT: eg; .
PRINTER_IS SERIE

PRINTER_ON (———)} simply selects the printer as the output
device by loading #FPRINT into #0UT. It also =nsures
that +the prompt sk is output to the disglay and not
the printer, and that CLS does not send nasty

characters to the printer.

FRINTER_OFF (——— } restores the default ocutput device to #OUT.

FRINTER_CLOBE { ——-— } closes the printer channel.

£0s { fpl ——— £p2)
SIN (fpl ~—= fp2)
TaM { fpt ——— Fp2 1} the usual trigonometric

CoT ¢ fpl —-—— Fp2) functions; angles must be

ARCSIN { fpl ——— fp2 } expressed in radians.
ARCCOS (fpl ——— fp2 }

ARETAN (fpi ——— Fp2 3

ARCCOT (fpl —— $p2)

SEBRT (fpl —— +p2) the sqguare root

L { fpl ——— +pZ 3 the natural logarithm
LOGLS { fpl ——— fp2) iog to the base 10
EXF ¢ fpil —— +p2) e to the power +pl

=~ { fpl +p2 -—— ¥p3) fpl to the power fpl

Eonversions between floating point numbers and integers are
achieved by:

F-*5 (fp —— n) floating to nearest single integer
F=*D ($p ——= d } +floating to nearest double integer
INT ¢ fp ——= n) +truncate fp to single integer

S-* (n —-~— fp } single integer to floating

D->F { d — fp } double integer to floating

Input and ocutput of floating point numbers is achieved with:

F. { fp —— which prints a flepating point number on
the display
F¥ { ——— fp which converts the next word into a

flgating point number, eg;

Ff 3.14159 FCONSTANT PI or
F# 123.43E83

Use of all these words is straightforward. Those words wit

integer equivalents are wused in the same way. Others, such as
the trigonometric functions, are used as in the following
example:

assuming PI defined as above,

FPI 2 S->F F/ SIN F. (¢ to print sini{pi/2) }

am—

4%

dictionary. This time, however, the name being
searched for is held in memory at adl as a counted
string. If the name is found, adZ is the compiiation
address of the name and n has one of Ltwo values: it
the word found is immediats, then n is set to 1; if
not immediate, then n is set to -1. I+ the name is not
found, then adld = adl and n is set to 0O &g3

: LOCATE 22 WORD FIMD . U. 3 and try
LOCATE DUPR ({ digplays -1 and an addresss)
LOCATE IF { displays 1 and an address)
LOCATE =xvy=z { displays © and an address

ID. { ad =-—— } displays the name of the dictionary entry

whiose header starts at ad, often used in conjunction
with LATEST.

LATEST { == ad) puts the address of the last word defined
in the dictionary on top of thes stack: eg: tvype
LATEST ID. { will print & name)
: GODIZILLA 3
LATEST ID. { displays GODZILLA)}
8.35.2 Vocabularies

The wvocabulary feature allows vyou to partition dicticnary
entries into named vocabularies. There are many good reasons to
do this; for example, you can use the same names more than once
in different wvocabularies. If you have compiled a wvery large
program using vocabularies, you can make subsequent compilation
faster. Examples of commonly used vocabularies are SUPERFORTH
and EDITOR : all the words described in this manual are
contained in the SUPERFUORTH vocabulary:; the supplied Screen
Editor is in an EDITOR vocabulary.

Words to handle vocabularies are (we will postpone examples
until after these are described):

COMTEXT (—— ad) : a user variable which is used to determine
which wvocabulary is searched first of all, when words
are interpreted or compiled.

CURRENT { —— ad) : a user variable which is used to specify
the vocabulary in which new word deftinitions are
appended., The definition of LATEST is, in fact:

: LATEST CURRENT & & ;

DEFINITIONS (—-——) : the compilation vocabulary is changs=d to
be the same as the vocabulary which is searched first.

FORGET { ——— } is used in the form
FORGET <name>
to delete the dictionary entry Ffor <namer, and all
subseguent words, from the dicticnary. A smart form of
FORSET is provided which will detect i+f vyou FOREET
through vocabularies and execution vectors: in the
first case, SUPERFORTH is mzade the search and
compilation vocabulary and a warning displayed; in the
second case, the appropriate execution vectors are set

-

y<

8.2 EXECUTION VYEETERS .

Exscution vectors are used indirectly to execute other
words: as such, they may be reassigned by the user to vary their
effect. One use is +For forward callis; is; where you want to
execute a word which has not yet been defined, an executiaon
vector can be defined and then assigned to the word once it has
been defined. The words to handle execution vectors are:

EXVEE: a defining word usad in the form
EXVEC: <namer
to create an execution wvector dictiocnary entry for
<namex. By using ASSIGN and TO-DO the parameter field
must subseguently be loaded with the compilation.
address of ancther compiled word, such that, when
<namer is executed, this other word is executed. If an
execution vector is used without having been assigned,
an error message is output.

ASSIGN ig used to define the word to be executed by an
execution wvector; it must be followed by a valid name
in the input stream.

TO-BO iz used with ASSIGN to define the word to be executed
by an execution vector; it must be followed by the
name of the word to be executed.

Example: type in the following seguence:
EXVEC: AMY-MESSAGE?
: RUDE-MESSAGE CR ." Push off " ;
: POLITE-MESSAGE CR ." Hello there " ;3
ASSIGN ANY-MESSAGET TO-DO RUDE-MESSAGE
now sxecute ANY-MESSABGE? by typing
ANY-MESSAGE™Y
which gives the response
Push off ok
and reassigning ANY-MESSAGE? by
ASSIGN ANY-MESSAGE? TO-DO FOLITE-MESSAGE
which changes the response to
ANY-MESSAGET
to
Hello there ok

Note that there are four words in the existing dictionary that

are execution vectors, enabling a wuser to redefine their
actions:
ARORT to enable a different abort sequence to be fcllowed

during a user—detected failure.

ELS to avoid trouble when outputting to a printer.
ERROR to help locate an error during compilaticn.
PROMPT which has already been used to executes .5

If an execution wvector contains a forward reference, FORGETing
through the forward reference will re—assign the execution

vector to an error cxll. If this happens to FROMFT, simply type:s

ASSIGN FPROMPT TO-DO ok

42

DBES>

EXIT

To see this message, type MESSAGE COUNT TYPE

CREATE is wused by the other defining words teo create
dictionary entries. For example, the definition of
variable is:

: VARIABLE CREATE © , 3

An alternative version, which does not initialise the
variable to zero, is:

: VARIABLE CREATE 2 ALLAOT ;

{ == ad) is a word typically wused in conjunction
with CREATE to define the execution time actiomn of a
new user—specified defining word. It is used in the
form

: <namel> ... CREATE ... DOES> ... : to define a new
defining word <namel> . When <namel’> is used in the
form

<namel > <namelx

it creates a new dictionary entry called <nameZ’
which, when executed, leaves the parameter +fis=sld
address of <namel’ as TOS and then executes the words
following DODES> in the definition following <namels .
An example is a definition of the word CONSTANT:

: CONSTANT CREATE , DOES> @

Mow we can see what 92 COMSTANT FRED does:s

when CONSTANT is executed, the TOS is 99. First of
all CREATE is executed, which creates a new dicticnary
entry called FRED { because FRED is the next word in
the input stream following COMSTA&NT)., Then 4, is
executaed, which compiles the TGE (ie; 99y into the
dictionary.

When FRED is executed, the address of the compiled 7%
is left as TOS, and control now passes Yo the words
following DOES> in the definition of ECOMSTANT. These
execute @, which places the 9% as 705 and then 3.,
which terminates the actions of FRED . As you can see,
this is exactly the action of a constant. :

{ -} is used in Compilation mode only, to
prematurely terminate execution of a word. It does the
game thing as the run time action of ;3 . EXIT must not
be used within a DO ... LOOF ar +LO0OFP or between a >R
and R pair, otherwise the system will almost
certainly crash,.

eg; : TEST BEGIN KEY DUF 32 =

IF DROF EXIT THEN

EMIT O

UNTIL 3

This enters an infinite loop: every time vou press a
key which is not a space, it is displayed on the
screen. If it is a space, control returns to the
keyboard.

P

the user wvariable FENCE . {

14 unassigned execution vector
when an attempt i1s made to execute an execution vector
which 1is not assigned to execute any other word. This
may happern because it has not been initizlised, or
because the user has used FDORGET to delete the word
reforred to by the syecuticon vector Trom the
dicticnary.

1& division by 0
whern an attempt is made to divide by zeroc.

17 division overtlow
when integer division causes arithmetic overflow.

i8 RCOLL number negative
when TOS is negative on execution of ROLL.

19 ROLL bevyvond stack
when TOS is greater than the stack depth on execution
of ROLL.

2¢ FICK number negative
when TOS is negative on execution of FICK.

21 FICK bevyond stack
when TOS is greater than the stack depth on execution
of PICK.

7.2 QL ERROR MESSAGES

In addition to the above error messages, many talls
are made to the GL's ROM in the form of RDOS calis. On return fto
SUFPERFUORTH an error parameter is checked: if this is negative, a
call +to the &DOS error ocutput routine is reported. The messages
are as listed in the 8L User Guide, in the Concepts Error
handling section. Their error numbers are the npegation of the
numbers shown there.

7.3 USER DETECTED ERRORS

There are some SUPERFUORTH words provided whi:h-carry
out error checking and possibly invoke the sequence above:

7COMP (-~} lissues error message 1 if tha system is not
compiling.

TERROR ¢ flag n —— }: if flag is TRUE, issues error meszage
n and calls ERROR .

TEXEC { =—— } igsues errocr message 2 i1¥ system 1is not
executing.

PEOUND (n —— n) issues error message 8 if 0 is zero.

PETACK { ——) issues error message & or 7 if stack is

empty or full respectively.

CTRL <right>
deletes the character under the cursor.

F1l moves the line conta2ining the cursor to the top line
of the line store window. The line is deleted from the
block but may be restored by the next command.

CTRL F1 copies the top line of the line store window to the
line containing the cursor. The old cursar line and
lines below it are moved down, and the last linme lost.

F2 as F1l1, except that the second line of the line store
window is used.

CTRL F2 as CTRL Fi, except that the second line of the line
store window is used.

CTRL SHIFT F1
deletes the line containing the cursor.

F3 reguests another block (see notes 1 and 2).

CTRL FZ requests the nmext block in segquence: eg; if vou are
editing block 234, this requests biogck 233 (see note
1.

EHIFT FZ reguests the previous block in ssgquence: eg; if
editing block 234, this requests block 233 {see note
1.

F4 saves the block being edi ted to the default
microdrive.

ETRL F& renumbers the block being edited and s=saves it on
microdrive (see note 2).

FS creates a new, empty block {(see notes 1 and 25.

SHIFT FS marks the current block as nogt having been modified,
=1a’ that it will not automatically be saved to
microdrive, unless it is subsequently modified.

ENTER moves the cursor to the start of the next lineg.

CTRL <down>
clears the line store in the bottom window.

A< T toggles a Flag which indicates that character
insertion and deletion acts over the cwrrent and next
line. Cancel by ALT T again.

ALT ™ switches the default microdrive: you have to type in
the new default number,

ESC exits from the Editor and returns to normal SUFERFORTH
command mode.

CTrRL. BHIFT ESC

-abandons the Editor and marks the block as pot having
been modified.

24

option that prints the current document to a file rather than a
printer. You must have installed a printer driver, using
INSTALL_BAS as described in the Bl User Buide, which does not do
anything except to output carriage rFretwn or line feed at the end
of every line; that is, no preamble; postamble stc.

RUILL must be set up to print no header or footer on each pages
tabs are acceptable. When your program is ready, print it to a

file. —

3%

BL OCK (un —-—— ad J: if not already present in the block
buffer, BLOCK reads block un from mass storage.it then
leaves on the stack the address, ad, of the first byte
of the buffer in which the block is stored. I+ the
buffer already held a block that had been updated, that
other block is first saved an the default mass storage
device.

BUFFER (wn —— ad): assigns a block buffer to block unm., IT
the buffer already holds an updated block, that block
is saved. The address of the buffer, ad, is left on the
stack. BUFFER may be used to create a new block, eg;

123 BUFFER DROP creatss a new block
numbered 123.

e/ { — n J: a constant representing the number of
characters per line in a standard block. By conventiaon,
this is &4,

EMPTY-RUFFERS (—— } unassigns the block buffer. An updated
block is ngt written to mass storage.

FLUSH { ===) performs the function of SAVE-BUFFERS and then
unassigns the block buffer.

FLP { n ——) makes the default mass storage device floppy
disk n.

FLF1_ { ———) makes the default mass storage device FLP1_

FLPZ_ { ——— } makes the default mass storage device FLPZ2_

L/8 { ===): a constant giving the number of lines in &

standard SUPERFORTH block. By convention, this is 1&.

LIST {n -——) ligsts block n on the dispiay, using constants
C/L and L/B to format the text.

LOAD { n ——— 1} interprets and/or compiles SUFERFORTH socurce
code from block n. It dees this by saving the contents
of BLK and »IN, which define the input stream. It then
defines the new input stream by setting >IN to O and
BLE to n. Block n is then interpreted or compiled until
exhausted, when *IN and EBLK are restored to their
criginal values, thus returning to the original input

stream.
MOV { N ===) makes MDV n the default mass storage device.
MDV1 _ { ~——) makes FMDV1_ the default mass storage device.
MDVE_ { — 1} makes MDVZ_ the default mass storage device.
SAVE-BUFFERS (———) saves the block buffer to the default mass

storage device, if the comtents have been updated. The
buffer remains assigned to the block.

THEL { unl uwn2 ——= 3 logads (as for LDAD) consecutively the
bBlocks unl fto und inclusivea.

23

L1z FURTHER MEMORY HANDL ING

L

.
Having considered the simple @ ! etc earlier on, we
will now explain some more complex memory handling words.

First of all we list some words that must be used with sxtreme
caution, since they could easily crash the BL if a mistake is
made. These words are not standard FORTH-83 words but are &L
specific. Most SUFERFORTH words use a 16 btit address to access
mamary within the SUPERFORTH dictionary (the address being
relative to the start address of the SUPERFORTH dictionaryd.
Sumetimes it is necessary to acecess locations using an absolute
I2 bit address, +For e:ample to write direct to a peripheral
device or directly to the RAM used by the GL for the display.

Al { ndad ~-—)3 n is stored in absolute double—address
dad , ie; like &, except that an absolute address is
used

(£1=} { dad ——— n)z like @, except that an absolute address
is used.

ac! { n dad === 2: similar to C!

AC@ ({ dad ——— n J): similar to CE

Azt { d dad ———): similar to 2!

AZE (dad ——— d J): similar to 2@

eq; to write to the display RAM:

HEX
: WHAT_A_MESE CLS 24000. (start at address HEX 24000)
1000 O DO (write to HEX 1000 locations)
2DUF { dupiicate absplute address)
gy I (store loop index }
' ROT ROT { get in form n dad)}
AC! { write to display RAM)
i O D+ { increment absolute address)
LOoOP { and repeat)
ZDROF { tidy up stack)
DECIMAL

WHAT _A_MESS

Now some standard SUPERFORTH words which are concerned with
blocks of memory:

BLANK (&ad un -—— }: un bytes of memory starting at ad ars

set equal to the ASCII character Ffor space (decimal
Z2).
CHMOVE (adl adZ2 un —— ¥} moves un bytes of memory Trom

address adl to address adZ, moving the byte at adl to
ad2 first, then proceeding towards higher memory.

CMOVE > { adl ad2 un ---): like EMOVE, =xcept that the byte
at address {(adi+un—-1 } is wmoved to (adZ+un—1)
first,; then proceeding towards lower memory.

24

.11 MUMERIC CONVERSION

Wards are provided to convert both from ASCII strings
to integers and wvice versa. These are uzed by the words
described previgusly for input/ogutput but are alsoc available tor
the user.

The following words are used to convert from integers to ASCII
characters and to format numbers prior to output to the display.
An example of usage follows the definitions.

<H {(——)z ipnitialise numeric output conversion. It seis
up FAD for integer to string conversion.

4% { di ——— d2): dil is divided by BASE and the remainder
converted to an ASCII character which is then stored
at the next lowsr address in P&D { see below } on the
end of the string being converted. Both dil and dZ must
be positive double integers.

#5 {d -0 0) converts d to a string of ABCII
characters stored in PAD . If d is ¢, then a single
character ¢ is appended to the string.

{d -—— adn) drops d and leaves the address and
count of the string, formed by using # and/or #5 in
PAD . ad and n together are suitable for TYPE .

HOLD {n ——) saves the lgast significant byte of n in FPAD
as part of the ocutput string being converted.
Typically used between <# and #> .

SIGH { n —-—— 3%: if n is negative, an ASCII minus sign is
added to the start of . .the string in PAD, typically
used between <# and #> after a number has beern fully
converted.

FPAD { =~— ad)} leaves as TOS the lower address of a
scratchpad area used to hold data for intermediate
processing (typically before being printed on the
dizsplay). It is used by all the standard words that
convert and print numbers. The size of PAD is 84
bytes.

An example of the use of the previous words is te output an
integer representing cents in dollars and cents format, eg; 1320
cents would be printed cut as $1Z.25 { dollars to avoid problems
with printers !). A word to do this is (assuming that the
number of cents is TOS as a positive double-number and that BASE
holds decimal 10)

: DOLLARS <3 { inialialise conversion ?

{ convert and save 2 characters for cents)
44 HOLD (save a decimal point character)

#5 { convert and save dollars characters 3}

36 HOLD (save a # character)

#> TYFE { end conversion and print the string ?

-

L
Try it with 13.25 .DOLLARS

SET_MODE (n —— J): like SuperBASIC OVER, it sets the character
printing mode in the current output window
n=0 is the normal mode
n=1 prints onte a transparent strip
n==1 sxclusive ORs the data onto the screen
T&R {n—-—) moves +the cursor to position n in the
current line in the current window.
UNDER_BN (-———)} switches wunderlining on in the current output
window. This only works in 8 colour mode.
UNDER_OFF { ———) =zmwitches underlining off in the current output
window.
F.10.4 Graphics handling
Some of these words need a 1list of +Floating peint
rumbers to specify parameters:y this is because the words are -~

executad using calls to the BL's ROM., See Section % 2 for
information on the format of floating point numbers. Where the
graphics origin is referred to, this means that the origin is at
the bottom l=+t corner of the current windoew and that the
coordinates are scaled (just as they are for SuperBASIC: refer

to the GL

ARC

BLOCK _FILL

BORDER

CIRCLE

User Guide).

{ ad ===) draws an arc. ad is the address of a list
of S5 parameters in this order { 6 bytes each }, which
uses the graphics origin

angle subtended by the arc { radians)
coordinate of the end of the arc
X coordinate of the end of the arc
Y coordinate of the start of the arc
X coordinate of the start of the arc

-,

{nt n2 nF nd nS =———)1 like SuperBASIC BLOCK, this
draws a rectangular block in the cwrent output
window, Pixel coordinates are used { origin at top
left). nl is the colour

n2 is the width

n3 is the height

nd is the X coordinate (top left corner)

n3 is the ¥ coordinate (top left corner)
The block is affected by the current printing mode
{ see SET_MODE). This is a much faster way of drawing
horizontal and vertical lines, i+ the height or width
is set to 1 respectively, than using LINE below.

({n1 n2 -— 3: 1like SuperBASIC BORDER, it =sts the
colour nl and width n2 of the border of the current
output window. I+ nl is 128 the border is transparent.

{ ad -—— } draws a circle or ellipse, relative to the
graphics origin. ad is the address of a list of 3
+loating point parameters in this order:

rotation angle { radians)}

radius of circle or ellipse

eccentricity of ellipse (1 for a circlie 7

Y coordinate of centre

23

{ { —=—= 1)} starts a comment in the input stream. It uses
WORD to search for a)} to terminate the comment. If
the input stream is exhausted before a } is read, the
search is terminated. Comment can be used freely, bDoth
in Interpretive and Compilation modes and to provide
the means to document a program.

NMow we can easily give some examples using these and COUNT TYFE
as promised above. Type in this definition, not the comments in
brackets:

: TEST CR { start on a new line }
" Type in up to 85 characters with several spaces”
(message asking for input ?

WHILE
CR COUNT TYPE
SPACE >IN @ .
REPEAT
DROF CR ." No more input available®” ;

only print a non zero string)
print the word just read ?
print the value of >IN)

R GUERY { inputs up to 85 characters)
SPON @ ., (print the number of characters)
#7IB @ . (print number of bytes in TIB)
*IN & . (print value of >IN)
BEGIN { start a loop ?
32 WORD { read a word, space is delimiter)
buF Cca (12ave character count on stack)
0 <% (flag = O if input exhausted }
(
{
¢

Mow type TEST and, after the message, type in several words
soparated by spaces (it doesn’'t matter what the words are at
all since they are only printed, the dictionary is not searched
for ithem. After you press ENTER to end the input, you should see
sach word printed on & new line followed by the latest value of
*IN , which you should be able to match up with the input by
counting characters.

To show the use of EXPECT, use the segquence

TIB 85 EXPECT instead of QUERY in TEST.
Try also using a number other than 85 , but less than 85 . You
need a bigger input buffer to handle more than 85 characters.

3.10.3 Gther scresn commands

Several aother words are provided to allew you to
cbtain various effects on the display. Wherever possible the
same words as SuperBASIC keywords are used (in such cases, see
the QL Usger Buide for explanation of some of the parameters).
There are both text and graphics words. UWe will consider the
graphics words in the next section.

AT { nl n2 -—) moves the text cursor toc coclumn nl and
row n2 in the current output window. An error message
is displayed i+ outside the window.

21

length of 2355 characters. For example, the string HELLO would
be stored in & bytes of memory, with the first byte holding the
character count of 5, the second holding the wvalue 72 { the
ASCII code for H) and so on. The word ." described above stores
the message in the dictionary in precisely this way. COUNT
assumes the address of such a string is the TOS.

COUNT (ad —— ad+1 n) leaves the character count n, stored
at memory location ad, as TS and increments ad to
leave ad+1 as 2(5. As can be seen, the stack is now in
the correct state for TYPE . The seguence COUNT TYPE
is commonly used. We will postpone an example of this
until we have described a word called WORD below.

~TRAILING (ad nit =-—— ad n2): ad and nl are the address and
character count of a character string. -~TRAILING
reduces the count by the number of space characters
at the end of the string to 1leave a new character
count n2. The string stored in memory is unchanged.

3.10.2 EKsvboard input

Both single characters and words can be read from the
keyboard.

KEY f ——— n)} leaves the ASCII code of the key pressed on
the keyboard. KEY does not display a cursor, waits
until a KEY has been pressed and deoes ngt display the
character associated with the key. Words are provided
to switch the cursor on and off (see bhelow), g3

KEY . prints the ASCII code for the kay

KEY EMIT prints the character for the key

CURSOR_ON KEY CURSCOR_OFF EMIT displays the
cursor and prints the character. If you do not want to
wait and if no key has been pressed, the timeout can
be adjusted (see section 10 on redirecting input and
output).

KEYROW { nl —— n2) leaves the value'n2 of row nli of the
keyboard (see the Bi User BGuide).

Before considering word input , we will describe some user
variables and the input buffer, which allow the user to
manipulate input (examples follow below).

#TIB { —— ad }: a variable containing the number of bytes
read into the terminal input buffer TIB .

I { -——= ad J): a variable containing the present
character offset within the input stream, ie; input
from TIB or from microdrive or floppy disc. It shows
how far the input scammer of the interpreter has
reached.

SFAN { ——— ad)2 a variable containing the actual number of
characters read by EXAFPECT { see below)

TIE { —— ad) leaves the address of the terminal input

3.10 TERMINAL _INPUT AND QUTPUT [

This section describes words that read words or
characters from the keyboard and print numbers or text anto the
srreen. As will be seen in a later section, these same words can
be usad to input or output text to other devices, egj
microdrives, printers etc.

3.10.1 Screen _output

First of all, the words which ocutput numbers to the
screen: these all work on a number on the stack which is
converted to characters according to the current base held in a
variable called BASE . BASE is initially 10, which means that
decimal numbers ars input and output until you change its value.
The first word is:

- { n ——)} This prints out the TOS converted according
to the valuese of BASE, Ffollowed by a single
space: eg; (assuming BASE holds decimal 10)
123 . prints out 123
-123 . prints out —-12Z3

To see the effect of BASE, type in this sequence:

10 DUP . HEX . which prints ocut i0 A
This is because the word HEX loads the wvalue decimal 146 into
BASE, which causes . to ocutput TOS as a hexadecimal number.
This alsc causes input numbers to be treated as hexadecimal
numbers, so now type in - & BASE ' or DECIMAL, which both
load decimal 10¢ into BASE.

Other words which print out numbers {(all convertsd according to
BASE) are as follows:

o (ni n2 ———) prints out nl right aligned in a field
n2 characters wide. If more characters than n2 are
needed, then the whole number is printed as if . had
been executed.

To see the effsct, type { CR is explained below)
CR 123 5 .R
CR 123 4 .R
CR 123 2 .R

-5 { =-———) prints out, non destructively, the contents
of the stack as 14 bit integers. The TOS is printed to
the right. .S has been explained before.

D. {(d -—) prints out the double integer on top of the
stack, followed by a single space, eg:
123,456 D. prints 123456
~1234.55 D. prints —1234556
b.R (d n ——)2 like .R, except that a double—-number is
printed.
H, { i ——)z like ., except that TOS is printed as a

hexadecimal number. BASE is unchanged, eg:
49 H. prints 31

1%

Z.9 CONTROL STRUCTURES

As in other languages you need to control the flow of
your program: equivalent structures to SuperBASIC's IF ... THEN
e EISE ... arp provided in SUFPERFGRTH. These control
structures can only be used in cplon definitions: an attempt to
execute them directly will result in an error message. These
structures are:

IF ... ELSE ... THEN { flag =-=-—): if the +Flag is tru=, the
words between IF and ELS5E are executed. Otherwise, the
words between ELSE and THEN are executed.

eq; : TEST IF ." True " ELSE ." Falzce " THEMN ;
now 0 TEST prints out False
and 1 TEST prints ocut True

BEGIN ... UNTIL { flag —-——) HUNTIL tests the Fflag and, if

false, will then loop control back to BEGIN, to once
again execute words between BEGIN and UNTIL. If the
flag is true, then control passes toc the words
following UNTIL

eg; : TEST 1 BEGIN DUP . 1+ DUF 10 »= UNTIL DRGP
will, when executed, print out the numbers i1 to 10

BEGIMN ... WHILE ... REFEAT { $lag =--——): this is another
conditional looping structure. Here WHILE tests the
flag which, if true, will execute the words between
WHILE and REPEAT. If FALSE, it will branch to just
beyond the REFEAT. When REPEAT is executed it branches
back to BEGIN, eqg:

: TEST i1 BEGIN DUF 10 <= WHILE DUFP . 1+ REFEAT DROP ;
will again print out the numbers 1 to 10,

PO ... LOOP (nl n2 ——=): this is similar ¢to a BASIC FOR
lcop. nt is the 1limit of the loop index and nZ the
starting value of the index. When LOOF is executed,
the index is incremented and, if it has crossed the
boundary between ni-1 and nit, the loop is terminated,

eg3

: TEST 1 10 1 DO DUFP , 1+ LOOP ; will print out the
numbers 1 to 9.

If nl is the same as n2, the loop will be executed
435346, times because a DO ... LOOP is always executed
at least ance.

DO ... +LO0OF s this is the same as DO ... LOOFP, excernt that
+L00F uses the TOS to increment { aor decrement) the
loop index, eqs;

: TEST 1 10 1 PO DUP . i+ 3 +L0OOF ;
will print out the sequence 1 2 3

: TEST 1 —iZ -1 DD DUF . i+ -5 +LO0OF ;
will print out the seguence 1 2

IS

e
@ ({ ad ——— n)} reads the location addresged by ad and
leaves its value n on the stack
eq: FRED @ leaves 234 on the stack (assuming
you have typed in the previous example).
2! { d ad - }: the double integer eguivalent of !
eqg; 987. 454 ZFRED 2!
writes the valus 9874654 into double variable 2FRED
2& { ad === d }: the double integer squivalent of &
eg; 2FRED 2€ D. prints ocut 287454
c! in ad ——) writes the least significant byte from
the top of the stack into address ad:
eg: 99 FRED C! writes 9% into FRED
ca { ad ——— b) reads the byte addressed by ad
egs FRED Ce isaves 99 on the stack.
PN
Two other ussful words associated with variables are:
? { ad ———) prints out the contents of location ad
eg; see below
+1 (n ad ———) adds n to the contente of lecation ad and
writes it back into ad
eg: 100 FRED !
S&6 FRED +!
FRED 72 prints out 154
3.7.2 Pre—detined constants
Some very commonly used constants are already compiled
into the dictionary; these are:
0 1 23 -1 -2 and BL, which holds the value 32 (iej
i Y

the ASCII

code for space or blank).

(8

3.7 VARIABLES AND CONSTANTS

It is not always convenient or possible te use the
stack, therefore variables and constants are provided. These are
sssentially the same as SuperBASIC variables, excepit that they
must be created, using the SUPERFORTH words VARIABLE and
CONSTANT ; before they can be used.

egs VARIABLE FRED ' creates a variable calied FRED
123 CONSTANT MARY creates a constant called MARY
which is assigned the wvalue 123

CONSTANT assigns the number on top of the stack to the name
following it. In strict FORTH-83, VARIABLE does not assign a
value to the name following it, but SUPERFORTH assigns the value
zero in such instances. When these new names are themselves
executed, by typing them in, for example, a constant will leave
its wvalue on the stack and a variable will leave its address on
the stack { note that this address is a 16 bit address in the
SUPERFORTH dictiocnary, not an abseclute GL address).

293 MARY . will print out 12ZF
FRED U. will print out an address depending on
FRED 'z lpcation in the dictionary.

In a SUFPERFORTH program you could, of course, use 123 instead of
MARY, but yvou will aften find it more meaningful to give a
constant a name. If a particular constant is frequently used,
giving it a name will save space in the dictionary.

It is possible to change the value of constants using
a combination of " or £°] and >BODY (see section 8}).

There are also two more words for creating double
integer constants and variables, ZCONSTANT and ZVARIABLE:

egs; 123. 4585 ZCONSTANT 2ZMARY
ZVARIABLE ZFRED
now 2MARY D. prints out 12343558
and 2FRED U. prints out a 16 bit address, just

like FRED, but a different address
Discover +for yourself whether we could have used JIM instead of
ZMARY in the example above.

2.7.1 Using varisbles

The location of a wvariable is, in general, not much
use on its own: other words are provided which write values to
and read values from the relevant location. These are ! and €
respectively, their double integer eguivalents 2! and 2@, and
byte equivalents C! and C@ . Thezse are defined as follows:

H {n ad ——) loads the value n into the SUFERFORTH
dictionary location whose address is ad
=TvH 234 FRED !

locads the value 234 into variable FRED (don 't Fforget
that executing FRED left its address on the stack).

OR { unl wun2 ——= un3d }: the bitwise logical OR of unl and
unZ is left as un3.
egs 19 19 0OR gives un3=27
NOT { unl -—— unz2 }: unl is inverted to give unZ (the
one’'s complement is taken }
egz: 2 NOT gives unZ=-1
-1 NOT gives unz=0
XOR { unl unZ —— un3): the bitwise logical XOR of unl

and un2 is left as uni,.
selected bits:

egs

3.5 STACK MANIFULATION

There are many words provided

This is useful +for inverting

15 6 XODR gives uni=9%

to manipulate numbers;

DUF {(n ——— nn } duplicates the TOS
eqg; 123 DUP leaves two copies of 123
123 DUP + leaves 244 as the TOS
DROP {n ——) drops or loses the TOS
egs; 123 DROF 1leaves the stack unchanged
OVER { nl n2 ——— nl n2 nl) duplicates the 20S
eg; 1 2 OVER gives TOS8=1, 208=2 and 3I05=1
SWaP { n1 n2 —— nZ2 nl) swaps the TOS and Z20S
293 1 2 SWAFP gives TOS = 1 and 208 = 2
ROT {nl n2 n3 —— n2 n3 nl) rotates the 305 to the TOS
and moves the old TOS and 2085 down
eg; 1 2 3 ROT gives TOS5=1, 205=3 and 3i08=2
FICK (eae Nl = ... n2) duplicates the nilth stack value,
leaving the rest of the stack unchanged
eg;y S 7 3 210 434 PICK gives { —— 5 7 2 2107
5432101 PICK gives { — 5 4 3 21 01

0 PICK is identical to DUP
1 PICK is identical to QVER

ROLL { e Al —= ...) rells the
toc the top, moving all the intervening

eg; S 4 2 2 1 0 4 ROLL gives
5S4 3 21901 ROLL gives

2 ROLL is identical to ROT

1 ROLL is identical to SWAF

FRUF (P =——nn):
eg:; S ?DUP gives (—— S 5)
DEFTH { saa === .- n } leaves the

on the stack as the T0S
(=T H 1 23 4 DEPTH gives

nith value on the stack
values down one place

(== T I 2 o4)
(— 5 4 3 o 1)

[

duplicates the TOS5 i+ n is not zero

O 7DUP gives {(——)
number of l& bit values

¢ === 1 2 3% 4 4 1}

MOD {nl n2 — n%)} divides nl by n2 to leave the
remainder n3; the quotient is lost: eg;
126 30 MOD gives ni=14

NEBGATE {n —— -n) negates n: eg; _
543 NEGATE leaves =343 on the stack

Z.2 DOUBLE LENGTH INTEGER WORDS

D+ { dl 42 —— d3 adds double—-numbers d! and d2 to
give the double_number result dI: eg;
123123, 234234. D+ gives d3=357357
Note that the display shown by the reassigned FROMPT
gives d3 as two single integers 29677 5 . To see 43
type 123125, 234234, D+ D.
D- { di d2 ——-— dZ) subtracts double-number d2 from dl to
give the double—number difference d3: egj
123123, 234234, D— D. prints out —-111111
DNEGATE {d -— -d) negates the double-number d: eqs;
~1231253. DNEGATE D. prints ocut 123123

.3 OTHER ARITHMETIC OFERATIONS

The remainder of the integer arithmetic operations are
described in this section.

*/MOD Etnl N2 N3 —— nd4 nS)2 nl is multiplied by n2 to give
an intermediate 32 bit result, which is then divided
by n3 to give the guotient nS and remainder nd4. That
is, it is a combination of * and /sMOD. The advantage
of */MDOD is that it retains an accurate intermediate

result.
eq: 12 & 5 */MBD gives n3=i4 and nd=2
and 10000 10 20 */MOD gives nS=5000 and nd4=0.

In this latter example, typing

10GG0 10 * ZO /MOD gives an incorrect
answer, gsince the intermediate result, 100000, is tooc
big for a single length integer.

/7 { nl nZ n& —— nd4 }: as for *»/MOD, except that only
the guotient nd is left on the stack.

UM+ (unl un?2 —— ud): unsigned multiplication: ie; unl
and unZ are unsigned single 1length integers in the
range O to &5T35, and ud is an unsigned double length
integer. uni is multiplied by unZ to give a double
length product ud:
2g; SIS000 100 UM= D, prints out 3I50G0000

ur/MOD { ud unl —-—— u2 ul)3 unsigned division: ie; unsigned
double-number ud is divided by uni to give guotient u3
and remainder ul, both unsigned:
eg: 123454, 9999 UM/MOD gives uZ = Z448

integers must not be preceded by a + sign.

2.4 NAMES OF SUFERFORTH WORDS

Names of SUFERFORTH words may contain any ASCII
character { excluding control characters or the space
character) or the additional characters of the L (eg: greek
characters). Upper case letters are distinguished +from lower
case: eg; FRED, fred and Fred are treated as three diffsrent
names. The space and control characters are used to separate
words and the user must be particularly careful about the use of
spaces: eg; —123 and - 123 mean two entirely different things ¢
the first is an integer —-123 and the second is the subtract
operation followed by the integer 123).

2.5 THE STACK

A Ffundamental concept in SUFERFORTH, and in computing in
general, is the stack. All arithmetic operations use numbers on
the stack. A stack can simply be viewed as a pile of numbers:
eg; censider a series of numbers, similar to that described in
the previous section, Ffor which each number in twn could be
written on a piece of paper and then stacked on a table. The
SUFERFORTH stack is a similar structure maintained in the memory
of the 8. Usually only the last two numbers entered, called the
top of the stack { TO5)} and the sacond on the stack (208),
are available for arithmetic operations. & stack can also be
described as a "last in first out” data structure.

I¥ we enter two numbers, eg; by typing 123 254, then the
TOS5 is 234 and the 208 is 123. If we want to add thess two
numbers we type +, which, as will be seen later, adds the TO5 to
the 205 and leaves the result as the new TOS (the original TOS
and 208 are lost) iei; the stack now contains only 357. To see
this in action type

123 238 + . <ENTER>

{ where <ENTER> means press ENTER)
which gives the response
IT7 ok

The word . tells SUPERFORTH to print out the wvalue of TOS on
the output display. The output ok is simply SUPERFORTH s way of
saying that it has carried out the operation and is now waiting
for more input.

To see this more graphically, type

ASSIGN FROMPT TO-DO .S <ENTER>
{ this will be explained later) and then type

123 <ENTER>

224 <ENTER>

+ <EMTER>
and after each ENTER vyou will see the contents of the stack
printed on the display, the TOS to the right. It is a good idea
always to do this when working through examples or debugging new
SUPERFORTH definitions. The remainder of this user guide will

1.4 INPUT FROM THE KEYBOARD

Commands, nrumbers and new definitions may be entered st
the keyboard simply by typing them inj; SUFPERFORTH words must be
separated by at lgast one space character. The line iz not
processed by SUPERFORTH until the ENTER key has been pressed:
before pressing ENTER, the line may be edited using the leftt and
right arrows and CTRL, exactly as if entering a BASIC program.
kihen the line bas been entered, SUFERFORTH executes or compiles
each SUPERFORTH word in twn and, when complete, outputs the
message ok (unless there have been errors } and waits for more
inputs: egs trv typing the following (note the spaces between
1,2,+ and . Yz

I 2+ .
This will cause the response
S ok
The line input buffer will accept up to 85 characters:
if more than 85 are entered, then they will be processed without

EMNTER having been pressed: the lagst word may be a part word,
which may cause an error.

1.9 IMPUT FROM MICRODRIVES AMD FLOPPY DISCS

SUPERFORTH has a particular way of nandling input from
mass storage, which in 8L terms means microdrives or floppy
disks. This will be fully described in Section 4, but for now
it is sufficient to say that the SUFERFORTH interpreter/compiler
still sees this input as a stream of SUPERFORTH woirds.

1.6 BACKING U THE SYSTEM

To make a2 backup copy of @#OL SUFERFORTH, place the
supplied microcartridge in drive I (the left hand drive) and a
fresh microcartridge (which need neot be formatted) in drive 2.
Then enter LRUN MDVI_RBACKUP. To make a backup on floppy disk,
use the utility for file transfer supplied with your floppy disk
interface - SUPERFORTH is device name driven and will transfer
and run without any problems at all {ignore any "flp bad name’
error message that might be displayed after the editor is loaded
from a floppy - it is just reporting that arn unusual name has
beern encountered, and will automatically adjust itself to cater
for the new default dewvice).

7. Error handling and messages
7.1 Error messages)
7.2 QL error messages
7.3 User detected errors
7.4 Warnings

8. More advanced technigues
8.1 Compilaticn — adding to the dictionary
8.2 Execution vectaors
8.3 Dictionary and vocabulary management
8.3.1 Dictionary management
B.2.2 Vocabularies

?. Flpoating point maths package

10, Special BL facilities

1i0.1 Use of GL channels
10.1.1 Redirection of input/output
1G.1.2 Printer ocperation

10.2 Multitasking
10.2.1 Job identity
10.2.2 Creating tasks
10.2.3 Task activation
10.2.4 SBuspending and restarting tasks
10.2.5 Changing a task's priority
10.2.6 Removing tasks

10.3 Sound generation

10.4 Time and date

10.5 Serial interface baud rate

1i1. Details of SUPERFORTH implementation
11.1 Memory map
11.2 The stacks
11.3 Dictionary structure
1t.4 Informatipn for machine code dsers
11.5 Abzsolute RAM addresses

12. Demonstration game REVERSI
12.1 Game listing

13, Index

NOTES: (1) A BQuill file called UPDATES_DOC may be present cn the
cartridge supplied. It is the policy of Digital Frecision to
continually improve % refine its software - the file will
contain a list of updates to the system and should be read in
conjunction with this manual.

(2) Sinclair, BL % SuperBASIC are trademarks of Sinclair
Research Ltd.

t3) This manual is desigrned to fit into your User Manual
file as supplied with your QL.

g

Z

AFPPENDIX TD THE SUPERFORTH MANUAL

1>» Revised instructions for REVERSI

The +following supersedess Chapnter 12 of the manual.
Te run the program, take & resegt L % EXEC the +File REVERBI. I+ the
device is mdvi_, then the appraopriate commandgd is:
EXELC MEVI_REVEREI
Cnce the load screen appesars, press DTRL 2 C simcltaneously.

The aim of Reversi { also calied Othello ¥ iz to =nd upn with the most
migpres on the Bu38 board. You % your opponesnt make moves alternately,
Wsing pleces which are black on one side & white on the other. The playear
who 1s black will always place them with black facing up, etc.

To make a move, vouw must place a new piecg such that you trap one or more
of your oapponent’ s pieces between the new piece % one or more of your
own pieces, in ong or more continuous (ism; no intervening vacant

squares) straight lines along rows, columns or diagenals. You can only
slay on a vacant sguare — hence a game can never last more than 64 moves
excluding passes { vyou "pass" if you cannot make any move = it is then

your opponent’s tuwrn). The move is completed by changing all the trapped
piaces to your own colour € ie:s by Fflipping them). 1§ this sounds
complex don't worry — SUFER REVERSI will not permit illesgal moves, so by
playing vyou will soon pick up the game. Remember — a move must result in
at lsast one flip.

The game is uswally started with Ffour pieces placed in the centre (as
shown when you run the game '}, but SUFER REVERSI gives you the option of
setting up your own starting position. Black always moves first — vou are
given the option at the beginning of the game to be either BRlack or
White. Do not jump to the conclusion that the first plaver has an
advantage — Reversi is far more subtle than that!

The game +inishes when neither plaver can move. The plaver who ther has

the most pieces showing on the beoard is the winner { draws are
possible) - SUPER REVERSI keeps track of the number of pigres for each
=ide throughout the game. Note that it i1is only at the final position
that the number of pieces decides the ocutcome — earlier on, 1%t is not

necessarily good strategy te maximise the number of piecss of your colour
{ Lo do =0 would give vyour opponent more pieces to fiip over later).
Naturally, vou must have at lsast one piece on the board or else yvou will
have to pass for the rest of the game.

¥You make a move either by typing the grid reference af the move: HIZ or 3H
foilowed by ENTER or S5PACE, or by moving the cursor to the sgquars using
the cursor keys % pressing ENTER or SPACE.

Ay other key either selects aone of the command options listed below or
cancels the move.

-re- Display Options

s-.. Mode — QL wvs GL, Muman vs Human or bMormal
Exchange sides (ie; cheat'?

vew. Setup a2 new position

+--- Retract ocne or more moves (ie; cheat!)

M= ZQ

)

.

-=e=« Hint -~ Juggest a move (iz; cheat')
=== Buit 1e; Resign
. Change skill level
.2+ Redraw screen
T .a.. Toggle sound on/off (when 3L moves)
£5C then UTRL+C Return to SuperBASIC

Er 6

Hote that the O option makes the asbove table redundant !

When the L is thinking you can interrupt it by holiding down the T key
urtil 1t makes a move, this is uvuseful if you have accidentally selected a
high playing level and do not wish to wait +or the BL to finish it's
deliberations for again, of course, to cheat}.

There are @ plaving levels ranging from the easiest at level | to level 9
{ where the . has a 7 move look—ahead ! Y. On levels 3 & above, while
the BL is thinking, it displays the move curresntly being examined, the
best move so far & the last move considersd: with these last two it also
displays a wvalue which indicates how good the move is { the higher the
value the better for the QL). This makes waiting for the GL to move

gquite interesting. You can change levels during the middls of a game.

tevels (& approximate times taken) ars:
1 Beginner 0.1 seconds
2 ca.. Novige 2 seconds
I eve. Intermediate 30 ssconds
4 Fairly strong. i minute
% «-«- Strong 2.5 minutes
& v Mery Strong 5 minutes
7 wau. Master 19 minutes
3 Expert FO minutes
? ... Champion 1.5 hours

When & move is made, the pieces atfected flash in red for a few seconds.

If you want to see the computer play itself (different levels for =ach
side poassible !) use the M option % choose 8. If ymu want the GL to
supervise s game between two humans, choose M followed by H .

SUFER REVERSBI is a multitasking SUPERFORTH program. That means you can
run 1t at the same time as other taske (M&BOOD programs, SUFERCHARGED
programs, EXEL-able files output by other compilers, the SuperBASIC task
or other SUFERFORTH programs - includinag other copies’ of SUFER REVERST
ttself!). Use the W option to redraw the screen if it appears untidy
while multitasking. Natwrally, if vyou run muliiple copies of SUFER
REVERSI they will all rum slow. CTRL+C allows vou to page freely between
SUFER REVERSI & SuperBASIC.

The Setup option (357 is useful either to zolve Reversi problems or to
return Lo an abandoned position. Any position may be setup but some may
not be much Ffun {(ie; the empty board, which will of courese result in a
drawn game!’. The keys to be used for setup are displayed on the setup
SCrEens
Arrow Keys Move cursor

W FPut a White piecez on sguare

B Fut a Black piece on sguare

C -... Clzar board

N Ciear square

Esc Terminate setup mode

™

Use the I opition 1f yvou want +the QL to move immediately - but resember
you are handicapping it by denving 1t the ag5reed time for the move. You
must hold the I key down for a $f8w seconds until the red pisces are
displayved - the keyboard is only polled intermittently to ksep things
fast. :

Here are some tips that should improve vour plaving strengths

{a) Do not ‘grab’ material — position is more important than material
until the last stages of the game.

{b} In the beginning of the game, try to stay within the central 4x3
sauare area. fthe first plaver to move out of this area is often at a
disadvantage.

(c) The most valuable squares are the corner sSouares as ohce occupied

their occupier can (cbviousliy) never be flipped. If the loss of a corner
is inevitable then play should be directed towards blocking its
etfectivaeness < eg; the corner Al is much less useful for Black i1f Black
also has A2 & White has A2).
{d} Edge squares other thanr corners are somewhat dangerous to occupy,
especially those immediately adjacent to corner sguares. They can provide
an avenue of attack for yaur opponernt culminating in his occupation of a
Corner sguare.

{2 At every stage of the game try to make moves that, while not
contradicting {(a)—{d) above, reduce the number of opticns open to your
ocpponent to a minimum. '

(¥) Long diagonals are useful only i+ a corner on that diagonal has been
secured, or if the diagonals are for some other reason iamune Ffrom
attack.

{g} Remember not to count on your oppanent making oversights!

SCORE IMNTERFRETATION (agszuming &4 pieces are on the board }

3232 Drawn

23-31 to I5-29 Marrowly won

Z6—-28 to 41-23 Comfortabhiv won
4222 to 4%9-15 & Smashing victory
20-14 or better L

2>> BLUDNERS!

{a} The SUFCERFORTH word SUPERFORTH (8.3.2) shouvid have bhesn FORTH

(b the BEGIM ... UNTIL exxample (3.9 will print out from i to

7, not 1 tg 10 '

(c) the second DO... +LOOP examplie (Z.%) prints out the ssquence 1 2 3,
not 1 2

{d) the definitions of TEAMS (8.7.2) should both have gquotes
immediately after the word men

(el in 3.9, 1i¥ you want &4 characterssline vou must edit block 3 to
set the character size in windows #1., #2 and #3 ~ these are set up in
the definition SET_FARS

(f) The page beginning with 3.8 in the manual has had holes punched on
the wrong side, putting 3.7.2 after Z.8 - to rectify, flip the page

3> SUPERFORTH Version 2.0

Foliowing our policy of ever improving our product { difficult though

AY

-

this i1s !)} version 2.0 has many enhancemenis. The srincipal snhancement
involves string handling, which i1s described in detail in part &% of
this appendix. The other improvemsnts are given helow.

(a) Two BSUPERFORTH definitions have been added to the dictionary
to give vyou the opticn of using upper or lower case letters to
sxecute SUFERFORTH words. They are:

LOWER changes mode so that standard SUFPERFORTH words will be executed
when lower or upper case letters are typed in, eg;

LOWER dup DUF will execute DUP twice
UFFER reverses the et+fect of LOWER, =2g;

UFPER dup will give an error,

Whnen 1in LOWER mode, lower case definitions are inserted into the
dictionary in upper case form.

(b} To avoid infinite lopps due to enhancesent {al the default
words sxecuted by the execution vectors TLS, ERRDR and ABORT (8.2) are
changed to {(CLS), (ERROR} and (ABRORT). Freviously they were lower cCase
equivalents.

{c) In the screen editor an extra command has been added: ALT+F or ALTHF
select ftloppy disk as the default drive.

4>> New Utility Blocks
Another 4 utility blocks have been included. These are:

ta) Bliock &, WVLIGT
Contains a definition of VLIST which lists all the words in the
current vocabulary on the current output device, 8 words en a line. Type:
& LDAD VLIST
by Block 7, TURNKEY
This enables you to create a stand—-alone EXECable SUPERFORTH
program, ez 1t will run as a gseparate, dedicated task. { SUFER REVERSI
was generated in this way Y. To uss it first of all locad your SUFERFDRTH
appliration trom SUFPERFORTH blorks or other file, then type:
7 LOAD
angd TURNKEY <name>
where <name’> is the SUFERFORTH word vou wish the stand-alone task to
execute { REVEREBI in the case of SUFER REVERSI ;. Then follow the
instructions on the screen.
2g: 1if you wanted a task to print out numbers O to 9% and then
terminate, first define a word. (Note the suicide worgd BYE at the end
which must be included to terminate the task)
: SIMPLE_EXAMPLE L1000 O DO I . LOOFP BYE 3
then 7 LOA&D
then TURNKEY SIMPLE EXAMPLE
To execute vyour new task from SuperBASIC or SUPERFORTH type
EXED MDVI_+ilename
Im block 7 there is a word defined called DENAME which
erases all the BUPERFORTH headers. If vyou develop a program for
sale then we must insist that vyou wuse it to prevent yvou
inadvertently selling a SUFERFORTH system as well.
(c) Bloek 8, LOAD_EIN
For machine code programmers we have included a way of lpading
machine code generated by conventional assemblers (eg: Metacomco ' s).
To demonstrate how to use this we have included two other files:
(1} "mdvl_example_ aszm"

L e

76

arud (2) "mdvi_ewampie bin®

whare the second is an assembied version of the first. These give vou
three new code definitions:

NOR {(nl n2 ——— n3 } n3 is the logical NOR of ol and nZ

T tnt — nZ) nZ i1is nl times 3

IRURP € nl R2 NT ~—— nl nZ 03 nl n2 N3 ; equivalent to

< FICK 2 PICK 2 FICE
To load these, type:
8 LOAD

and LOAD_BIN mdvi_swample_bin
then try them out.
A complete description of the assembier format needed is given in
Ymadvl example_asm". This format must be followed to ensure a correct
binary +ile is assembled. Also study chapter 11 of the manual.
td} Block %9, CREATE DEVICE

For those with floppy disks which are not raferred to as fip
we have included a way for you to define your own default device, eg:
type ? LOAD

CREATE_DEVICE FDK1_
Now if you type FDKIi_ it will become the default device for handling
standard SUFERFIRTH blocks. You can retwurn to mdv by tvping HDVL_ .
(g} An example of how to use SUPERFORTH graphics has beesn supplied in a
file called CIRECLE_FTH — use the sditor to examine it.

S>> Transferring SUPERFORTH to another device

To save SUFERFORTH V1.6 onto ancther device {eg: floppy disk), do NOT
use a copying utility as suggested in 1.46: instead use LRUN MDVI_BACKUP
and choose pption 'E’. Just +tollow the prompts. Note that SUPERFORTH may
be started independently of BOOT by typing:

EXEC MDV1_FORTHBZ_JGE
or EXEL FLF1 _FORTHEZ_JO0OB as apprmpriate.

&6>> SBiring handling
A set of powerful string handling words have been added to SUPERFORTH
version 2.0 to give you the same sort of operations that are available in

SuperkAGIC, but, of course, much much faster.

Storage Of Strings

Strings are stored as a sequence opf characters, wre character per byte.
The characters are preceded by two other bytes, the maximum permitted
length of the string and the actual length of the string. HRecause the
numbers arz stored in bytes the maximum possible length of string that may
be specified is 205 bytes. For example if a string called MONTH, with a
maximum length of ¢ characters, gontainsg the value “January”, it will be
stored in this form:

Address Valua Meaninq
n 4 Maximum length
n+l 7 Actual iencth
2 7% Character *J*"

n+3 7 Character "a"

T1

n+4 115 Charactar Yn
n+3 117 Character g7
n+& 37 Character “a¢
n+7 114 Character "r”
re+&3 121 Character """
n+9 ? Not used

i 7 Mot used

Whnen MONTH is executed (see below!, it ieaves the address of the actual
length byte on the stack. The contents of MONMTH may bz printed, as for anvy
SUPERFORTH string, by using COUNT TYPE (see sectien 3.10.1 in the
SUFEREFORTH manuall. For example, given MINTH as above, typing:

MONTH COUNT TYPFE will display Jaruary

Defining Strings

STRING { ni ~-=) is used in the form
i BTRING <name>
to create a dictiomnary called <name?® which, when executed, will
leave the address of it’'s length byte on the stack. The value ni, which
must be on the stack, defires the maximum length, in byies, of the string.
Initially the string is empty. Eg; type:
10 STRING MOWTH
to create an empty string calied MONTH, which may be loaded with
a maximum of 10 characters.

STR_ARRAY (nl nZ =-=— 1 is used in the form
nl nZ2 STR_ARRAY <namel>)]
to create an array of strings called <name’. This array contains
nl strings, each with & maximum size of nZ characters. <names may later
be executed in the form: na Lnamex
which will leave the address aof the length bvte of the {n3-1)th
string in the array, on the stack. Using n3=0 will give the address of the
first string in the array. If n3E >= 0 an error will occur with the
message
"String index out of range"
Eg: type:
7 9 STR_ARRAY DAYS _OF WEEK
to create an array called DA&YS _OF WEEE with 7 strings, =ach with
a maximum of 7 characters.
Laad the first array element with:
o DAYS_0OF_WEEE READ" Sunday"
Read it with:
O DRYS_OF WEEK COUNT T¥PZ
Similarly
S DAYS_OF _WEEEK READ”™ Friday®

STR_CONST (—=——)} A defining word used in the form:
STR_CONST <name* "<character string>"

Creates a dictionary entry called <name> which, when later
executed, leaves the address of the string’'s actual iength byte on the
stack. The Ffollowing character string @must be surrounded'by & pair of ¢
characters. The maximum length byte is set egual to the actual length
bvte. Egs :

STR_CONST FRAISE "SUFERFDRTH is great”
HFRAISE COUNT TYPE

&

Data Input To Stirings

INFUT {adl =—— } Reads a lines of text $frpm the current input stream
into the sitring at adl, 2g assuming string MONTH is detfined as abhpve, type
{ ‘enter> means press bthe EMTER key):
MONTH INPUT <anter > January <enter
which will ipad the word January into MOHTH. You can prove this
v tyvping:
MONTH COUNT TYPE

READ" tadi ——— § In interpretive mpode.

{ =) In a colon definition {(compilation model.

Feads the following characters, up to bhut npt including the next
character or <enter’>. In interpretive mode it assigns these characters
to the string at adl eqq

MONTH READ"® February”

In compilation mode these characters are inserited into the colon
definition as a constant string. When the colon definition is later
expcuted, the address of the actual lenath byte nf this constant string is
left on the stack. This string may then fHe used For any operations
described below. Egj

: TEST READ™ An example™ COUNT TYFE ;
TEST

L5

This behaves just likes:
: TEST ." An example" ;
TEST

L]

String Characteristics

LENETH {agl ~-—— nl} Leaves the actual lerngth. nl, of
wn the stack eg; fassuming MONTH holds Febiruary!

MONTH LENGTH . crints 8
MAX_LEM (adi ——— nl) ieaves the maximum length, ni , of
on the stack egs

MONTH MAX_LEN . prints 1O
HUNUSED {agi +——— ni) leaves the nunber of spare bytes,
at adl on the stack eg:

MONTH UNUSED . prints 2

String Qperations

ni,

string at adi

string at adt

in the string

Examples of the use of the following words are given in the next ssction.

AFFEMD {adl adl ---) Appends the string at adil onto the snd of the
string at adZz.

AFP_CHAR (nl adl ———) Appends the character whose ASCII value is ni gnto
the end of the string at adi.

CHAR {(pdl Nl ——— n2) tLeaves on the stack the ASCII value, n2, of the
character at position ni in the string at adl.

CLEAR (adl ———) Sets the actual length of the string at adl te zero.

INSERT {adl adl2 nl ——) Inserts the string at adl into the string at
adZ at position nl. The ernd of the string, from

position Nl upwards, is moved up by the number of
characters 1in string adl, and the length of string ad2

adjusted accordingly.

INS_CHAR (n1 adl n2 ——) Inserts the character, whose ASCII valug is ni,
Characters from
position nZ are moved along 1 position inm string adl.

into the strimg at adlil, position nZ.

INS/DREL fadl rl n2 ———)} 1If n2 is positive INS/DEL moves the siring adl,
from position ni uwpwards, along by nZ2

increases the length by nZ. I+ n2

positions, and

i1z negative, then
—nZ characters are rembved from position nl upwards.

LOCATE iadl 282 ni n2 ==~ n3) The string at ad! is a pattern, LOCATE
sgarches the string at adZ, Ffrom position nl upwards,
+or the first occurrence of the pattern.
r> helds the start position of the matching characters,
ctherwice i1f the search failed, n3 is zero. I¥ nZ=0 the

o+ alphabetic

If found then

search is dependent on the case
characters (ie "A"Ix"a"), if n2Z4>D the search ig case
independent {(ie "A"="a"}.

LOC _EHAR (nd adZ nt n2 ——— n3) Like LOCATE except that

character whose 45CI1 value is n4d,

the pattaern is a

LOSE tacl nl n2 ——— P nZd characters ars delsted from
adl, position nl. Characters at the end of the string

the string at

107

are moved fown and the lenpith decresassd by nl.
EFLSEE fadl adZ il oee— Tre characters at cositicrn 0l vpwards in the
string at ads are replacsd by the contents of the
string adl. The length of str-ing adl is uvunchanged.

A
i
11

REFL _CHAR ini ad! n? ——— ¥ The rcharacier at position n2 in the
strinmng at adl is remiaced hy the character whoss ASCIX
value is nit. The length of string adl is unchanged.

SiICE (ad! nit n2 xd2 ——) nZ charagters zre copied from position nl in
the string at adl into the string at adZ. The previocus
contentg of string &ad2 are liost. String adl is

vunchangsd.

TaEE {adl nl n2 ad2 —-——— TAKE is l1ike SLICE, except that the
characters in the string at adi are removed from string
adl and the length adiusted accordingly.

TaKE CHAR {adl nl —— n3) The character at position nl in the
string at adl is removed from <string adl and has it’'s
ASCII wvalue left on the stack.

Ur_CHAR (nl ——— n2) I+F the character, whose ASCII value is ni, is a lower

cage character, it is convertised to an upper case
character with value n2, otherwise n2=ni.

String Comparisons

F= tadl adZ ——— Flag) The flag is true if the string at adl is egual
to the string atr ad2. The case is significant ie
|IQI]{:}!IaIl-

E== {adl adl ——— Flag) Like = except that the comparison 1is case

independent ie "ALLCY is sgual to “ablCY

< {adl adZ ——— flag} The flag is true i+ the string at adl is less
than the string at adZ. The gomparison is type 2 as
described in the GL User Guide tConcepts - String

comparisony l1e case dependent with embedded number
strings compared as numbers.

F tadli ad?2 ——— flag) The flag is true if string adl is greater than
string add. The comparison is as described inm $<.

C== int nZ =-= +lag) The #iag is true i+ the character with ASCII
valug nl 1s equal to character nZ. The comparison is
case independent 1e "A'="a".

Jold

COMPORE (ad! ad? nl —— 02! Compares the strings at adi and ad2. n»t
defingg the type of camparison, ni=0 iz ftype O, ni=i
type 1, ni=2 type 2 and ni=3 {wves (GL User Buide
Concepts - String comparison). nZ=0 1+ the strings are

equal; nIZ=-1 1+ string adi < string adZ; nZ=1 if string
adl » string ad?l.

lilustrative Examples

The use of the above words will be demonstrated by tvping in the following
{do not bother to type in the explanatoryv comments):

S0 BTRING NAME { A string to hold the full name)
24 GTRING CHRISTIAN { The christianr nam2
20 STRING MIDDLE { The middle name)

20 STRING SURNAME { and the surname)

First two words to save typing

*. COUNT TYPE 3 { Use 1s 2eg. EHRISTIAN #%. to print a string

ASCIT BL WORD 1+ C@E 4 { Gets the ASCI1 value of the next)
{ character in the input stream)

[T T R

(Mow start loading the strings, <enter > means prese ENTER 1}
SURMAME INPUT <{enter> Clark <entar>
(Clark gets loaded into SURNMNAME, try SURNAME F.)

i Copy 1t into the full name string
SURNAME RAME ARPFPEND _ o ¢ try NAME F. and SURNAME #.)

{ Bops, we meant to have an e at the end
ABCIT e NAME AFP_CHAR { sticks ar e on the end

CHRISTIAN INPUT <enter> Ann <enter>

{ Leoads Ann 1ntoc string CHRISTIAN)

MIDDLE INFPUT <enter> Rosemary “enter

{ and this goes into string MIDDLE)

{ Prove these by CHRISTIAN #%. and MIDDLE #. 3}

{ Mote READ" could have been used instead of INFUT)

(Insert the christian name into NAME
CHRISTIAN NAME 1 INSERT

C Try NAME £, | we need a space inserted, s ... 3
BL NAME 4 INS_CHAR (ses manual Z.7.2 for BHL

{ T'g the same for the middlie name)
Bl MAME 4 INS_CHAR
MIDDLE NAME 3 INSERT ¢ Try NAME £,)

{ Mow suppose we want the middle name to be Mary)
NAME S 4 LOBE : { gets rid of Rose)
NAME T CHAR UFP_CHAR NAME 5 REPL_CHAR { changes m tc M)

{ To demonestrate the difference betwaen SLICE and TAEE)
NAME S 4 MIDDLE SLICE { do MNAME . and MIDDLE %.)
MIDDLE CLEAR { clear MIDDLE, try MIDDLE .)
MAME § 4 MIDDLE TAKE { do MAME ¥, and MIDDLE #.)

{ Los=e the super+liuocus space)
NAME T TAKz_ERAR DROF

£

£

MILDLE MAME

{ or HNAME

To replace Ann wiith Sug 3
CHRISTIAN READ" Sus "
CHEISTIAN NAME 1| REFLACE { type MAFE F. 7

e

1 1.O&t

{ Mote the spacs atier Sus

And o ingert & middlie name)
MIDDLE READ" Lucy v

o INSERT

{ Lype NAME F. }

{ T leocate the position of & name try 3
. { Prints the positicn of Lucy)

MIDDLE NARME 1 1 LtOCATE

i

n

Finrally a colon definition which shows how to split up a)
(string such as MAME intop it’'s individual parts. ?

SET NAMES
BL NAME 1 O LOC_CHAR

TDUF
IF

DUF 1+ R NAME

ROT 1 LOC_CHAR 7DUF

IF

EL

TH
ELSE
Cr
THEN

SWAF NAME 1 2 FPICK 1-
CHRISTIAN SLICE .
2D - 1- NAME ROT 1+ ROT (Set up to read middie name 2

MIDDLE SLICE
NEPME SWAF 1+ MAME LENGTH

1+ OVEKR

N
Er
CR
CR
SE
R
En

MAME $£.
CHRISTIAN #.
MIDDLE #F.
SURMNAME #.

¢ Find position of +irst space ?

{ Have located a space

{ and position of second space)
(Have located another space)
{ =et up to read christian name)

{ and copy it into CHRISTIAN)

~ BURNAME SLICE

Mo middle name availabhle'’

{ and copy it into MIDDLE)

{ Set up for surname)

{ and copy into SURNAME)
{ To see resulits do this ...
{ and this etc. }

i

No first name available”™

{ Mow try eg.)
BET_NAFMES
WAME READY
GETNAMES

MAME READ"

Johann Sebastian Bach”

Fred Smith"

GET_NAMES

{

With MAME as

abowve I}

3

lol

e i,

{03

New bWorde To Use Strings

DELETE_FILE (adl ~=--)} deistes the file whose name is contained in the
string at adl.

DEVICE STATUS fadi —— nl) Retwns the status of the device or filz2 whose
rame is contained in the string at adl. If¥ the device
is wvalid and a file does not exist then nl is zero. I+
ni=—8 the +Ffile aiready sxizsts. For other values of ni
seg the L manual, concepts — grror handling. ithe
codes there are —nl, Bqg i¥ ni=-7, look at error 7}

OFEN_DEVICE (n adi —— d) Opens a channel toc the device whose name is
contained in the strimg at adl. n and d are the same as
for OFEN (See SUFERFORTH manual 10.1) Eg;:

20 STRING FILE

FILE READ" mdvl _example”

2 FILE OPEN_DREVICE { create a file palied mdvl example)
CLose . (clogse the channel 7

FILE DELETE_FILE { and delete the +ile 2

STATUS { ——— nl) Takes the next word in the input stream, assumes it is
a device or file name, and tests it's status. nl is the
same as for DEVILCE _S5TATUS. Eg;

STATUS mdvl _example
gives ni=0 if the file does not exist
ni=-g if 1t already exists
ete

Error detection

In the string ocperations, if the specified string or substring is teo big
then an =2rror will be detected and an appropriate message printed on the
output device. FPossible messages are:

String too long
String size too big
String index out of range

This artion may be redefined using the technigues described in 8.2 in the
SUFERFORTH manual.

