PRI

— | | e — | |

QL-Macro
Assembler

L

Software by
GST Computer Systems

QL-Macro Assembler

iIncorporating
QL:Linker and
QL-Screen Editor

First published in 1985
Sinclair Research Ltd
25 Willis Road

CB1 2AQ England

ISBN 1 85016 047 3

ssirci=ir and Sinclair QL are Registered Trade Marks of Sinclair
Research Ltd. QL Microdrive and Super BASIC are Trade Marks of
Sinclair Research Ltd.

Copyright Notice

This product is copyright material and may not be copied in whole or
in part for any purpose whatsoever without the permission of the
copyright owner.

Macro Assembler and Linker Program and Documentation © GST
Computer Systems Ltd 1985

Screen Editor Program and Documentation ©) Metacomco Ltd 1984
Packaging and Design ©) Sinclair Research 1985

Hlustration © Jenny Tylden-Wright 1984,

Important Notes for New Users

The instruction manual for QL Macro Assembler is in three parts,
describing in detail how to use each of the three programs which
make up the package:

N Macro Assembler
B Linker
® Screen Editor

Each program’s documentation is self-contained, but we recommend

that you read the introductions to each section to familiarise’yourself
with their contents before you start.

Back-up copies

You are advised to make a back-up copy of each master cartridge
using the clone program provided. Place the blank cartridge in
Microdrive 1 and the master cartridge in Microdrive 2. Then type:

lrunmdvz2_clone

and follow the instructions on the screen.

QL-Macro Assembler

—

Contents

1. Introduction
1.1 Notation used in this manual

2. How to run the assembler
2.1 The command line

3. Assembler inputs and outputs
3.1 Control inputs

3.2 Source inputs

3.3 Screen output

3.4 Source listing

3.5 Symboil table listing

3.6 Object code output

4. Listing outputs
4.1 Source listing
4.2 Symbol table listing

Appendix A Bibliography

Appendix B Source language
B.1 Lexical analysis

B.2 Source language line format
B.3 Expressions

B.4 Addressing modes

B.5 Instructions

B.6 Assembler directives

B.7 Macro facilities

B.8 The macro library

Appendix C Error and warning messages
C.1 Error messages
C.2 Warning messages
C.3 Operating system error messages

1. Introduction

This manual tells you how to use the QL Macro Assembler produced
by GST Computer Systems Lirnited.

It tells you:

® how to load and run the assembler

®m what inputs the assembler takes and what outputs it produces
® how the assembler language instructions should be coded

® what assembler directives are available, what they do, and how
to code them.

It does not:

® include a detailed description of the instruction set of the
Motorola MC68000 processor family (which includes the 68008
as used in the QL) for which you will need additional
documentation

® tell you how to talk to Qdos, the QL's operating system, for
which you will have to consult the QL Technical Guide

® teach programming in general

® teach assembler programming or 68000 programming in
particular.

Appendix A contains a list of some other publications which you
may find helpful.

1.1 Notation used in this manual

This section describes the notation used throughout the manual to
describe syntax of assembler source, as well as other items.

= means that the expression on the right defines the
meaning of the item on the left, and can be read as ‘is’

< > angle brackets containing a lower-case name represent a
named item which is itself made up from simpler items,
such as <decimal number>

| a vertical bar indicates a choice and can be read as
‘oris’

[] square brackets indicate an optional piece of syntax that
may appear O or 1 times

{ } curly brackets indicate a repeated piece of syntax that
may appear O or more times

is used informally to denote an obvious range of choices,
asin:

<digit> = 0]1]...|8/9
Other symbols stand for themselves.
Example
<binary number> = % <binary digit>{<binary digit>}
<binary digit> = 0|1
means that a binary numberis a ‘%" sign followed by a binary digit,
followed by any number of further binary digits, where a binary digit

is the character ‘0’ or the character *1". Some examples of binary
numbers are % 0, % 1010101100, % 0000000000000.

Some of the special symbols used in the syntax notation also occur
in the assembler source inpul and the common sense of the reader is
relied on to distinguish these, as in for example:

<operator> = ... | << ...

At some points in the description of the macro facilities the
characters [, 1, {, } must actually be coded as part of the assembler
source program. Where it is not obvious whether these characters
must be coded (in which case they are ‘literal’) or whether they are
used as defined above to describe syntax (in which case they are
‘metasymbols’) their actual meaning is stated explicitly in each case.

2. How to run the assembler

You can Load and run QL Macro Assembler in one of two ways:

m Interactive mode

In this mode the assembler will identify itself and prompt you for
a command line. Upon completion of an assembly the assembler
will prompt you for a further command line, so that you may
perform several assemblies without reloading the program.

When you have done all the assemblies you want you can
terminate the assembler by replying to its prompt with a blank
command line.

You may run the macro assembler in interactive mode by any of
the following commands where D EV is the device from which it
is to be loaded (which may be any storage medium).

— To run in parallel with the SuperBASIC interpreter:

EXEC DEV_MAC
or: EX DEV_MAC

— To wait for completion of the assembler:

EXEC_W DEV_MAC
or: EW DEV_MAC

m Non-interactive mode

In this mode the assembler receives its command line directly
from the SuperBASIC interpreter and does not interact with you.
On completion of the assembly the assembler will exit and will
need to be reloaded if you wish to perform another assembly.

You may run the macro assembler in non-interactive mode by
one of the following commands:

— Torunin parallel with the SuperBASIC interpreter:
EX DEV_MAC; "<command Line>"

— To wait for completion of the assembler:

EW DEV_MAC;'"<command Line>"

where <command line> is described below. The quotes round
the command line are required by the SuperBASIC interpreter.

Notes

The EX and EW commands are only available in the QL Toolkit and
are not part of standard SuperBASIC.

The EX and EW commands allow you to pass data files to the
program by specifying them after the program name. If any files are
specified in this way they will be ignored by the assembler. See the
QL Toolkit documentation for information on the full use of the EX
and EW commands.

If you wish to change the screen window used by the macro

assembler you may do so by running the program WINDOW_MGR
and answering the questions it asks.

2.1 The command line

See section 3 of this manual for a description of all the various files
and devices that the assembler can use.

The format of the command line is:

<source>[<listing>[<binary>]1{<option>}

where:

<option> = —NOLIST| —ERRORS [<listing>]| —LIST [<listing>]|
_NOBIN| —BIN [<binary>]|
_NOSYM| —SYM|
—NOLINK

(the options may be in upper or lower case and case is not
significant)

<source> = <file name> file name of assembler source
<listing> = <file name> file name for listing output
<binary> = <file name> file name for binary output

The options have the following meanings:
—NOLIST do not generate any listing output

—ERRORS generate a listing of error messages and erroneous lines
only; if the option is followed by a <file name> then
this is the name of the <listing> output and the
positional <listing> parameter, if coded, is not used,;
the ~ERRORS option also sets the -NOSYM option

—LIST generate a full listing; if the option is followed by a
<file name> then this is the name of the <listing>
output and the positional <listing> parameter, if
coded, is not used

—NOBIN do not generate any binary output

—BIN generate binary output; if the option is followed by a
<file name> then this is the name of the <binary>
output file and the positional <binary> parameter, if \
coded, is not used I

~NOSYM do not generate a symbol table listing; this is the
default if -ERRORS is coded

—-SYM generate a symbol table listing; this is the default if
—LIST is coded or if no listing options are coded; if both
—SYM and —NOLIST are both coded then the -SYM
does nothing

—NOLINK normally the QL Macro Assembler generates output in
S—ROFF format which must then be linked by the QL
Linker; the —\NOLINK option instructs the assembler to
generate an output program file which can be run
directly

Where conflicting options are given the last one coded takes effect.
For example if:

—LIST MDV1_FRED —NOLIST —ERRORS

is coded then an errors-only listing will be senttoMDV1_FRED
and if:

—SYM —ERRORS
is coded then no symbol table output will be generated.

The minimum command line just consists of the name of the input
source file. In this case a full listing with symbol table is generated
(i.e. the defaultis —LIST =SYM) to the file whose name is
constructed from the <source> <file name> as described below.
Also by default a binary output file is generated (i.e. the default is
—BIN) to the file whose name is constructed from the <source>
<file name> as described below.

The <source> <file name> is examined,; if its last four characters
(after converting to upper case) are not _ASM then _ASM is
appended to the given name to make the name of the actual source
file used.

The name of the <listing> file may be given positionally as the
second parameter, or may be specified explicitly after an -ERRORS
or—LIST option, or may be allowed to default. If no <listing>

<file name> is given in an —ERRORS or —LIST option and no
—NOLIST option has been coded then the assembler constructs the
<listing> <file name> by taking the <source> <file name>, as
adjusted, and replacing the _ASM with _LIST.

The name of the <binary> file may be given positionally as the third
parameter, or may be specified explicitly after a —BIN option, or may
be allowed to default. If no <binary> <file name>is givenin a
—BIN option and no —NOBIN option has been coded then the
assembler constructs the <binary> <file name> by taking the
<source> <file name>, as adjusted, and replacing the _ASM with
_REL in the normal case or _BIN if -NOLINK has been coded.

Examples

MDV1_FRED

assemble MDV1_FRED_ASM, put a full listing with symbol table
listing in MDV1_FRED_LIST, and put the binary in
MDV1_FRED_REL

MDV1_FRED SER1 —NOBIN

assemble MDV1_FRED_ASM, print the listing as it is produced, and
don't generate any binary

MDV1_FRED —ERRORS —BIN MDV2_FRED_REL

Assemble MDV1_FRED_ASM, send an error listing only with no
symbol table to MDV1_FRED_LIST, and put the binary in
MDV2_FRED_REL (note that coding MDV2_FRED would not have
achieved this)

MDV1_FRED SERTMDV2_FRED_REL-ERRORS-SYM

assemble MDV1_FRED_ASM, print an error listing plus symbol
table directly and put the binary in MDV2_FRED_REL

3 Assembler inputs and outputs

This chapter describes all the input and output files and devices that
the assembler can use.

3.1 Control inputs

Control information for the assernbler is supplied by the user typing
a command line on the keyboard. The command line is described in
section 2 above and specifies where all the other input and output
files and devices are.

3.2 Source inputs

The assembler assembles one main source file. This may direct the
assembler, using INCLUDE directives, to read other source files.

When assembling large and complicated programs it is normal to
put no real code at all in the main source file which will just contain
INCLUDE directives naming the other source files. For example:

TITLE A large complicated assembly

*
* Start with the Qdos parameter file,
* then the parameter file for my program
*
INCLUDE MDV1_QDOS_IN
INCLUDE MDV1_MYPARMS_IN
*
* Now the main code to to be assembled:
* this is rather
* large so it is split into two separate
* files
*

INCLUDE MDV2_PROG1_IN
INCLUDE MDV2_PROGZ2_IN

END

The file name of the main source file must end in _ASM, or the
assembler will not be able to find it.

It is recommended that file names of INCLUDEd files end in _IN, but
this is not essential, and you can call them anything you like.

3.3 Screen output

The assembler writes a certain amount of information to the screen
to let the user know what is happening. This includes a ‘start’
message, a ‘finished’ message and the request to type the command
line.

A summary of the number of errors and warnings generated is
written to the screen together with a summary of the amount of
memory used. This memory size excludes the memory occupied by
the code of the assembler itself (about 30k) and the assembler’s
initial data space (about 4k).

You can get a good idea of how complicated your assemblies are
and whether you are likely to run out of memory by watching the
memory use figure. On an unexpanded QL it is possible to assemble
a source file which occupies virtually the whole of a Microdrive
cartridge as long as no other major task is running at the same time.

If you do several assemblies in one go (without reloading the
assembler) then the assembler will return any memory it has
obtained to the operating system at the end of each assembly.

The assembler also tells you when it is starting to read the source
input for the first time and when it is starting to read the source
input for the second time. The second pass can be expected to take
a lot longer than the first pass if listings and/or binary output are
wanted. The symbol table listing is produced after the summary
messages are displayed, so if you are assembling a large program it
will be an appreciable time after the summary messages are
displayed before the assembler is finished completely.

10

3.4 Source listing

An optional source listing will be generated, showing the source
input and the code that has been generated.

The listings provided are controlled both by options on the
command line (see section 2 above) and by directives coded in the
source program (see appendix B below).

If the —~NOLIST option is given then there will be no listing output
from the assembler. Under all other circumstances a file or device
will be used to produce a listing.

If the file name for the listing output is generated automatically by
the assembler it will end in _LIST. It is recommended that listing
files, when stored on Microdrive, always have file names ending in
—LIST, but this is not a requirement and you can call them anything
you like.

Listings can be printed directly as they are generated (using SER1 or

SER2 or some add-on printer device) or can be sent to the screen
(using CONL_) as an alternative to sending them to Microdrive.

3.5 Symbol table listing

A symbol table listing will be produced if both the —LIST and —-SYM
options are in effect.

The symbol table listing will be added to the end of the source
listing, starting on a new page.

11

3.6 Obiject code output

3.6.1 Relocatable (S-ROFF) output

Normally the assembler will produce a relocatable binary output file
in S—ROFF format (the standard Sinclair relocatable output file
format). This output file may be linked using the Sinclair QL Linker
with other files in the same format generated by the QL Macro
Assembler and/or files in the same format generated by compilers
for other languages.

Each assembly generates a single module (see the QL Linker section
for more information about the details of the S-ROFF format and
how to link together S—ROFF object files).

If you code a MODULE directive somewhere in your source
program then that directive will specify the name of the module. If
you do not code a MODULE directive then the assembler will
construct one from the name of the primary source file by stripping
the _ASM off the end of the file and stripping the first component
(assumed to be a device name such as MDV2_) off the beginning.

For example, if the primary input file is called:
FLP2_SYSTEMX_PART3_ASM

then the default module name will be:
SYSTEMX_PART3

Otherinformation is included as part of the module directive in the
S—ROFF file, including the name of the assembler and the time and
date of the assembly.

3.6.2 Directly executable output

Alternatively the QL Macro Assembler may generate a directly
executable output file which may be run as a program using the
EXEC or EXEC_W command without any need for linking. To make
use of this option you must code -NOLINK In the command line
(see section 2 above) and you must not use most of the assembler
directives which relate to linker functions. See the description of
each directive for full details.

12

.

4. Listing outputs

There are two listings produced by the assembler: the source listing
and the symbol table listing.

Each line of listing produced can be up to 132 characters long
(excluding the terminating newline); in particular each title line is
132 characters long. Some printers cannot be made to print 132
characters to a line so the PAGEWID directive (q.v.) is provided to
specify the actual width of the printer. Any line longer than
PAGEWID characters will be allowed to overflow onto the following
line, and these overflows will be taken into account when
determining whether a page is full.

The listing output is paginated with the total page length defined by
the userin a PAGELEN directive (q.v.) or allowed to default. To
obtain essentially unpaginated output you may set PAGELEN to

a very large number, in which case only one title will be printed at
the beginning of the listing, and form feeds will be included at the
start and end of the listing and between the source and symbol table
listings only.

The format of each printed page is:

<heading>
<blank>
<title>
<blank>
<blank>
<listing>
<form feed>

where:

<heading> is a line containing the name and
version of the assembler, the name
of the source file being assembled,
the page number, and the time and
date

13

<blank>

<title>

<listing>

<form feed>

is a blank line (i.e. a line feed
character)

is the <title string> given on the
relevant TITLE directive: if no
relevant TITLE directive has been
coded then this line is <blank>

consists of (PAGELEN—14) lines of
listing of whatever format is
appropriate (source listing or symbol
table listing)

is the ASClI form feed character and
appears immediately after the line
feed which terminates the last line (if
any) of <listing>

4.1 Source listing

Note that if the —\ERRORS option has been requested then not all
source lines are listed; only lines containing errors are listed,
together with the error messages.

Each line of listed source code has the following format:

Columns

1-4

9-16
17
18-29
14

Field contents Format

line number

macro flag

4-digit decimal

blank or +

section number 2-digit hex

(blank)

location counter 8-digit hex

(blank)

generated code up to 12 digits hex

30 (blank)
31-132 source line as coded, truncated to fit

Source line numbers start at 1 for the first line in the (main) source
file and are incremented by 1 for each source line processed
regardless of the file or macro from which it came and regardless of
whether the line is listed or not.

The macro flag is blank if the line being listed came directly from an
input file or contains the character '+’ if the line was generated by a
macro.

The section number is an internal number used to indicate which
SECTION is being assembled; this number ties up with the section
number given in the list of sections in the symbol table listing. It is
left blank when absolute addresses (such as those generated under
the influence of an OFFSET or ORG directive) are being displayed.

For instructions and data definition directives the location counter
field contains the address which would be assigned to a label
defined on that source line; note that this is not necessarily the same
as the value of the location counter after the previous line has been
processed. For other directives containing expressions whose value
is likely to be of interest to the user (e.g. OFFSET, EQU) the value of
the expression is printed in the location counter field or the code
field, as appropriate. If there is nothing useful that can be printed in
this field then it is left blank.

The generated code field contains up to 6 bytes of code generated
by an instruction to a data definition directive (DC or DCB). If an
instruction generates more than 6 bytes of code then a second
listing line is used to display the rest of it; this second listing line is
blank apart from the generated code field (and possibly some error
flags). Code in excess of 6 bytes generated by DC or DCB directives
is not printed; if you want to see it you should code several separate
DC or DCB directives.

The length of the listing line is in all cases limited to 132 characters,
any excess (probably comment) being truncated.

15

The source line printed on the listing is normally the fully expanded
version of the line after values have been substituted for all macro
parameters, functions and variables. However in the case of an error
occurring during substitution, a partially expanded form of the line
may be listed with an error message giving the reason for the
problem.

Error and warning messages are interspersed with the source listing;
each message follows the listing of the line to which it refers. If aline
has errors or warnings it is followed by a line containing a vertical
bar character (|) below the part of the source line giving offence.
The format of the messages is:

* % % % % ERROR xx —line nnnn — mmmm — <message>
* % %% WARNING xx — line nnnn — mmmm — <message>

where xx is the error number, nnnn is the line number of the line
containing the error, mmmm is the line number of the line
containing the previous error (O if none) to allow the user to chain
through all the error messages to make sure none have been missed,
and <message> is a helpful message saying what is wrong. There
are separate chains for error and warning messages.

The line giving rise to an error or warning is always listed, regardless
of the state of any LIST, NOLIST, EXPAND or NOEXPAND
directives. Thus the listing generated by —-ERRORS is more or less the
same as the listing generated by —LIST if NOLIST directives are in
force throughout.

If there is no END directive a special warning message is printed
relating to this at the end of the assembly; the line number in this
warning message is one greater than the number of the last line in
the input file.

At the end of the assembly a summary of the number of errors and

warnings generated is output both to the listing, if there is one, and
to the screen.

16

4.2 Symbol table listing

The symbol table listing consists of three separate listings: a list of all
the sections used in the assembly, the main cross-reference listing of
normal user symbols, and a cross-reference listing of macros.

4.2.1 The section report

The section report precedes the main symbol table listing. It has one
line for each section name or common block name used in the
assembly, each line having the following form:

Columns Field contents Format

1-8 symbol up to 8 characters

9 (blank)

10-13 symbol type SECT or COMM

14 (blank)

15-16 section number 2-digit hex

17 (blank)

18-25 size 8-digit hex

The size field contains the size of the section or common block.

As all sections are the same if the —\NOLINK option has been

selected and no common blocks can exist at all, this report does not
appear when —NOLINK has been selected.

17

4.2.2 User symbol cross-reference
This report lists all user defined operand-type symbols and gives the
line number for each occasion on which the symbol was used.

Columns

1-8

9
10-13
14
15-16
17
18-25

26

Field contents Format

symbol up to 8 characters
(blank)

symbol type see below

{blank)

section number see below
{blank)
value 8-digit hex
{blank)

27-PAGEWID cross-references see below

The symbol type field contains one of:

18

MULT the symbol is multiply defined; the assembler

XREF
XDEF
REG

blank

will use the first definition and print error
messages for subsequent ones

the symbol is defined by an XREF directive
the symbol is used in an XDEF directive

the symbol is a register list defined by a REG
directive

anything else

The section number field only contains useful information if the
symbol type field is blank (or XDEF) in which case it is one of:

blank symbol depends on no section or common block
base addresses

number symbol depends (with a count of +1) on one
common block or section base address, and this
is the relevant section number

XX symbol depends on motre than one section or
common block base address or depends on one
but with a count other than +1

In the —~NOLINK case absolute symbols will have this field blank and
relocatable symbols will have the number 00 printed.

if the symbol is undefined then the section number and value fields
will contain the word ‘undefined'.

The rest of the line (up to the defined PAGEWID) will be filled with
cross-reference information. If there is more than enough of this to
fill the line it will continue on subsequent lines starting at column 27.

Each cross-reference consists of six characters as follows:

1-4 line number 4-digit decimal
5 definition flag blank or ‘'
6 (blank)

and gives the number of a line on which the symbol was used. If the
use of the symbol is a defining occurrence then the line number is
followed by an asterisk.

Cross-references for a particular symbol are printed in ascending
order of line numbers.

4.2.3 Macro cross-reference

This is a cross-reference listing of all macros involved in the
assembly. 1tis in the same forrnat as the symbol cross-reference
listing but the symbol type, section number and value fields are all
blank.

19

A. Bibliography

QL Technical Guide
This manual describes the facilities of Qdos that are available to the
assembler programmer and tells you how to call them.

You will need this book to write machine code programs for the QL.
It does not attempt to teach 68000 programming.

Available from Sinclair Research Limited, Stanhope Road,
Camberley, for £14.95 mail-order.

M68000 16/32 Bit Microprocessor Programmer’s Reference
Manual

This is the Motorola handbook for the 68000 (reference number
M68000UM). It contains definitions of the 68000 instruction set (as
does the King and Knight book) and in addition contains more low-
level information, such as details of the binary code for each
instruction and some hardware information.

Available from GST Computer Systems Limited, 91 High Street,
Longstanton, Cambridge, for £8.95 mail-order.

Programming the MC68000
by Tim King and Brian Knight, Addison-Wesley

This is an excellent book which teaches assembler programming on
the 68000 and also contains a complete description of the 68000's
instruction set. It is suitable for the first-time assembler programmer
although you should do some programming in another language,
such as SuperBASIC, before using assembler. This book is also very
valuable to the experienced assembler programmer who has not
used a 68000 before as it points out many of the common errors
and pitfalls which usually cause trouble for the newcomer to the
68000.

Available from GST Computer Systems Limited, 91 High Street,
Longstanton, Cambridge, for £8.95 mail-order.

20

B. Source language

This appendix defines the source language accepted by the
assembler. It does not specify the details of the Motorola 68000
instruction set and a manual for the 68000 itself must be consulted
for this information.

B.1 Lexical analysis

This section defines the way in which characters are combined to
make tokens. The notation used is described in section 1.)

Generally a line of assembler source is divided into the traditional
four fields of label, operation, operand and comment, the fields
being separated by spaces. There are some exceptions to this which
are concerned with the macro facilities of the assembler.

Thus spaces are significant in this language, apart from just
terminating symbols.

As a special case a line containing an asterisk (*) in column one
consists entirely of comment and is treated as a blank line.

A semicolon (;) at any position in a line (as long as it is not inside a
<string> or an <arbitrary string>) introduces a comment; the
semicolon and the rest of the line are ignored.

Any syntactic token is terminated either by the first character which
cannot form part of that token or by end of line.

<syntactic token> = <white space> |
<symbol> |
<number> |
<string> |
<newline> |
<< | >>]
Ha &l (DI*[+], | =]/]:

{(where <newline> is a line feed
character)

21

<white space>

<symbol>
<start symbol>
<rest symbol>

<letter>

<number>

<binary number>
<octal number>
<decimal number>
<hex number>
<binary digit>

<octal digit>

22

<space>{<space>}

(where <space> is the ASCII space
character)

<start symbol> { <rest symbol> }
<letter> |.

<letter> | <digit> | $|.| -
alb|...|y|z|AlB|...|Y|Z

note that (outside strings) whether a
letter is upper or lower case is not
significant

note that a symbol can be any length
but only the first eight characters are
significant

<binary number> |

<octal number> |

<decimal number> |

<hex number>

% <binary digit>{<binary digit>}
@<octal digit>{<octal digit>}
<digit>{<digit>}

$<hex digit>{<hex digit>}

0|1

ol1]...|6|7

<digit> = 0|1]...[8]9
<hex digit> = <digit>|al...|f|A|...|F
<string> = '<stringchar>{<stringchar>}’

where a <stringchar> is any ASCI|
character except a line feed, a control
character, or asingle quote '; in
addition a <stringchar> may be two
adjacent single quotes which allows a
single quote to be coded inside a
string

There are three types of <symbol> used by the assembler.
<symbol>s appearing in the operation field are ‘operation type
symbols', those appearing in most operand fields are ‘operand type
symbols’ and those appearing in the operand of a SECTION or
COMMON directive are 'section names’. These sets of <symbol>s
are quite separate and there is no confusion (except in the mind of
the programmer) between the same name used in various places.
Thus you can have user-defined labels with the same names as
instructions and directives, if you really want to.

There are special forms of strings used by the INCLUDE and TITLE
directives which allow the user to omit the enclosing quotes:

<file name> = <string>|{<non space character>}
i.e. a <file name> is either enclosed in
quotes or is terminated by a space or
end of line

<title string> = {<character>}

i.e. a <title string> is terminated by
end of line

23

There is a special form of string used in some macro and conditional
assembly directives:

<arbitrary string> = any sequence of characters not
including space or comma *," or
backslash *\" or semicolon ';' |
{any sequence of characters}
where the {} are literal (i.e. they must
be coded and are not part of the
syntax description).

There is a special set of operators used in the conditional assembly
directives:

<compop> =<|<:|>=|>|~:|<>

where "= and <> are alternate ways
of coding “not equals”

Note that in macro calls and some conditional assembly directives
the backslash character '\'" is used to indicate that the statement is
continued on the following line of input.

Note that the open square bracket character '[' is used to indicate
variable substitution and may not appear in any other context (e.g.

it may not appear with any other meaning in a <string> or
<arbitrary string> or comment).

B.2 Source language line format
This section defines the various forms which a source line can take.

A source line consists of between 0 and 132 characters (excluding
the line feed character).

Basically a source line consists of the following four fields:

24

label (optional, but depends on operation)
operation (optional)

operand (depends on operation)

comment (optional)

A source line can be blank (including consisting entirely of comment
as defined above) in which case it is ignored for all purposes other
than those connected with output listings; a blank line is assigned a
line number, is printed on the listing, and its position may affect the
operation of the title directive.

Some macro and conditional assembly directives may be coded over
more than one source line; any such line which is to be continued on
the next line ends with a backslash *\" (optionally followed by
comment). Full details are given when the directives concerned are
described.

B.2.1 The label field
A line contains a label field if it starts with one of the following
sequences of tokens:

<symbol><white space>
<symbol>:
<white space><symbol>:

i.e. a label starting in column 1 may be followed by <white space>
or a colon, but a label starting further along the line must be
terminated by a colon.

Such a sequence at the start of a line is referred to elsewhere in this
appendix as a <label>.

If a line contains a label and contains nothing after the label then the
label is defined with the current value of the current location
counter; otherwise the meaning of the label depends on the
operation field.

25

B.2.2 The operation field
The operation field follows the (optional) label field and its syntax is:

[<white space>]<symbol>
The symbol is one of:

— an assembler directive
—a 68000 instruction
—amacro name

B.2.3 The operand field

The syntax of the operand field depends on the operation.
<white space> terminates the operand except in the case of a
macro call or a conditional assembly directive.

The syntax of each format of the operand field is described below
when the operation is defined.

B.2.4 The comment field

When enough of the rest of the line has been processed to satisfy
the operation (for the majority of operations this is up to the first
<white space> beyond the start of the operand field) anything left
on the line is deemed to be comment and ignored.

Itis, however, good practice to use the semicolon (;) to introduce

comments on macro calls and conditional assembly directives as this
will avoid confusing both the assembler and the human reader.

B.3 Expressions

Expressions are constructed from:

—unary operators: +, =

—binary operators: +,= / * >> << &,!

— parentheses: ()
— operands: <symbol>, <number>, *, K <string>

26

<string>s used in expressions must be four characters long or
shorter. The value of a <string> consists of the ASCII values of the
characters right-justified in the normal 32-bit value. Thus, for
example, the two expressions

‘a'*256+'b' and ‘ab’

have the same value. (Note that the DC directive can use longer
strings with different evaluation rules.)

The character * used as an expression operand has the same value
as a <label> defined on the line in which the * is used would have.

The syntax of an expression is then:

<expr> = <symbol> | <number> | * |
<string> |
(<expr>) |
+ <expr> | - <expr> |
<expr> <binaryop> <expr>

<binaryop> =/ x| << |>>] &]!

The operators have the following meanings:

unary + the value of the operand is unchanged
unary - the value of the operand is negated

Note that all operands are regarded as 32 bit values; these values
are obtained by extending the original operand on the left with
zeroes (all operands are originally positive except that symbols can
be defined to have negative values, in which case they will already
be 32 bit negative numbers). Likewise all intermediate and final
results from expressions are calculated as 32 bit values, and are
truncated as necessary according to context just before being used.

binary + addition
binary - subtraction
* multiplication

27

/ division: the result is truncated
towards zero

<< shift left: the left operand is shifted to
the left by the number of bits specified
by the right operand, which should be
an absolute value between 0 and 32
inclusive otherwise the result is
undefined; vacated bits at the right
hand end are filled with zeroes

>> shift right; as for shift left but the
operand is shifted right

& bitwise logical AND
! bitwise logical OR
The order of evaluation of expressions is as follows:

1 parenthesised expressions are evaluated first (in the natural way)
2 operators are evaluated according to priority; the order of priority
is (highest first):

unary +, -
<<, >>
&, !

* /
binary +, -

3 operators of the same precedence at the same nesting level of
parentheses are evaluated from left to right.

B.3.1 Values

A value (of a symbol or of an <expr> or of a partially evaluated
sub-expression etc.) consists of a numeric term (4 bytes) and a list of
relocation bases to be added or subtracted.

See B.3.2. below for details of which symbols have which values.

28

Values can be classified into various types by the following
properties:

® Addressing mode
This is an indication of the requested addressing mode required
and is one of:
normal no specific request; interpret it as
absolute or relocatable depending on
the relocation factor

XREF.S the value consists of a single symbol
which was declared in an XREF.S
directive

XREF.L the value is either a more complicated

construction involving XREF.S symbols
or contains a reference to a symbol
declared in an XREF.L directive

m Relocation factor
This is the number of times the value is expected to be relocated
finally by both assembler and linker with respect to the start
address of the whole program. Each XREF (but not XREF.S or
XREF.L) and label defined within a SECTION added into the value
contributes +1 to this count and each such symbol subtracted
from the value contributes -1 to this count.

If the relocation factor is O the value is regarded by the assembler
as absolute.

If the relocation factor is 1 the value is regarded by the assembler
as simple relocatable.

If the relocation factor is anything else the value is regarded by
the assembler as complex relocatable.

® Number of relocation bases
This is the number of different XREF[<xlen>] symbols and base
addresses of SECTIONSs involved in the value (after any cancelling
out has been done).

29

COMMON dependency
This is an indication of whether any symbol forming the value
was the name of a COMMON section.

B.3.2 Values of various operand types
This section lists the various operands and describes the type of
value they possess.

30

Numbers and strings
Numbers and strings have a value whose numeric term is the
value of the number or string.

Addressing mode: normal
Relocation factor: 0
Relocation bases: none

COMMON dependency: no

The current location counter

The value of the current location counter (*) is equal to the value
a label coded on the same line would have, and the value is of
identical form.

Labels

Symbols which are defined as labels in range of OFFSET, ORG or
COMMON directives have values whose numeric term is the
numeric value of the symbol.

Addressing mode: normal
Relocation factor: 0
Relocation bases: none

COMMON dependency: no

Symbols which are defined as labels in range of SECTION
directives have values whose numeric term is the offset of the
label from the start of the section (within the module).

Addressing mode: normal
Relocation factor: +1
Relocation bases: 1: start address of section

COMMON dependency: no

m Symbols defined in XREF directives

Symbols which are defined in (any type of) XREF directives have a
numeric term of zero and a single relocation base which is the
external reference to the symbol.

For symbols defined by XREF:

Addressing mode: normal
Relocation factor: +1
Relocation bases: 1: the symbol

COMMON dependency: no

For symbols defined by XREF.S or XREF.L:

Addressing mode: XREF.S or XREF.L
Relocation factor: O (butirrelevant to the user)
Relocation bases: 1: the symbol

COMMON dependency: no

Section names

Section names as used in SECTION directives are not operand
type symbols, cannot be referred to anywhere other than in
SECTION directives, and have no value

Common block names
Common block names have values whose numeric term is zero.

Addressing mode: XREF.L
Relocation factor: 0 (butirrelevant to the user)
Relocation bases: 1: start address of the common block

COMMON dependency: yes

Symbols defined by EQU

The value of a symbol defined by an EQU directive is the value of
the <expr> coded on the EQU directive. For a definition of how
values of expressions are derived, see below.

Undefined symbols

Symbols which are undefined at the point of reference (usually
because they are forward references but sometimes because they
are errors) are treated as labels defined in range of a SECTION
directive.

31

B.3.3 Rules for operator processing

This section describes how the various operators combine values to
make new values. See above for details of the actual arithmetic
operations performed.

32

Unary +
This operator isignored.

Unary -
The subexpression:

- <subexpr>
is treated in identical fashion to:
(0O—~<subexpr>)

(taking due account of operator priorities), see the description of
binary subtraction below.

Binary addition
Addition of two normal operands will result in a normal value.

The relocation factor of the result will be the sum of the
relocation factors of the operands.

The relocation bases involved in both operands are added
together. If a particular relocation base occurs with a positive sign
in one operand and a negative sign in the other it is cancelled out.

Addition of two operands at least one of which is of type XREF.S
or XREF.L will result in a value of type XREF.L. The relocation
factor and relocation bases are kept track of in the same way as
for the normal case.

Binary subtraction
Subtraction of two normal operands will result in a normal value.

The relocation factor of the result will be the difference of the
relocation factors of the operands.

The relocation bases involved in both operands are subtracted in
the appropriate direction. If a particular relocation base occurs
with the same sign in both operands it is cancelled out.

Subtraction of two operands at least one of which is of type
XREF.S or XREF.L will result in a value of type XREF.L. The
relocation factor and relocation bases are kept track of in the
same way as for the normal case.

All other operators

These operators are only valid if both operands are of the
following form:

Addressing mode: normal
Relocation factor: 0
Relocation bases: none

COMMON dependency: no

and will produce error messages otherwise.

.4 Addressing modes

This section defines all addressing modes that can be coded as
instruction operands. For a definition of what these addressing
modes actually do consult a manual for the Motorola 68000.

B.4.1 Addressing mode syntax
A number of symbols are reserved and have special meaning when
used in operands: these are names of various registers.

DO to D7 data registers

also the symbols DO.W, DO.L etc.

AO 1o A7 address registers

SP

also the symbols AO.W, AO.L etc.

synonym for A7
also the symbols SP.W, SP. L

33

usp

CCR

SR

PC

user stack pointer

condition code register (low 8 bits of
SR)

status register

program counter

The syntax of instruction operands is developed below, preceded by

a few general definitions.

<areg>
<dreg>

<ireg>

<multireg>

<range>

AO|...|A7|SP
DO|...|D7

<areg> | <dreg> |

AO.W | ... | A7.W | SP.W | DO.W |
..|D7.W |
AO.|...|A7.L|SP.L|DO.L|...| D7.L

<range>{/<range>}

<areg> | <dreg> |
<areg>-—<areg> |
<dreg>-<dreg>

(where the registers in an individual
range must be in increasing register
order, e.g. DO—D3 is valid and A4—A2
is not valid)

The following addressing modes are called (by Motorola) ‘effective
address’ and can be coded (or at least a subset of them) in any
instruction which has a general effective address as an operand:

<ea> = <dreg> |
<areg> |
(<areg>) |
(<areg>)+
—-(<areg>)

34

D register direct
A register direct
register indirect
postincrement
predecrement

<expr>(<areg>) | indirect with displacement
<expr>(<areg>,<ireg>)| indirect with index

<expr> absolute short
<expr> absolute long
<expr> | PC relative
<expr>(PC) | PC relative
<expr>(PC,<ireg>) | PC with index
#<expr> immediate

Note that the syntax <expr> means either PC with displacement
addressing or either form of absolute addressing, and this ambiguity
is resolved according to the semantics of the <expr>. See below for
details.

Also the operand <dreg>, for example, could be either a register
direct addressing mode or a <multireg> and hence a multiple
register specification: the assembler is capable of deciding what is
meant depending on the instruction being assembled.

B.4.2 Interpretation of addressing modes

Basically all references which involve relocatable destinations must
be PC-relative for the code to be position-independent, which is a
requirement for running under Qdos. This means that references to
labels more than 32k bytes away will fail, and the programmer must
find some other means of reaching the destination.

All forms of the effective address are coded exactly as meant, apart
from:

<expr>

which can mean an absolute short address, an absolute long address
or a PC-relative address.

35

The addressing mode generated depends on whether the referring
instruction is in absolute code (in the range of an ORG) or
relocatable code (in the range of a SECTION). This table summarises
the generated addressing modes:

From To Generates

abs abs absolute short or long as appropriate
reloc absolute long
forward absolute long
XREF absolute long

XREF.S absolute short
XREF.L absolute long

reloc abs absolute short or long as appropriate
reloc PC-relative
forward PC-relative
XREF PC-relative

XREF.S absolute short
XREF.L absolute long

If the value of the expression is complex relocatable the assembler
will produce an error message.

Forward references within absolute code will always be generated as
absolute long addresses. You can code an explicit (PC) to make such
references PC-relative, but there is no way to force them to be
absolute short.

Forward references which are undefined at the time of meeting the
symbol are assumed to be simple relocatable. If the programmer
wishes to reference an absolute address this can only be done by
coding a number, or by coding a symbol which has previously been
equated to a number. For example:

MOVE.B #$80,SCREEN

SCREEN EQU $18063

36

(within a SECTION) is not legal and will generate an error, whereas:
JMP FRED

FRED

(within a SECTION) is legal and will generate a PC-relative
addressing mode.

An immediate operand # <expr> where the <expr> is not absolute
will probably generate wrong code, as the assembler does not know
where the code will be loaded and executed and is unable to add the
necessary relocation base(s). Therefore, the assembler will generate
warning messages if a relocatable <expr> is used as an immediate
operand.

B.4.3 Branch instructions

The branch instructions (Bcc, BSR) can use either an 8-bit PC-
relative displacement or a 16-bit displacement; the assembler will
correctly choose the most efficient option for a backwards reference
but needs some help with forward references. The default option is
to generate a long (16-bit) displacement.

These branch instructions can have an explicit extent coded of .S
(short) meaning that an 8 bit displacement is to be used or .L (long)
meaning that a 16 bit displacement is to be used, for example:

BNE.S FRED FRED is not very far away

B.5 Instructions

This section lists all the 68000 instruction mnemonics, describes how
the various modifiers are coded, and defines the operand syntax of
each instruction. Note, however, that for precise details of the actual
addressing modes etc. legal for each instruction, a manual for the
Motorola 68000 should not be consulted.

37

An instruction may optionally have a <label>. Before any code for
an instruction is generated the current location counter is advanced
to an even address, if not already even. It is this adjusted address
thatis assigned to the <symbol> in the <label>.

B.5.1 Instruction mnemonic format

The operation field of a source line containing a machine instruction
is simply a <symbol>. However there is some flexibility allowed in
the coding of mnemonics as there are some generic mnemonics that
relate to a group of instructions, the actual instruction wanted being
chosen by the assembler depending on the operands coded.

Instructions which may operate on operands of different lengths
must have the length of the operand coded as part of the
<symbol>: this takes the form of *.B', *.W" or '.L" as the last two
characters of the <symbol> depending on whether the operand
length is byte, word or long. If a length is required and no length is
coded the assembler will assume .W and will print a warning
message.

Instructions which may only take a single operand length may
optionally have the length coded as above.

A dot '." as the last character of an instruction (or directive or macro)
name in the operation field of a source line isignored (e.g. the
exchange instruction may be coded as EXG, EXG. or EXG.L). This
feature is sometimes useful when designing macros.

The branch instructions may optionally have .S or .L coded as the
last two characters of the <symbol> to indicate the displacement
size as described at B.4.3 above.

Examples

MOVE.L an instruction with an operand length
coded

BEQ.S an instruction with an extent coded

JSR an instruction with no extra bits

38

MOVE.L DO,A0 automatically generates MOVEA.L
MOVE.L #2,D3 automatically generates MOVEQ.L

B.5.2 Data movement instructions

The various forms of the MOVE Instruction are used to move data
between registers and/or memory. These are:

MOVE<length> <ea> <ea>

which is the generic instruction, and will generate one of the
following if necessary:

MOVEA<length> <eax <areg>
MOVEQL.L] #<expr>,<dreg>

Note that both MOVEA and MOVEQ can be coded explicitly if
desired. Note also that the assembler will only convert a MOVE to a
MOVEQ if the length is specified as .L.

Various other special forms of the MOVE instruction are always
coded as MOVE (they have no specific mnemonic) but they all
operate on a single length of operand and the operand length is
optional. These are:

MOVEL.W] <ea>>,CCR
MOVELW] <ea>>,SR
MOVE[.W] SR, <ea>
MOVE[.L] <areg>,USP
MOVEI.L] USP,<areg>

The MOVEM and MOVEP instructions are also involved with data
movement but are not generated automatically by the assembler
from the MOVE mnemonic. Their syntax is:

MOVEM<length> <multireg>,<ea>
MOVEM<length> <ea>,<multireg>

MOVEP<length> <dreg>, <expr>(<areg>)
MOVEP<length> <expr>(<areg>) <dreg>

39

The other data movement instructions are:

EXGI.L]

LEAL.L]
PEAL.L]
SWAPL.W]

<reg>,<reg>

where <reg> = <areg>|<dreg>
<ea>,<areg>

<ea>

<dreg>

B.5.3 Arithmetic instructions

In a similar way to the MOVE instruction, the ADD, CMP and SUB
mnemonics are generic and will generate ADDA, ADDI, ADDQ,
CMPA, CMPI, CMPM, SUBA, SUBI, SUBQ if necessary; again, the
explicit forms can be coded if desired.

ADD<length>
CMP<length>
SUB<length>

ADDA<length>
ADDI<length>
ADDQ<length>

CMPA<length>
CMPI<length>
CMPM<length>

SUBA<length>
SUBI<length>
SUBQ<length>

<ea>,<ea>
<ea>,<ea>
<ea>,<ea>

<ea>, <areg>
#<expr>,<ea>
#<expr>,<ea>

<ea> <areg>
#<expr>,<ea>
(<areg>)+, (<areg>)+

<ea>,<areg>
#<expr>,<ea>
#<expr>,<ea>

Additional (binary) arithmetic instructions are:

ADDX<length>
ADDX<length>

CLR<length>

DIVS[.W]
DIVUL.W]

40

<dreg>,<dreg>
—(<areg>),—~(<areg>)

<ea>

<ea>,<dreg>
<ea>,<dreg>

EXT<length>

MULS[.W]
MULU[.W]

NEG<length>
NEGX<length>

SUBX<length>
SUBX<length>

TST<length>

<dreg>

<ea>,<dreg>
<ea>, <dreg>

<ea>
<ea>

<dreg>,<dreg>
—(<areg>)—(<areg>)

<ea>

The binary coded decimal instructions are written as follows:

ABCDI[.B]
ABCDL.B]

NBCD[.B]

SBCDIL.B]
SBCDI.BI]

<dreg>,<dreg>
—(<areg>),—(<areg>)

<eax

<dreg>,<dreg>
—(<areg>),—(<areg>)

B.5.4 Logical operations
AND, EOR, OR are generic mnemonics that will generate ANDI,
EORI, ORI as necessary:

AND<length>
AND<length>
AND<length>
ANDI<length>

EOR<length>
EOR<length>
EORI<length>

NOT<length>

OR<length>
OR<length>
OR<length>
ORI<length>

<ea>,<dreg>
<dreg>,<ea>
#<expr>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr>,<ea>
#<<expr> <ea>

<ea>

<ea>,<dreg>
<dreg>,<ea>
#<expr>,<ea>
#<expr>, <ea>

41

There are special forms of the ANDI, EORI and ORI instructions
which operate on the status register.

AND.B #<expr>,SR
AND.W #<<expr>,SR
AND [.B] #<expr>,CCR
ANDI.B #<expr>,SR
ANDIL.W #<expr>,SR
ANDII[.B] #<expr>,CCR
EOR.B #<expr>,SR
EOR.W #<expr>,SR
EORI.B] #<expr>,CCR
EOR!.B #<expr>,SR
EORI.W #<expr>,SR
EORI[.B] #<expr>,CCR
OR.B #<expr>,SR
OR.W #<expr> SR
OR[.B] #<expr>,CCR
ORI.B #<expr>,SR
ORIL.W #<expr>,SR
ORI[.B] #<expr>,CCR

B.5.5 Shift operations

ASL<length> <dreg>,<dreg>
ASL<length> #<expr>,<dreg>
ASL[.WI] <ea>
ASR<length> <dreg>,<dreg>
ASR<length> #<expr>,<dreg>
ASR[.W] <ea>
LSL<length> <dreg>,<dreg>
LSL<length> #<expr> <dreg>
LSLL.WI <ea>

42

LSR<length>
LSR<length>
LSR[.W]

ROL<length>
ROL<length>
ROLL.W]

ROR<length>
ROR<length>
ROR[.W]

ROXL<length>
ROXL<length>
ROXLIL.W]

ROXR<length>
ROXR<length>
ROXRL.W]

<dreg>,<dreg>
#<expr>,<dreg>
<ea>

<dreg> <dreg>
#<expr>,<dreg>
<ea>

<dreg>, <dreg>
#<expr> <dreg>
<ea>

<dreg>,<dreg>
#<expr>, <dreg>
<ea>

<dreg>,<dreg>
#<expr>,<dreg>
<ea>

B.5.6 Bit operations
The length specification is optional on these instructions as the
length must be long if the <ea> is a <dreg> and must be byte if

the <ea> is anything else.

BCHG[<length>]
BCHG[<length>1]

BCLR[<length>]
BCLR[<length>]

BSET[<length>]
BSET[<length>]

" BTSTI<length>]
BTST[<length>]

<dreg>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr> <ea>

<dreg>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr> <ea>

43

B.5.7 Branch instructions
The branch instructions may optionally have an extent (.S or .L)
coded as described at B.4.3 above.

B<ce>[<extent>] <expr>

where:

<ce> = CC|CS|EQ|GE|GT|HI|LE|
LS| LT | MI|NE|PL|VC]|VS|
HS| LO

<extent> = S|.L

The unconditional branch instruction is:

BRA[<extent>] <expr>

and is in fact a version of the conditional branch instruction that
means “branch regardless of the condition codes”.

The branch to subroutine instruction is:

BSR[<extent>] <expr>

B.5.8 Trap instructions

Grouped here are those instructions whose main purpose is to
generate traps, either conditionally or unconditionally.

CHK[.WI <ea>,<dreg>
TRAP #<expr>
TRAPV

B.5.9 The DBcc instruction

This instruction is a looping primitive; it tests the condition codes as
does the Bcc instruction but also allows the conditions “always true”
and "always false" to be tested.

DB<dbcc>[.W] <dreg> <expr>

44

where:
<dbcc> =<ce>|T|F|RA

RAis a synonym for F, meaning branch regardless of the condition
codes; thus the instruction DBRA loops without testing conditions
other than the value of the loop counter.

B.5.10 Jump instructions
The jump instructions are an unconditional jump and a subroutine
call:

JMP <ea>>
JSR <ea>>

See section B.4.2 for a definition of how the assembler interprets
<expr> as an <ea>>, as that paragraph is particularly relevant to
these two instructions.

B.5.11 Stack frame management

LINK <areg>, H#<expr>
UNLK <areg>

B.5.12 Odds and ends

NOP

RESET

RTE

RTR

RTS

TAS[.B] <ea>
STOP #<expr>

The Sccinstruction has the same set of conditions as DBcc but not
the RA synomym:

S<<scc>[.B] <ea>
where:
<scc> = <cc>|T|F

45

B.6 Assembler directives

Assembler directives are instructions to the assembler and, with the
exception of DC and DCB, do not directly generate any code. The
directives provided are summarised below.

The following directives must not have labels:

INCLUDE read another source file
SECTION relocatable program section
ORG absolute program section
COMMON COMMON section

RORG adjust current location

OFFSET define offset symbols

DATA specify data space

END end of program

XREF refer to external symbols

XDEF define symbols to be external
MODULE define module name for the linker
COMMENT include comment in linker listing

The following directives require labels:

EQU assign value to symbol
REG define register list

The following directives may optionally have labels:

DC define constants
DS reserve storage
DCB define constant block

The following are listing control directives and must not have labels:

PAGE start new listing page
PAGEWID define width of page
PAGELEN define length of page
LIST switch listing on

46

NOLIST switch listing off
TITLE define title for listing

There are a number of other directives which are involved in the
macro and conditional assembly facilities and these are described
below in section B.7.

B.6.1 INCLUDE - read another source file

This directive causes the named file to be read as if it were presentin
the original source file in place of the INCLUDE directive. INCLUDE
directives may be nested to at least three levels.

The syntax of an INCLUDE directive is:
INCLUDE <file name>

where <file name> (with optional surrounding quotes) is the
normal syntax of a file name for Qdos.

B.6.2 SECTION — start relocatable section
The directive:

SECTION <symbol>

specifies that following instructions and data are to be placed in the
named relocatable section. You may choose any names you wish for
sections; these names may be the same as operand type symbols or
operator type symbols.

If you have coded the —\NOLINK option then all generated code is
placed in one section and the <symbol>s given on SECTION
directives are ignored.

The assembler insists that all instructions are coded within a section.
Almost all programs must therefore contain at least one SECTION
directive.

The start of a section within a module is forced (by the linker) to

begin on an even address, but changing between sections within a
module does not cause any automatic even address alignment.

47

For example:

SECTION ONE
DC.B 1 this starts on an even address

SECTION TWO
....... (anything)

SECTION ONE
DC.B 2 this byte is at an odd address

The section names are neither operand type symbols nor operator
type symbols and therefore you cannot refer to a section name from
anywhere other than a SECTION directive.

Itis however possible to have an operand type symbol with the
same name as a section name, and it is possible to declare this name
to be an external symbol, for example:

SECTION FRED

FRED:
XDEF FRED

In this example the symbol FRED refers to the first address in the
subsection of FRED which resides in the current module, and this
symbol is available to other modules which may refer to it using
XREF.

B.6.3 ORG ~ start absolute section
The directive:

ORG <expr>
instructs the assembler to generate code at the absolute address
specified by <expr>, which must be absolute and contain no

external or forward references.

The ORG directive is not permitted if the —~NOLINK option has been
coded.

48

The use of the ORG directive renders the resulting program
position-dependent so that it will not normally be possible to run it
as a Qdos program.

B.6.4 COMMON - start COMMON section
The directive:

COMMON <symbol>

introduces a common section in the same way as the SECTION
directive introduces an ordinary section.

The COMMON directive is not permitted if the -NOLINK option
has been coded.

This directive exists to allow declaration of and access to Fortran-
style common blocks. This is not considered to be a generally useful
feature and is included solely to enable assembler access to data
structures used by Fortran (or other high level languages which
make use of the Fortran COMMON scheme).

The COMMON directive creates the <symbol> of section type (as
does the SECTION directive); it also creates an operand type symbol
of the same name as if it had been declared with an XREF.L
directive. The value of this symbol is an offset from a global origin of
common blocks.

In the two cases which are not re-entrant (default and COMMON
END —see the QL Linker manual) the global origin of common
blocks is the start of the program, and in the re-entrant case
(COMMON DUMMY) it is the start of the store area allocated to
the common blocks (which is not known until run-time).

There is no way to tell the assembler which type of common
allocation will be performed by the linker, but the way the assembler
handles common allows most of the code to be the same for both
cases.

The symbols declared as labels within a COMMON section have
absolute values as if they were declared within range of an OFFSET
0 directive. They are intended to be used as offsets to an address
register which holds the address of the base of the common block.

49

You must ensure that an address register is allocated throughout to
hold the address of the base of all common blocks, and the
initialisation of this register depends on whether code which is not
re-entrant is being generated in which case something like:

LEA COMMBASE(PC),A5

will do, or whether re-entrant code is being generated in which case
a call to the operating system to allocated memory space will return
the address of the base of that space.

From here on the same code can be used in both cases: to obtain the
base address of common block FRED above in A4:

MOVE.L A5 A4 base of all common blocks
ADD.L #FRED,A4 base of FRED

and you can then move data around in the common block in the
same way in both cases, e.g.:

MOVE.L VAR1(A4),VAR2(A4)

Note that this code knows that VAR1 and VAR2 are within 32k
bytes of the start of FRED but makes no assumptions about where
the linker will put FRED in relation to the start of all common blocks.
If you know that the whole program (in the non-re-entrant case) or
the total size of all common blocks (in the re-entrant case) is less
than 32k you may use:

ADD.W #FRED A4
instead, and the linker will complain if there is any overflow.

Note that the use of the symbols VAR1 etc. in any other way is likely
to be unhelpful, for example code like:

MOVE.L VAR1,VAR2

will do silly things like trying to copy parts of the operating system
ROM around.

50

Within range of a COMMON directive DS and RORG directives
may always be coded. If the code generated is to be non-re-entrant
then DC and DCB directives may also be coded. In no circumstances
may instructions be coded.

If re-entrant code is required (linker option COMMON DUMMY)
and DC or DCB directives are coded within range of a COMMON
directive then the linker will generate error messages.

B.6.5 RORG - adjust relocatable origin
The directive

RORG <expr=

resets the current location counter to <expr> bytes from the start
of the current section or common section. RORG directives must
only be coded following a SECTION or COMMON (with no
intervening OFFSET or ORQ).

If the <expr> in a RORG directive has a value higher than the
address of any code generated in the section then the length of the
section is increased to this value which will be used by the linker in
performing address allocation.

The <expr> may be absolute or relocatable; in the latter case it
must be simple relocatable with respect to the current section. It
must contain no forward or external references and must not be
negative.

The <expr> must not contain any symbols which are COMMON
section names.

B.6.6 OFFSET — define offset symbols

The OFFSET directive provides a means for symbols to be defined as
offsets from a given point: this is particularly useful for defining field
names for data structures.

The <expr> given in an OFFSET directive must be absolute and
must not contain forward references or external references. The
value of the <expr> is the inilial value of a dummy location counter
which can then be used to define labels on following DS directives.

51

The syntax of the OFFSET directive is:
OFFSET <expr>

Between an OFFSET directive and a following OFFSET or SECTION
(or END) directive the following are not allowed:

DC, DCB, instructions.

B.6.7 END - end of program

The END directive defines the end of the source input; if there is
anything else in the file on subsequent lines then this will be ignored
by the assembler.

The syntax of the end statement is:
END

B.6.8 XREF — refer to external symbol
The directive:

XREF[<xlen>] <symbol>{,<symbol>}

declares the listed <symbol>s to be external. Code within the
current module may make references to these symbols and the
references will be resolved by the linker.

The XREF directive for a symbol must occur before any other
reference to the symbol otherwise the assembler will report an error.
The XREF directive is not permitted if the -NOLINK option has been
coded.

When a <symbol> declared in an XREF directive forms (possibly
part of) an <expr> which is coded where a general effective
address (<ea>) is required the user must give the assembler some
help in choosing the addressing mode required. This is done via the
<xlen> field.

52

<xlen> may be blank, in which case the assembler will usually
generate PC-relative addressing modes when the

<symbol>s are referred to, or '.S" in which case the assembler will
generate absolute short addressing modes when the <symbol>s
are referred to, or *.L" in which case the assembler will generate
absolute long addressing modes when the symbols are referred to.

Note that (for example) a relocatable symbol may be referred to by
XREF.L, in which case absolute long address references to it may be
made. In most circumstances the linker will end up with the right
answer for this sort of thing as long as you didn't want the program
to be position independent.

The rules for the addressing mode chosen when an <expr>
contains several symbols of different types are discussed at B.4.2
above.

A symbol may be declared in more than one XREF directive (so that,
in particular, XREFs can be used in macros with no worries about
duplicate declarations). (If the same symbol is defined more than
once in the same XREF then some harmless error messages will
result.)

B.6.9 XDEF — declare external symbol
The directive:

XDEF <symbol>{,<symbol>}

declares the <symbol>s to be external. These symbols should be
defined in the current module and are made available to other
modules by this declaration.

There are no positioning requirements on the XDEF directive, which
may occur either before or after any other uses of the <symbol>s.
The XDEF directive is not permitted if the -NOLINK option has been
coded. A symbol may appear in more than one XDEF directive.

53

Due to restrictions imposed by the relocatable binary format and the
linker only some types of <symbol> can be coded in an XDEF
directive. The following types of <symbol> can be coded in an
XDEF directive:

some absolute symbols, being:
labels following an ORG directive

symbols defined by an EQU directive which involve no (residual)
external references and no (residual) SECTION or COMMON
relocation bases

some symbols whose value is an offset from the start of a SECTION
present in the current module, being:

labels following a SECTION directive

symbols defined by an EQU directive which involve no (residual)
external references and only one (residual) SECTION relocation
base with a relocation factor of 1.

The following types of symbol cannot be coded in an XDEF directive
due to the relocatable binary and linker restrictions:

symbols defined by an EQU directive which involve one or more
residual external references and/or more than one residual
SECTION relocation base and/or any SECTION relocation base
with a relocation factor other than 1.

B.6.10 MODULE — declare module name
The directive:

MODULE <title string>

is optional and specifies the contents of the source directive in the
output relocatable binary file. Normally it is not necessary to code a
MODULE directive and a default will be constructed by the
assembler as described at 2.7.1 above.

The MODULE directive is ignored if the -NOLINK option has been
coded.

54

B.6.11 COMMENT - include comment in binary
The directive:

COMMENT <title string>
places the string in the relocatable binary output file as a comment

directive. This has no effect on anything except that it is included in
the listing generated by the QL Linker.

The COMMENT directive is ignored if the -NOLINK option has
been coded.

B.6.12 EQU —assign value to symbol
Syntax:

<label> EQU <expr>

The <expr> is evaluated and the value is assigned to the
<symbol> given in the <label>.

The <expr> may not include references to any symbol which has
not yet been defined.

The <expr> may include references to external symbols (defined by
earlier XREF directives).

The value of the defined symbol is calculated as explained in B.3.1.

B.6.13 REG — define register list
Syntax:

<label> REG <multireg>

The <symbol> given in the <label> is defined to refer to the
register list given in <multireg> and may be used in MOVEM
instructions only.

The purpose of this directive is to allow a symbol to be defined
which represents a register list pushed at the start of a subroutine so
that the same list of registers can be popped at the end of the
subroutine without the risks involved in writing the list out twice.

55

B.6.14 DC - define constants

This directive defines constants in memory. Memory is reserved and
the values of the constants given are stored in this memory. This
facility is intended to allow constants and tables to be created.

Syntax:

[<label>] DC<length> <constant>{,<constant>}
where:

<constant> = <expr> | <string>

This directive may be coded within the range of a SECTION or ORG
directive. It may also be coded within the range of a COMMON
directive but this should only be done if the code is to be non-re-
entrant.

If a <constant> consists of a single string and no other operators or
operands then it is left justified in as many bytes, words or long
words (depending on whether <length>is .B, W or .L) as
necessary, with the last word or long word padded with zero bytes
as necessary. In this case the <string> can be of any (non-zero)
length; there is no restriction as there is with <string>s that form
part of <expr>s.

This leads to the rather strange feature that:

DC.L ‘a’

causes the character to be left-justified whereas

DC.L ‘a'+0

is an <expr> and so causes the character to be right-justified. (Note

that other 68000 assemblers have even stranger features in this
area.)

56

In the case of DC.W and DC.L the current location counter is
advanced to a word boundary if necessary, and the optional
<label> is defined with this adjusted value. Thus the code
fragments:

FRED DC.W
and

FRED
DC.wW

do not necessarily have the same effect as the second could result in
FRED having an odd value depending on earlier use of DC.B, DS.B
or DCB.B.

Expressions given as operands of DC directives may contain any
legal combination of external references.

Data to be generated may have any value type. However any data
with a relocation factor other than zero will cause a warning
message to be produced as the result is probably a program which is
not position independent.

No more than six bytes of code generated by a DC are printed on
the listing; if all generated bytes are required then the constants
must be coded on more separate DC directives.

B.6.15 DS —reserve storage

This directive reserves memory locations. The memory contents are
undefined. The directive is used to define offsets in conjunction with
the OFFSET directive and to leave ‘holes’ in data generated by DC
and DCB; it is also of use in ensuring that the current location
counter has an even value.

Syntax:

[<label>1] DS<length> <expr>

57

If the length is .\W or .L the current location counter (which can be a
dummy location counter initiated by OFFSET) is advanced to a word
boundary if necessary. The (optional) <label> is assigned the value
of the adjusted location counter.

The <expr> must be absolute and contain no forward or external
references.

DS.B reserves <expr> bytes, DS.W reserves <expr> words and
DS.L reserves <expr> long words.

<expr> may have the value zero in which case DS.W and DS.L
ensure that the location counter is on an even boundary, and the
optional <label> is defined.

B.6.16 DCB — define constant block
The directive:

[<label>] DCB<length> <expr>,<expr>

causes the assembler to generate a block of bytes, words or longs
depending on whether <length>is .B, Wor .L.

This directive may be coded within the range of a COMMON
directive but this should only be done if the code is to be non-
re-entrant.

if the length is W or .L the current location counter is advanced to a
word boundary if necessary. The (optional) <label> is assigned the
value of the adjusted location counter.

The first <expr> must be absolute and contain no forward or
external references and is the number of storage units (bytes, words
or longs) to be initialised, and the second <expr> is the value to be
stored in each of these storage units.

The second <expr> may contain any legal combination of external
references.

58

Data to be generated may have any value type. However any data
with a relocation factor other than zero will cause a warning
message to be produced as the result is probably a program which is
not position independent.

B.6.17 PAGE — start new listing page
The directive

PAGE

causes the next line of the listing to appear at the top of the next
page. The PAGE directive itself is not listed.

B.6.18 PAGEWID — define width of page
The directive

PAGEWID <expr=>

defines the width of the printed output to be <expr> characters.
The <expr> must be absolute and contain no forward or external
references and must be between 72 and 132 inclusive. If no
PAGEWID directive is present the default is 132 characters.

B.6.19 PAGELEN — define length of page
The directive

PAGELEN <expr>

defines the length of each listing page to be <expr> lines. The
<expr> must be absolute and must contain no forward or external
references. The value given is the physical length of the paper;
rather fewer lines of assembler source are actually listed on each

page.

B.6.20 LIST —switch listing on
The directive

LIST

restarts listing that was suppressed by a previous NOLIST directive.
The LIST directive itself is not listed.

59

B.6.21 NOLIST — switch listing off
The directive

NOLIST

suppresses listing until a LIST directive is encountered. The NOLIST
directive itself is not listed.

B.6.22 TITLE — define title for listing
The directive

TITLE <title string>

causes the <title string> to be printed at the top of each
subsequent page of listing. If a title is wanted on the first page of the
listing then the TITLE directive should appear before any source line
which would get listed. The TITLE directive itself is not listed.

B.6.23 DATA — define size of data space
The directive

DATA <expr>
defines the size of the data space that will be allocated to the
program when itis executed by Qdos. The <expr> gives the

number of bytes to be reserved.

The expression must be absolute and contain no forward or external
references.

If several DATA directives are coded the last one takes effect.

If no DATA directives are coded then 4096 bytes of data space will
be allocated to the program.

60

B.7 Macro facilities

A macro is a set of assembler source statements (both instructions
and directives) which are given a name.

This set of statements may be included in your program at any point
by coding the name of the macro in the operation field of a source
line as if it were a user-defined instruction or directive.

Thus a macro can be used as a shorthand way of writing a set of
statements which has to be repeated several times in a program.

A set of text substitution and conditional assembly facilities is also
provided so that a macro need not generate exactly the same
sequence of code each time it is used but can generate different
code depending on parameters passed to it.

As all these facilities are interdependent it is not possible to arrange
this section of the manual so as to avoid forward references entirely:
you may find it necessary to read right through section B.7 quickly
so as to gain a general understanding and then read it again to study
the details.

B.7.1 Text substitution

The input to the assembly process may come from the input files or
from a macro which is being expanded. In either of these cases (but
not while a macro definition is being processed or on a comment
line introduced by an asterisk ‘*' in column 1) any occurrence of:

[<variable>]

(where the [] are literal) will be replaced by the string value
currently associated with the <variable>. There are two (syntactic)
types of <variable>, being <symbols>s or calls to functions:

<variable> = <symbol>|
<function>
<function> = <symbol>[(<parm>{,<parm>})]

61

<parm> = <variable>|
<expr>|
<ea>

(wherethe[Jland{ } are metasymbols). A <parm> may be
interpreted as a <variable> or an <expr> or an <ea> depending
on the type of data required for that parameter by the particular
function.

Substitutions can be nested. For example, suppose the current value
of the variable N is the string ‘3" (not including the quotes) and the
current value of the variable VAR3 is the string ‘A value' (not
including the quotes) then the assembler source:

DC.B ‘[VARINII'

will be expanded to:

DC.B ‘A value'

For a list of functions provided in the assembler see B.7.4.

Note that the character ‘[' will always attempt to cause a
substitution and so this is effectively a reserved character in that any
attempt to code it as part of a string or comment will always cause

either a substitution or an error message.

For a discussion of the scope of variables and macro parameters see
B.7.3.

B.7.2 Macro definitions
A macro definition begins with the directive:

<label> MACRO [<symbol>{,<symbol>}]

the commas are optional and macro parameters can alternatively or
in addition be separated by <white space>; in addition the comma
or <white space> can be followed by a backslash character *\" in
which case the rest of the line is ignored and the next parameter is
taken from the next input line

62

(wherethe [1{ } are metasymbols) and ends with the directive:
ENDM

Macro definitions may not be nested.

The <label> is defined to be the name of the macro. It is defined as
an operator type symbol (and must not therefore clash with any
directive, instruction or other macro name).

The list of <symbol>s gives names to the parameters to the macro.

The macro parameters may then be accessed by substituting for the
parameters as variables, e.g.:

FRED MACRO P1.P2
DS.W [P2]
ENDM

Alternatively the functions .NPARMS and .PARM may be used to
access the parameters and in this case no prior knowledge of the
number of parameters to be coded is needed. Example:

FRED MACRO P1,P2
DS.W [LPARM(2)]
ENDM

has the same effect as the previous example.

When a macro definition is encountered in the assembler’s input it is
scanned without any string substitution until an ENDM directive is
found. The ENDM must therefore be coded directly and must not be
generated by substitution! This also applies to the MACLAB
directive (see B.7.7).

63

B.7.3 Defining variables

Variables may be declared as local to a macro either by their
appearance as macro parameters on the MACRO directive or by
their appearance in LOCAL directives. This does not assign any
values to the variables.

Variables are given values by SETSTR or SETNUM directives. In
addition variables which are macro parameters are given values
when the macro is called.

The values of variables are used when the variable name appears in
square brackets[1.

m The LOCAL directive

The directive

LOCAL <symbol>{,<symbol>}

(where the { } are metasymbols) declares the <symbol>s to be
local variables within the macro currently being expanded. None of
the <symbol>s may appear as a parameter name for the current
macro or in another LOCAL directive in the same macro.

For a full discussion of the scope of variables see below.

m The SETSTR directive

The directive

<label> SETSTR <arbitrary string>

defines the <label> to be a variable and assigns it the
<arbitrary string> as its value.

See below for a discussion of the scope of variables. Variables can be

set (using SETSTR and/or SETNUM, see below) as often as you like
during an assembly.

64

When setting a variable to a string value which does not contain any
special characters which might confuse the assembler (space,
comma, semicolon) it is not necessary to code the curly brackets

{ }round the <arbitrary string>, for example:

FRED SETSTR The.value.of.bert
BERT SETSTR 197.999
WOMBAT SETSTR [FRED]=[BERT]

When one of these special characters is required the curly brackets
must be coded, for example:

STRING SETSTR {This has spaces in it}

STRING2 SETSTR {'and so does this'}

STRING3 SETSTR {don't take; semicolon as comment}
NULL SETSTR {} how to set a null string

DANGER SETSTR {[Al} don't know if A contains spaces

B The SETNUM directive
The directive

<label> SETNUM <expr>

evaluates the <expr>, converts the final numeric result to a string,
and assigns this string to the variable <label> in the same way as
for SETSTR.

The use of SETNUM is often for counting;

COUNT SETNUM [COUNTI+1

in conjunction with conditional assembly for the generation of
tables etc.

The following example shows the difference between SETNUM and
SETSTR:

STR SETSTR 1+1+1
NUM SETNUM 1+1+1
: STR = [STR] (must use ;" because ‘*' comments

; NUM = [NUM] are not expanded)

65

The above two lines of comment will be expanded to:

: STR=1+1+1 {must use ;" because '*' comments
; NUM =3 are not expanded)

B Scope of variables and macro parameters

Variables and functions occupy a separate name space from all
others; there is in particular no danger of name clashes with ordinary
labels. Within this name space the names of functions are unique.
The names of macro parameters and LOCAL variables are unique
within a macro but may be duplicated in other macros or by global
variables.

A macro parameter is in scope for the duration of the expansion of
that macro. Itis effectively created, and given the appropriate value,
at macro call time, and deleted when the macro expansion has
finished.

Macro parameters may be set to new values by SETSTR or SETNUM
directives.

Variables which appear in LOCAL directives are similarly in scope for
the duration of the expansion of the macro in which the LOCAL
directive appears (but only from the LOCAL directive to the ENDM
directive: any use of the same name before the LOCAL directive is
processed refers to the global variable of the same name).

The scope of a variable which does not appearin a relevant LOCAL
directive is global: at any point after the first definition of the symbol
it may be used in substitution, regardless of the macro generation
levels of both the definition and the substitution.

Functions are global except that some cannot usefully be called
outside a macro. Such calls will produce null strings or error
messages depending on the individual function.

When a variable to be substituted is encountered, the macro
parameter or LOCAL variable within the current macro of that name
is used, if any. Otherwise the global variable of the same name is
used. If there isn't one of these either then an error message is
generated.

66

B.7.4 Functions

The assembler contains a number of functions which can be used in
string substitutions. The names of these functions are all
<symbol>s which begin with a dot "." to help avoid confusion with
ordinary user variables. It is not possible for the user to define his
own functions.

For example:
DS.B [.LLEN(VAR3)]

will expand (with the value of VAR3 given earlier) to:

DS.B 7
and:
DC.B ‘[LLEFT(VARINI,[.LEN(VAR[NDI-N]'

will first expand to:

DC.B ‘[.LEFT(VAR3,[.LEN(VAR3)]-1)T'

and will then expand to:

DC.B ‘[.LLEFT(VAR3,7-1)1’

At this point the .LEFT function will be expanded: as it requires a
number for its second parameter an attempt is made to evaluate the
second parameter as an ordinary <expr>. The result of this
operation is:

DC.B ‘[.LEFT(VAR3,6)I'

and the final substitution gives:

DC.B ‘Avalu’

The individual functions available are listed in paragraphs below.

67

m .DEF — whether variable is defined
The function

.DEF(<symbol>)

returns the string "TRUE' if the <symbol> has previously been
defined by a SETNUM or SETSTR directive or the string 'FALSE'
otherwise, in both cases not including the quotes.

® LEN - length of a string
The function

.LEN(<variable>)

returns (as a string, e.g. '7") the length in characters of the string
represented by the <variable>.

B _LEFT - left substring
The function

.LEFT(<variable>,<expr>)

returns a string consisting of the leftmost <expr> characters of
<variable>. If <expr> is zero or negative the result is the null
string. If <expr> is greater than the length of the string <variable>
then the result is identical to <variable>.

® _RIGHT —right substring
The function

RIGHT(<variable>,<expr>)
returns a string consisting of the rightmost <expr> characters of
<variable>. If <expr> is zero or negative the result is the null

string. If <expr> is greater than the length of the string <variable>
then the result is identical to <variable>.

68

®m INSTR —locate substring
The function

INSTR(<variable>,<variable>)

returns as a string the character position of the first occurrence of
the second <variable> as a substring in the first <variable>. The
first character in the first variable is regarded as character position 1.
If there is no match then .INSTR returns zero.

m _UCASE — convert to upper case
The function

UCASE(<variable>)

returns as a string its parameter with all lower case letters converted
to upper case. The use of this function to identify macro parameters
is highly recommended as it means that the user of the macro does
not need to code the parameters in any particular case.

B _NPARMS — number of parameters
The function

.NPARMS

returns the number of parameters that have been passed to the
current macro. If called outside any macro it is an error.

® PARM — macro parameter
The function

.PARM(<expr>)

returns the <expr>th parameter to the current macro. If called
outside any macro, or if the macro had less than <expr>
parameters on the current call, then an error is generated.

This error case can be avoided by checking against NPARMS before
using .PARM.

69

m .LAB - macro call label
The function

.LAB

returns the label that was coded on the macro call. If no label was
coded the null string is returned. If this function is coded outside a
macro then an error is generated.

® _EXT — macro call extension
The function

EXT

returns the last character of the macro name coded if the
penultimate character of the macro name was dot '.". If the macro
call had no extension then .EXT returns the null string. If this
function is used outside a macro then an error is generated.

® .L—unique label generation
The function

L

will give a different four-digit number for each macro expansion in
which it is used. This is useful for generating local labels that will not
clash with other labels generated by others macros or other
invocations of the same macro.

If this function is used outside a macro then an error is generated.

Example: suppose a label is needed inside some code generated by a
macro, and the macro is likely to be called several times in the
assembly:

LOOPIL.L]

DBRA D3,LOOP[.L]

70

TN

® OTYPE —type of operand
The function

OTYPE(<ea>)

investigates the <ea> as if it were an operand to an instruction
and, depending on the operand type, returns one of the following
strings:

Result string Format of <ea>
DREG <dreg>

AREG <areg>

IND (<areg>)

INDDEC —-(<areg>)

INDINC (<areg>)+

DISPL <expr>(<areg>)
INDEX <expr>(<areg> <ireg>)
EXPR <expr>

PC <expr>(PC)
PCINDEX <expr>(PC,<ireg>)
IMMED #<expr>

MULT register list

uUSP USP

CCR CCR

SR SR

ERROR anything else

® .ABS - enquire type of value
The function

ABS (<expr>)

returns TRUE if the <expr> has no relocation bases, i.e. the numeric
partis all there is to say about it, or FALSE if some relocation bases
are involved.

Together with .OTYPE above, this function enables macros to detect
things like a parameter having value '#FRED' where FRED was an
EQU symbol with value of absolute zero. This is likely to be helpful
when trying to write macros to generate structure statements.

71

® Assembler environment enquiries
The functions:

TIME of assembly

.DATE of assembly

.FILE primary source file being assembled

.VER version number of the assembler

.0S host operating system (‘Qdos’ or ‘68K/OS')

are provided so that the program can know something about how it
is being assembled.

B.7.5 Listing control

m Listing of substituted lines

Normally a line is fully expanded and then processed by the
assembler as before. This means that (only) the fully expanded form
is listed.

When the assembler processes macro definitions it does not expand
substitutions, and does not act on most of the data contained in the
macro body. Lines of macro definitions are printed as coded,
without any expansion.

When an error is encountered during expansion (such as wrong
brackets of various types'[I{}(),’, missing parameters to
functions, failure to evaluate <expr>s as desired) the current partly-
expanded state of the line is listed, with error messages as
appropriate, and no further processing is applied to the line.

B Listing of macro-generated lines

Macro definitions are listed or not in the normal way subject to the
normal options and directives, except that any listing control
directives present inside the macro definitions themselves are not
acted on.

Macro calls are listed or not in the normal way subject to the normal
options and directives, which may include macro expansion controls
if the macro call was generated by a macro.

72

Lines generated by macros are listed subject to the -NOLIST,
—ERRORS and —LIST options and the LIST and NOLIST directives in
the usual way. In addition the directive NOEXPAND switches off
listing of lines generated by macros until either the EXPAND or
ENDM directive is met. If the EXPAND directive is met, listing is
switched back on again. f the ENDM directive for the macro in
which the NOEXPAND appeared is met, the listing status reverts to
what it was in the calling macro. A NOEXPAND directive may be
coded outside all macros, in which case no macro expansions are
listed untess they contain EXPAND directives.

The NOEXPAND and EXPAND directives themselves are not listed.

No special form of comment which overrides expansion suppression
is provided as this can be achieved with:

EXPAND
: Macro FRED has generated a [WOMBAT]
NOEXPAND

Note that in order to debug a macro you may have to test it with all
the NOEXPAND directives missing, and put these in later when you
have got it basically working. You can of course write all your
NOEXPAND directives as

[DEBUGIEXPAND

and SETSTR DEBUG to NO or {} as required.

Two directives are provided to generate error and warning messages
respectively. These can be used by a macro which checks its
parameters for validity to tell the programmer that wrong or suspect
parameters have been coded.

ERROR
WARNING

The directive is listed, together with an error or warning message
respectively, regardless of the state of NOEXPAND and NOLIST (as
are any other lines in macro expansions which generate error
messages). Normally comments would be included on these
directives to tell the user what he has done wrong:

73

ERROR Parameter P1 should not be [P1]
WARNING Use of XPQ option would generate less code

B.7.6 Macro calls
A macro is called by coding:

[<label>] <symbol> [<arbitrary string>{,<arbitrary string>}]
(wherethe[1{ 1} are metasymbols)where:

<label> s passed through to the body of the macro as the value
of the function .LAB

<symbol> is the name of the macro, optionally with a one-
character extension preceeded by a dot *."; if a legal
extension is coded this is passed through to the body of
the macro as the value of the function .EXT

<arbitrary string>s are macro parameters

the commas are optional and macro parameters can alternatively, or
in addition, be separated by <white space>; in addition the comma
or <white space> can be followed by a backslash character ‘\" in
which case the rest of the line is ignored and the next parameter is
taken from the next input line.

Note that as parameters can be separated by spaces, everything on
the line will be assumed to be macro parameters, including the
comment, unless you do something about it. What you do is to
precede any comment (on the last continuation line) with a
semicolon ’;'.

There is virtually nothing you can do wrong, as far as the assembler
is concerned, when coding a macro call. If too few parameters are
coded then the remainder of the named parameters in the macro
will be assigned null string values. If too many parameters are coded
this is not an error because you can access them within the macro
using the .NPARMS and .PARM functions. If no label or extension is
coded the functions .LAB and .EXT will return null strings.

74

Macro calls may be nested to any depth (subject only to running out
of memory). Macro calls may be recursive.

Example:

MAKETAB 27, 49, 123,99, \ first row of table
1, 99, 0, 3, \ secondrow oftable
5, 8, 187, -1 ;lastrow of table

B.7.7 Conditional assembly facilities
Conditional assembly is provided within macros only.

The facilities provided are:
— the ability to define a special sort of label

— a conditional GOTO directive which either does or does not
resume expansion of the macro at a specified label depending on
a string or numeric comparison of two values

m The MACLAB directive
The directive:

<label> MACLAB

defines the label. This directive is processed during macro definition
and must not contain any string substitutions (except, perhaps, in
the comment).

The scope of the <label> is local within the macro in which it is
defined. Jumping to a macro label leaves you at the same recursive
level, if the macro has been called recursively.

m The IFSTR, IFNUM and GOTO directives
The directive:

m |FSTR <arbitrary string>,<compop>,

<arbitrary string>,GOTO, <label>

where the commas may be preceded or followed or replaced by
<white space>, and backslash may be used to introduce
continuation lines, as for macro calls

75

means 'perform a string comparison, and if the condition is true
resume assembly at the line containing a MACLAB definition of the
<label>". The GOTO is a noise word and can be omitted.

Similarly IFNUM makes a numeric comparison between two
<expr>s:

® [FNUM <expr>,<compop>,<expr>,GOTO,<label>

Examples:

IFSTR [.LEFT(P2,1)] = D GOTO DREG
IFSTR {IP3]} = {} GOTO EXIT

COUNT SETNUM 1

LOOP MACLAB
DC.L [.LPARM(ICOUNTD]
COUNT SETNUM [COUNT]+1
IFNUM [COUNT] <= [.NPARMS] GOTO LOOP

As a piece of syntactic sugar a GOTO directive is provided so that:
GOTO <label>

can be coded instead of garbage such as:

IFSTR { y={ }GOTO <label>

Note that if there is any chance of an <arbitrary string> expanding
to something containing spaces or commas then the { } must be
coded. For example, if you code:

IFSTR [FRED] = 99 GOTO LABEL
and FRED has the null string as value, this will expand to:

IFSTR =99 GOTO LABEL
which is an error of some sort, whereas::

[FSTR {[FRED]} = 99 GOTO LABEL
will be much safer.

76

B.8 The macro library

Included with the QL Macro Assembiler is a file containing
definitions of some useful macros. This section describes those
macros as supplied, but you may of course add to them and modify
them if you need extra features.

B.8.1 Common features
The following features are common to all relevant macros.

® Length of jumps

Some macros generate forward branches. These branches will be
short unless .L is explicitly specified as part of the appropriate macro
or parameter.

B Reserved Identifiers

All names generated by macros which are not local to a macro start
with a dot; this includes all variable names and any generated
symbol names (including labels and register lists). To avoid clashes
with the names in the library user variables and symbols should not
start with a dot when you are using the macro library.

® THEN and DO
Any macro which requires the word THEN as a parameter will accept
DO as a synonym and vice versa.

B.8.2 Syntax definitions
The following syntax definitions are used in the descriptions of the
macros.

® Simple condition

<scond> = <relop>|
<ea> SET <ea> |
<ea> CLEAR <ea>

These combinations of simple tests allow the user to test condition

codes or to perform a generalised compare or to test the value of a
bit.

The SET and CLEAR comparisons test the state of a bit. The first
<ea> a bit numberin a form acceptable to a BTST instruction and
the second <ea> is the address of the operand in which the bit
resides (also in a form acceptable to a BTST instruction).

77

8 Condition

<cond> = <scond>|
<scond> OR <scond>|
<scond> AND <scond>

m Relational operator
<relop> = <cc>[<length>]

<cc> =NE|CC|HS|HI|VC|GE|GT|PL|
EQ|CS|LO|LS|VS|LT|LE|M!

The <length> on the <relop> is the size of the compare instruction
generated to give the condition result.

B.8.3 IF and associated macros

The macros IF, ELSEIF, ELSE and ENDIF may be used to write code
which tests values of operands and executes one of a number of
pieces of code depending on those values. Use of these macros can
avoid having to write a lot of error-prone CMP and Bcc instructions.

The general structure which you may construct using these macros is:

IF <cond> THEN[<extent>]

ELSEIF[<extent>] <cond> THEN[<extent>]

ELSE[<extent>]

]
ENDIF

m The IF macro

The IF macro is allowed anywhere where code is allowed. The
<extent> on the THEN parameter is the distance to the
corresponding ELSEIF, ELSE or ENDIF macro.

78

® The ELSEIF macro
The ELSEIF macro is allowed only after a corresponding IF or ELSEIF
macro. ‘

The <extent> on the ELSEIF macro is the length of branch to the
ENDIF macro (this branch is taken if the previous test was
successful). The <extent> on the THEN parameter is the length of
branch to the next ELSEIF, ELSE or ENDIF macro (this branch is taken
if the test is not successful).

® The ELSE macro
The ELSE macro is only allowed after a corresponding IF or ELSEIF
macro.

The <extent> on the ELSE macro is the length of the branch to the
corresponding ENDIF macro.

m The ENDIF macro

The ENDIF macro is allowed after a corresponding IF, ELSEIF or ELSE
macro.

B.8.4 FOR and associated macros
The macros FOR and ENDFOR allow you to code a loop which will
execute a given number of times (possibly zero).

The structure of a FOR Loop is:

FOR [<length>] <ea> =<ea> <a> [] DO[<extent>]
ENDFOR

where:

<a> =TO <ea> | DOWNTO <ea>
 = STEP <ea> | BY <ea>

® The FOR macro

Either the TO parameter must be coded, in which case you should
ensure that the STEP is a positive number and the loop counts
upwards, or the DOWNTO parameter must be coded, in which case
you should ensure that the STEP is a negative number and the loop
counts downwards.

The test for loop termination uses signed arithmetic in all cases.

79

The STEP parameter gives the amount to be added to the loop index
each time round. If you omit it then ‘#1" is assumed for a TO loop or
‘#-1"is assumed for DOWNTO loop. The word BY may be used
instead of STEP.

The <length> on the FOR macro is the length of all instructions
generated for setting, stepping and comparing the counter. The

<extent> on the DO parameter is the length of the branch to the
ENDFOR macro.

® The ENDFOR macro

The ENDFOR macro may only be used after a corresponding FOR
macro.

B.8.5 Loop macros

The macros WHILE, ENDWHILE, REPEAT, UNTIL and FOREVER
allow you to code loops that execute repeatedly while some
condition is true or until some condition is true.

WHILE and ENDWHILE generate a loop that tests its condition at
the beginning of the loop.

REPEAT and UNTIL generate a loop that tests its condition at the
end of the loop; this loop is always executed at least once.

REPEAT and FOREVER generate a loop that executes forever; this is
sometimes useful for the main loop in a program.

WHILE <cond> DOl[extent>]

ENDWHILE

REPEAT

UNTIL :<cond>

REPEAT

FOREVER

80

® The WHILE macro
The WHILE macro is allowed anywhere where code may be placed.

The <extent> on the DO parameter is the length of the branch to
the corresponding ENDWHILE macro.

® The ENDWHILE macro
The ENDWHILE macro is only valid after a WHILE macro. It marks
the end of the loop.

The REPEAT macro

The REPEAT macro is valid anywhere where code may be placed.
The macro simply provides a label for the UNTIL test to branch back
to.

® The UNTIL macro
The UNTIL macro is only valid after a corresponding REPEAT macro.

® The FOREVER macro

The FOREVER macro is only allowed after a corresponding REPEAT
macro to provide an infinite loop (effectively an always FALSE
version of the UNTIL macro).

B.8.6 CASE and associated macros

The macros SWITCH, CASE, ENDC, DEFALUILT and ENDSWITCH
allow a structure to be coded that selects one of a number of
sequences of code depending on a control value. (The same effect
could be achieved using IF, ELSEIF, ELSE, ENDIF but the CASE
macros are often a more readable way to code a selection with
many branches.)

81

The general structure is:

SWITCH<length> <ea>

{
CASE[<extent>] <ea>
[ENDCl[<extent>] 1
¥
[
DEFAULT
[ENDC[<extent>]]
]
ENDSWITCH

® The SWITCH macro

The SWITCH macro introduces a set of CASE options. It is allowed
anywhere where code is allowed. The <length> is the length of all
the comparisons generated by all the relevant CASE macros.

The <ea> is the control variable which is used to select the CASE to
be executed.

m The CASE macro
The CASE macro introduces an option. The CASE macro is allowed
only after a previous CASE, SWITCH or ENDC macro.

The <extent> on the CASE macro is the length of the branch to the
next CASE, DEFAULT or ENDSWITCH macro.

The code following the CASE macro up to the next ENDC macro is
executed if the control variable is equal to the <ea>, after which
the program resumes at the ENDSWITCH macro.

®m The ENDC macro

The ENDC macro is allowed only after a previous CASE or DEFAULT
macro. The <extent> is the length of the branch to the
ENDSWITCH macro.

82

m The DEFAULT macro

The DEFAULT macro is allowed only after a previous CASE or ENDC
macro. Its purpose is to provide the default option if all previous
options have not been satisfied.

The ENDSWITCH macro

The ENDSWITCH macro is only allowed after a previous ENDC,
DEFAULT, CASE or SWITCH macro. Its purpose is to terminate the
SWITCH structure.

B.8.7 Stack handling
The PUSH$ and POP$ macros save values (usually registers) on the
A7 stack and restore them.

PUSH$[<length>] <ea>

generates:

MOVE<length> <ea>,=(A7)
and:

POP§[<length>] <ea>
generates:

MOVE<length> (A7)+ <ea>

B.8.8. STRINGS$ definition

<name> STRING$ ‘<string>'

creates a string in standard format consisting of the two-byte length
of the string followed by the characters of the string. The parameter
should be enclosed in quotes, e.g.:

FILE STRING$ '‘MDV1_MY_FILE'

and if it includes spaces, commas etc. the curly brackets must also be
used, e.g.:

STRING1 STRING$ {'Thisisastring'>
STRING2 STRING$ {'Aline followed by a line feed', $OA}

83

B.8.9 SUBROUTINE$ and associated macros

The macros SUBROUTINE$ and END$ are useful to mark the start
and end of subroutines. If a subroutine needs to preserve a set of
registers then these macros will generate the necessary MOVEM
instructions; END$ also generates RTS.

In addition these macros will check that structure macros used inside
the subroutine have been terminated properly, e.g. a missing ENDIF
will cause a warning message when the END$ is processed.

SUBROUTINE$ <name>[,<multireg>]

END$[.<name>]

The <name> is generated as a label by SUBROUTINES$ so that it
can be used as the destination of JSR and BSR instructions. If a
<name> is coded on the END$ macro it is checked to see that it
matches the previous SUBROUTINE$ and an error message is
generated if not.

B.8.10 Macros for calling Qdos
The following macros are provided for making calls to Qdos:

QDOSMT$ <function name>

is used for manager traps and generates:

MOVEQ #<function name>, DO
TRAP #1

and:

QDOSOCH <function name>

is used for open and close channel calls and generates:

MOVEQ #<function name>, DO
TRAP #2

84

and:
QDOSIOS <function name>
is used for other input/output operations and generates:

MOVEQ #<function name>,D0
TRAP #3

In each case the <function name>s needed for the various Qdos
traps are provided in the pararneter files supplied with the macro
assembler, so if you INCLUDE the necessary parameter files and
macro library you can write Qdos calls like this:

MOVEQ #~1,D1 current job
CLR.L D3 old, exclusive
LEA FILENAME,AQO name of
QDOSOC$ 10.OPEN file to open
FILENAME STRING$ ‘MDV1_INPUT_FILE’

85

Appendix C — Error and warning
messages

This appendix lists the error and warning messages which can be
produced by the assembler in numerical order.

C.1 Error messages

m 00 - unknown instruction/directive
An unknown symbol has been used where an instruction or
directive is expected in the operation field.

m 01-illegal line after OFFSET
Instructions and directives which generate code (DC, DCB) are
not allowed in the dummy section defined by the OFFSET
directive. Return to a SECTION before instructions or data.

N 02 - syntax error in instruction field
The operation field does not contain a <symbol>.

m 03 —redefined symbol
The symbol has already been defined earlier in the assembly. The
first definition of the symbol will be used; further definitions will
just produce this error message.

® 04 - phasing error
This is an assembler internal error — it should only happen if the
source file has changed between pass 1 of the assembler and pass
2.

® 05 - missing operand
The instruction requires two operands, and only one has been
coded.

m 06 —syntax error

The line contains a syntax error which has left the assembler with
very little idea of what was meant.

86

07 — syntax error in expression or operand
The assembler is expecting an expression or other instruction
operand but does not understand what it has found.

08 — multireg, cannot mix Dreg & Areg
Data registers and address registers may not be combined in a
range: eg D3—A4 is illegal.

09 — multireg, bad sequence
The registers in a range must be in increasing order —eg D5-D2 is
illegal.

0A — unmatched open bracket
There are too many open brackets in the expression: unmatched
open brackets are ‘closed’ at the end of the expression.

0B — unmatched close bracket
There are too many close brackets in the expression: unmatched
close brackets are ignored.

0C — expression too complicated

An expression is limited to five levels of nested brackets. Certain
combinations of operators can cause this error with fewer
brackets — eg when low priority operators are followed by high
priority operators.

0D — expression: string too long
When a string is used as a term in an expression, it may be up to
four characters long.

OE — internal error — expression stack underflow
This is an internal assembler error which should never occur.

OF — invalid character)

Some characters such as “ ? = have no meaning to the
assembler. They may only be used within strings. The character is
ignored.

11 - no digits in number
A number is expected (eg after $ or %) but no digits are present.

87

88

12 — number overflow
The number is too large and will not fit in 32 bits.

13 — string terminator missing
A string must be terminated by a quote character.

14 — relocatable value not allowed here
Some addressing modes and directives require absolute values.

15 — multiply overflow in expression
A multiply overflow error occurred while evaluating an
expression.

16 — divide by 0 or divide underflow
A divide error occurred during evaluation of an expression.

18 — —ve valueillegal
Some directives (eg DS) can accept a zero or positive number, but
a negative value is illegal.

19 —value must be +ve nonzero
Some instructions or directives require a positive, non-zero, value
(eg the number of elements for DCB).

1A —value out of range

This is a general purpose message for any value out of range in
instructions or directives. The actual value range depends on
context — read again the description of the instruction or directive
involved.

1D —size not allowed on directive
Most directives do not accept a size extension: the only ones that
do allow a size are DC, DCB & DS.

1E — invalid size
The size specified on the instruction or directive is not legal.

1F —size .B illegal for Areg
Byte operations on address registers are not allowed.

20 — label illegal on this directive
Many directives (eg INCLUDE, SECTION, LIST, PAGE) do not
accept a label.

21 —too many errors
If a line has more than ten errors or warnings, only the first ten
are printed, followed by this message.

22 —invalid operand(s) for this instruction

The operand(s) specified are not valid for the instruction. Check
the rules for the instruction you are using in a 68000 manual. If
one of the operands to the instruction is an “effective address”

this error can mean that the actual addressing mode specified is
not legal.

The assembler will try to point the error flag (the vertical bar
character) at the invalid operand, but as the assembler may not
even know (in the case of a generic mnemonic) which instruction
you meant it will get this wrong sometimes.

23 — undefined symbol
The symbol has not been defined in the assembly.

24 — forward reference not allowed here
Many directives do not allow a forward reference.

25 —short branch out of range
BRA.S (or some other Branch.S) has been coded but the
destination is more than 128 bytes away.

26 — long branch out of range
The destination of a long branch must be within 32k.

27 —value must be simple relocatable
The expression should be simple relocatable: absolute or complex
values are illegal (e.g. in the destination of a branch instruction).

28 — value must not be complex

Absolute and simple relocatable expressions can generally be
used as addresses but a complex relocatable value is illegal.

89

90

29 — this directive must have a label
EQU, REG, MACRO and MACLAB require a label

2A — unable to generate position independent code here
Normally if a label or expression is used to specify an address in
an instruction, a PC-relative addressing mode is generated to
produce position independent code. This is not an alterable
addressing mode, so this error message is generated when an
alterable addressing mode is required.

2B - short branch to next instruction — NOP generated
A short branch to the next instruction is not a legal 68000
opcode. The assembler generates a NOP instruction in this case.

2E — not allowed with —~NOLINK option

Many of the directives relating to relocation and linking may not
be used if the -~NOLINK option has been coded on the command
line.

2F — not allowed in this context

This line is not allowed here because the context is wrong; this
usually means that the wrong sort of location counter s in use,
for example instructions are not allowed in a COMMON section.
The most frequent cause of this error message is forgetting to
code an appropriate SECTION directive.

30 —same used in SECTION and COMMON
You cannot have ordinary SECTIONs and COMMON sections
with the same name.

31 —wrong relocation for PC-relative address

The assembler is trying to generate a PC-relative address but
can't because the relocation factor of the instruction does not
match that of the destination (e.g. a reference to a relocatable
address from an instruction which follows an ORG).

32 — COMMON block name cannot be used here
The name of a COMMON block can only be used in a very
restricted set of circumstances; this isn't one of them.

33 — same name used in SECTION and COMMON
You cannot have ordinary SECTIONs and COMMON sections
with the same name.

34 —illegal expression for RORG

The <expr> in a RORG directive is not absolute and is not simple
relocatable with respect to the current section (or has something
else wrong with it). See the description of RORG for the full list of
restrictions which apply to this <expr>.

35 —references to external symbols not allowed

Some directives need to know the actual values of their operands
at assembly time and these do not therefore permit external
symbols (those whose names appear in XREF directives) to be
coded.

36 — expressions needing linking not allowed

In some circumstances expressions whose final value must be
determined by the linker are not allowed; replace the expression
with one whose value is known to the assembler.

37 — this symbol invalid in XDEF

There are various restrictions on the type of symbol that may be
named in an XDEF directive. See the description of the XDEF
directive for full details.

39 —[abel not found for GOTO

The label specified as the destination of the IFSTR, IFNUM or
GOTO directive is not defined on a MACLAB directive in the
current macro.

3A - not currently in a macro
This directive or function may only be used within a macro.

3B - user generated error
An ERROR directive was processed.

3C — expression does not result in a value

An expression used at this point must evaluate to an absolute
value involving no forward references or relocation bases or
external symbols.

91

®m 3D —illegal parameter number for .PARM
The value of the expression lies outside the range 1 to .NPARMS.

m 3E - unexpected end of file after continuation line
The last line in a file ended in a backslash ‘\" and a continuation
line was expected.

® 3F - MACRO name same as instruction or directive
You cannot define a macro with the same name as an instruction
or an assembler directive.

® 40 — built-in function not allowed here
A function call is not allowed here (e.g. as the parameter to the
.DEF function).

C.2 Warning messages

m 50 — size missing, W assumed
No size was specified on an index register.

® 51 —size missing, W assumed
The instruction or directive can have more than one size, but no
size was specified.

® 52 — mulitiply defined register
A register has been muitiply defined in a multiregister sequence
(eg AO/D1/D0-D3 has D1 multiply defined).

B 53 —decimal number goes negative
A decimal number has a value between $80000000 and
$FFFFFFFF. This is a perfectly valid number with which to do
unsigned arithmetic, but it is an overflow if the programmer was
intending to use it for signed arithmetic. As the assembler does
not know what the programmer wants to do with the number it
produces this warning.

m 55 —value will be sign extended to 32 bits

In MOVEQ the expression is between $80 and $FF so it will be
sign-extended to a 32-bit negative value.

92

56 — nonstandard use of this instruction

This warning is printed when an instruction is used in a
nonstandard manner which may be a bug (eg LINK with a
positive displacement).

57 — branch could be short
A forwards branch or a branch with an explicit .L is within 128
bytes range and could be a short branch.

58 — END directive missing
An END directive is expected at the end of the assembly, but end-
of-file was found instead.

59 — XREF.S value will probably overflow when linked

An expression is of type XREF.S and is being placed in a 1-byte
field. Depending on the actual value of the external symbols
when the program is linked this may or may not cause an
overflow.

5A — XREF.L value will probably overflow when linked

An expression is of type XREF.L and is being placed in a 1—or 2-
byte field. Depending on the actual value of the external symbols
when the program is linked this may or may not cause an
overflow.

5B — ENDM directive missing after macro definition

End of file was found while processing a macro definition. This
probably indicates that you omitted an ENDM directive or coded
itin such a way that it could not be recognised (recall that ENDM
must not be generated by variable substitution).

5C — ENDM directive missing while expanding a macro
The assembler ran off the end of the file while expanding a
macro.

5D — user generated warning
A WARNING directive was processed.

5E — multiply defined symbol

Either the same name is used for two different macros or the
same name is declared twice in LOCAL directives in the same
macro. In both cases the first definition takes effect and
subsequent definitions are ignored.

93

C.3 Operating system errors

When the assembler gets an error code from Qdos it usually gives
up completely, first displaying a message relating to the error on the
screen.

Most Qdos errors relate to particular input or output files or devices
and the file or device name involved is displayed as part of the
message wherever possible.

In the case of a serious error (such as bad Microdrive tape) affecting
an input source file the assembler does not however tell you which
of the various source (e.g. INCLUDEJ) files is involved.

If the assembler is run with EXEC_W the error code is passed back
to the EXEC_W command which will display another error message.

94

QL-Linker

Contents

1. Introduction

1.1

Notation used in this manual

2. How to run the linker

21
2.2
23

Altering the window
Command line format
Options

2.4 Command line processing

25
2.6

Command line examples
Linker termination

3. Linker inputs and outputs

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Command line input
Control file

Relocatable object file inputs
Screen output

Linker listing output
Program file output

Debug file output

4. The control file

4.1
4.2
4.3
4.4
4.5

Comments in the linker control file
Module input commands

Space allocation commands
Defining symbols at link time

The DATA command

5. Actions of the linker

5.1
5.2
53
54
55
5.6

Command line validation

Control file validation

Pass 1 of relocatable object modules
Between pass processing

Pass 2 processing

Post processing

Appendix A Error and warning message summary

A.1 Command line errors

A.2 Control file errors

A.3 Low level errors

A.4 Processing errors and warnings
A.5 Operating system errors

Appendix B File formats

B.1 Summary of control file commands
B.2 Relocatable binary format

B.3 Program file

B.4 The listing file

B.5 The debug file

Appendix C Glossary

1. Introduction

Itis usually convenient, except in the case of very small programs, to
write programs as several separate source files and compile or
assemble them at different times. It is then necessary to combine
these compiled parts of program to form a single program file before
the program can be run and the program which does this combining
is called a linker.

This manual tells you how to use QL Linker which has been
produced for the Sinclair QL by GST Computer Systems Limited.

It tells you:

® how toload and run the linker

®m whatinputs the linker takes and what outputs it produces
® details of the Sinclair relocatable binary file format.

Note that for a compiler to be compatible with this linker it must

- generate its output in the official Sinclair relocatable binary format.
You may write programs in several parts in different languages and
link them together with QL Linker as long as all the compilers
involved generate Sinclair relocatable binary format.

All Sinclair compilers for the QL will generate the correct output
format and are compatible with this linker. It is possible however
that other compilers not supported by Sinclair do not generate the
appropriate format and are not compatible with QL Linker or other
official Sinclair products.

1.1 Notation used in this manual

This section describes the notation used throughout the manual to
describe syntax of all items.

= means that the expression on the right defines the
meaning of the item on the left, and can be read as ‘is’

< > angle brackets containing a lower-case hame represent a
named item which is itself made up from simpler items,
such as <decimal number>

| a vertical bar indicates a choice and can be read as 'or is’

[1 square brackets indicate an optional piece of syntax that
may appear O or 1 times

{ } curly brackets indicate a repeated piece of syntax that
may appear O or more times

is used informally to denote an obvious range of choices,
asin:

<digit>=0|1]...|8|9
Other symbols stand for themselves.
Example
<hexadecimal number> = $<hex digit>{<hex digit>}
<hex digit> =0|1...|8|9|A|B|C|DIE|F
means that a hexadecimal numberisa'$’ sign followed by a
hexadecimal digit, followed by any number of further hexadecimal
digits, where a hexadecimal digit is any of the characters ‘0" to ‘9" or
‘A"or'B"or'C' or ‘D' or 'E' or 'F'. Some examples of hexadecimal
numbers are $0, $4AFB, $000000.
Some of the special symbols used in the syntax notation also occur
in some items and the common sense of the reader is relied on to

distinguish these, for example:

<define command> = DEFINE <symbol> [=] <expression>

2. How to run the linker

The linker may be loaded and run in one of two ways:

B Interactive mode
In this mode the linker will identify itself and prompt you for a
command line. Upon completion of a link the linker will prompt
you for another command line (unless a fatal error has occurred).

You may run the linker in interactive mode by any of the
following commands where d e v__is the device from which the
linker is to be loaded (which may be any storage medium).
—To run in parallel with the SuperBASIC interpreter:

EXEC dev_L1ink (see Notes)
or: EX dev_L1ink (see Notes)

— To wait for completion of the linker:

EXEC_Wdev_LlLink
or: EW dev_Link

® Non-interactive mode
In this mode the linker receives its command directly from the
SuperBASIC interpreter and does not interact with you. On
completion of the link the linker will exit to allow the SuperBASIC
interpreter to continue.

You may run the linker in non-interactive mode by one of two
commands (see Notes):

—To run in parallel with the SuperBASIC interpreter:
EX dev_link; "<command Line>"
—To wait for the link to complete:

EWdev_link;"<command Line>"

where <command line> is described in 2.2. The quotes around
the command line are required for the SuperBASIC interpreter to
accept the line.

® Notes
The EX and EW commands are only available if you have a copy
of QL Toolkit, and are not part of the standard SuperBASIC.

The EX and EW commands allow you to pass data files to the
program by specifying them after the program name. If any files
are specified in this way they will be ignored by the linker. See the
QL Toolkit documentation for information on the full use of the
EX command.

2.1 Altering the window

If you wish to alter the screen window used by the linker you may
do so by running the program WINDOW_MGR and answering the
questions it asks.

2.2 Command line format
The format of the command line is:

[<module> [<control> [<listing> [<program>]]1] { <option>}
where:

<option> =
—WITH <control> |
—NOPROG | -PROG[<program>]|
—NOLIST | ~LIST[<listing>1|
—NODEBUG |-DEBUG [<debug>]|
—NOSYM | -SYM | —CRF |
—PAGELEN <length> |

(the options may, of course, be in either upper or lower case and the
case is not significant)

<module>
<control>
<program>>
<listing>
<debug>
<length>

= <file name> file name of an object file

= <file name> file name of control file

= < file name> file name for program output
= <file name> file name for listing output

= <file name> file name for debug output

<digit> {<digit>} number of lines per page.

2.3 Options

The options have the following meanings:

-WITH

—NOPROG

—PROG

—NOLIST

—LIST

—NODEBUG

—DEBUG

take the following name as the control file name.
If this option is specified, the positional control file
name is ignored.

do not generate a program file. If this option is in
effect then the positional program file name
is ignored.

generate a program file (default). If the optional
<file name> is coded then the positional file name is
ignored.

do not generate any listing output. If -NOLIST is
coded then the positional listing file name is ignored.

generate a listing (default); if the option is followed
by a <file name> then this is the name of the
<listing> output and the positional <listing>
parameter is ignored.

do not generate a debug file (default).
generate a debug file. If the <file name=> is given

then it will become the debug file otherwise the file
name will default.

The following options apply to the listing file only. They will be
ignored if —=NOLIST is in effect.

—NOSYM do not generate a symbol table listing in the listing
file.

-SYM generate a symbol table listing. The listing will be
alphabetically sorted with the value of the symbol
with the section and module name in which it was
defined (default).

—CRF generate a cross reference form of symbol table
listing. If this option is requested a cross reference
form of the symbol table is generated instead of the
symbol table list.

—PAGELEN specify the number of lines per page for paginated
output. If this option is not supplied the value will
default.

If an option is followed by a file name (where applicable) the file
name will override the corresponding positional file name (if given)
on the command line. If an option specifies that a file will not be
generated (-NOPROG, —NOLIST, -NODEBUQG) then the file will
not be generated even if a positional file name has been given.

Where conflicting options are given on the command line then the
last option coded will take effect; for example:

—NOPROG —PROG MDV1_PROG
will produce a program file, whereas

—PROG MDV1_PROG —NOPROG

will not.

N

2.4 Command line processing

The minimum command line then just consists of the name of
one module file. In this case the linker will generate a program file
(whose name is constructed as below from the module name) and
a full listing file (whose name is also constructed as below).

If no module file name is specified, but a control file name is given
(after a—~WITH option) then the program, listing and debug file
names will be constructed as below based on the control file name.

2.4.1 Construction of output file names

If a module file name is given then the file name is examined. If the
file name does not end in ‘_REL' then the full file name becomes
the base file name, otherwise the file name with the ‘_REL’
stripped off becomes the base file name.

If no module file name is given then the control file name is
examined. If the file name does not end in ‘_LINK' then the full

file name becomes the base file name, otherwise the file name with
‘_LINK" stripped off becomes the base file name.

The default names are then constructed from the base file name as
follows:

1) The listing file name is the base file name with *_MAP’
appended.

2) The program file name is the base file name with ‘_BIN’
appended.

3) The debug file name is the base file name with '_DEBUG'
appended.

If an output file name is given explicitly either as a positional
parameter or in an <option> then the file name will override the
corresponding default name. Any file name given explicitly must be
given in full as the file name will be used exactly as entered.

2.4.2 Input file name defaults

The linker has two types of input file: the control file, which tells the
linker what to do (if more information is needed than can be coded
in the command line) and relocatable binary files, which are the
output files from compilers and assemblers that contain the parts of
the program to be linked.

The linker expects that control file names will usually end in
'_LINK" and that relocatable binary file names will usually end in
'_REL" and will find these files even if the final component is
missing from the file name given on the command line or in the
control file.

For a module file name (or library file name), if the module file name
ends in ‘_REL" the linker will use the file name exactly as given. If
the file name does not end in "_REL' then ‘_REL’ will be

appended to the file name; if an open error occurs on this file then
the original file name is used instead (by stripping off the ‘_REL’
again).

This defaulting will apply to all module input commands in the
control file as well as to any relocatable binary file name given on
the command line.

If the control file name ends in ‘_LINK' then the linker will use the
control file name exactly as given. If the file name does not end in
‘_LINK" then "_LINK" is appended to the file name; if an open
error occurs on this file then the original file name is used as the
control file name.

2.5 Command line examples
MDV1_FRED

Take the file MDV1_FRED_REL as an object module and turn it into
a program file called MDV1_FRED_BIN. The listing is called
MDV1_FRED_MAP.

MDV1_MYPROG MDV1_PASCAL-LINK -NOLIST

Link the file MDV1_MYPROG_REL according to the instructions in
MDV1_PASCAL_LINK. The program is called MDV1_MYPROG_BIN.

—WITH MDV1_FRED

Take MDV1_FRED_LINK as the control file, place the program in
MDV1_FRED_BIN and place the full listing output in
MDV1_FRED.__MAP.

—WITH MDVI1_FRED --LIST SER1 —NOPROG

Take MDV1_FRED_LINK as the control file, do not generate a
program file but print the listing as it is produced.

-WITH MDV1_FRED -PROG MDVZ2_FRED_BIN

Take MDV1_FRED_LINK as the control file, place the program
in MDV2_FRED_BIN and place the listing outputin
MDV1_FRED_MAP

2.6 Termination

When the link has finished, and if there have been no operating
system errors, the linker will issue a message giving the status of the
link. If the linker has been run interactively then the linker will repeat
the prompt asking for a command line. You can now do another link
without having to reload the linker. When you have done all the
links that you want you may reply to this prompt with an empty
command line and the linker will terminate.

3 Linker inputs and outputs

The linker uses the following inputs and outputs. The formats of
these files produced are described in Appendix B and the format of
the control file is specified in detail in section 4 below.

3.1 Command line input

When run interactively the linker will read a command line from
the keyboard to tell it what to perform. Any errors in the command
line will resultin an error message followed by a reprompt of the
command line. See section 2 above for full details of the command
line.

3.2 Control file

If the command line includes a control file name the linker will
expect as input a single text file containing a list of instructions to
perform.

The text file may be on any serial device that can detect end of file
(which terminates the input). Suitable devices are Microdrive or disk.

The control file is described in detail in section 4 below and a
summary of itis included in Appendix B.

3.3 Relocatable object file inputs

The linker, on instruction from the command line or control file will
read one or more relocatable object files (which may contain one or
more object modules).

The files are opened for random access to allow modules to be
extracted independently (for EXTRACT and LIBRARY commands) so
that suitable devices for the files are Microdrive or disk.

10

The normal user of the linker will not need to know the details of the
format of relocatable binary files. The specification of this format is
however included in Appendix B for the benefit of advanced
assembler programmers and compiler writers.

3.4 Screen output

The linker writes information to the screen to inform the user what is
happening. This includes a start up message identifying the
program, and a prompt for a command line.

The linker writes all error and warning messages to the screen and
on completion of the link will print a summary of the number of
errors and warnings and the number of undefined symbols (if any).

The linker tells you when it is starting to read the relocatable object
modules. It does this twice. The second pass can be expected to take
a lot longer than the first pass if listings and/or program output are
wanted.

The linker finally gives a message indicating the completion status of
the link and if run interactively reprompts for another command line.

3.5 Linker listing output

An optional linker listing will be generated, showing the commands
used in the production of the link and a map of the layout of the
executable file. The map will also show a list of all global symbols
and their values and an optional cross reference giving the modules
which reference them.

3.6 Program file output

The linker will optionally generate a program file which will be the
result of combining the relocatable binary files. This is normally a file
which can be run by the operating system as a program but it is
possible to use the linker to produce files which cannot be run
directly (e.g. files that are to be used for programming PROMs).

11

A relocation table, if produced by the linker, will be included within
the program file. This is only necessary when using a compiler which
does not generate position-independent code and full instructions
for using this facility should be included in the documentation of
such compilers.

3.7 Debug file output

The linker will optionally produce a symbol table file for use by a
symbolic debugger program.

12

4 The control file

In the simplest mode of operation you may link a single input file by
just giving the name of the input file on the command line. However
the linker may accept more than one input file and may also accept
more complex instructions for the generation of the output file.
These instructions can be provided to the linker by a control file.

The control file is a text file which gives a series of instructions to the
linker. The complete set of instructions to the linker will be given
here for completeness; however you may not need to use all the
instructions if you are just beginning in programming.

tf you are programming in a high level language (Fortran, Pascal or
C) there may be either a standard control file for linking your
module with the library for the language or a template file to give
you instructions on how to link your file to make a program. Please
consult the documentation of the language concerned for more
information on this topic.

Unlike the command line input, the control file input is not
interactive and any errors in the control file will cause the link to be
abandoned.

All letters in control file commands and command parameters may
be in either case and case is not significant.

4.1 Comments in the linker control file

The linker accepts comments in the linker control file to explain to
the user what a particular control file does. A line will be considered
a comment if the first character in the line is an asterisk (%),
semicolon (;) oran exclamation mark (!). Ablank line is also
considered to be a comment.

The use of comments in a control file may assist you in editing the
control file to suit your particular program.

13

¥ % %

* % o % ¥ X %

* * % % % % % X *

* %

* % % *

Example templatefile for Linking
together modules under languagelL. It s
NOT atemplatefile foranyparticular
Llanguage and shouldnot be takenas such

Step1—1initialisation.

Language initialisationmust beincluded
first.

INPUT MDVT1_LINIT_REL

StepZ2—systeminterface library

systeminterface library—only
include 1f your programistryingto
accesssystemroutinesdirectly. (by
uncommenting the Line).

INPUT MDVT1_LSYSLIB_REL

Step3—usermodules

For eachmodule that youwishtoinclude
inthe linkincludea linehereof the form

INPUT <filename>

Step4— language library

Language library—must be includedatall
times.

LIBRARY MDVI1_LLIB_REL

4.2 Module input commands

There are three commands to instruct the linker to input modules
from relocatable binary files. These are INPUT, EXTRACT and
LIBRAY.

4.2.1 INPUT <file name>

This command instructs the linker to read the file named and place
all modules encountered in the file into the link. Include one
command for each file that you wish to include in the link.

e.g.
INPUT MDV1_FILE1_REL
INPUT MDV1_FILEZ2_REL

will include all modules in MDV1_FILE1_REL and
MDV1_FILE2_REL which may be separate routines created by a
compiler.

A special case of the input command is the command
INPUT =*

which instructs the linker to use the input module name given on the
command line as the file name to input. This feature allows the
generation of a template file which can be used to link a single
module output from a compiler with all the required libraries for the
high level language. The template file is then used by a command
line of the following form (the ~-WITH is optional):

<modaule file name> [-WITH] <template file name>

o
o

example template file for the Language
Lwithaninitialisationmodulecalled
MDV1_LINIT_REL anda language Library
calledMDVT1_LLIB_REL

startwiththeinitialisationroutines

¥ o O OF o O ¥ F

15

INPUT MDV1_LINIT_REL

*

* nowinclude theuser module (fromthe
* command Line)

*

INPUT =*

*

* nowincludeall modules fromthe Language
* Llibrary

*

INPUT MDV1_LLIB_REL

4.2.2 EXTRACT <module name> from <library file name>

This command instructs the linker to search the library file name
given for the module requested. If the module is found it is included
in the link. If not an error message is generated and the link is
aborted.

Include one extract command for each module that you wish to
explicitly include from the library file.

e.g.

*

* examplecontrol filefor the lLanguagelL
* withaninitialisationmodulecalled
* MDV1_LINIT_REL

* anda language librarycalled

* MDV1_LLIB_REL

*

* theexample hasnowbeenmodifiedto
* extracttherequiredinitialisation
* module fromthe library (whichmay

* containmanyinitialisations for

* differentpurposes).

*

16

* startwiththeinitialisationroutines
* (onlyneedthefirstroutine)
*

EXTRACT LINIT FROM MDVI1_LINIT_REL
*

* nowinclude theuser module
*

INPUT =*

*

* nowincludeall modules fromthe lLanguage
* Llibrary

*

INPUT MDV1_LLIB_REL

4.2.3. LIBRARY <library file name>

This command instructs the linker to search the library file named
from start to finish for modules which satisfy any currently
unresolved references in the link. When a module is found which
satisfies an unresolved reference it is included in the link and the
library search continues from the current position.

The use of this form of a library search means that the ordering of
modules within a library may be important, as a module read in to
resolve a reference may itself generate another unresolved
reference, which then may cause a module following to be read in.
Note that the library is searched only once for a library command. If
the library is to be rescanned then this is achieved by including
another library command specifying the same library file name.

You should include one library command for each library that you
wish to search.

17

M= % % % O ok b= ok F T % 5% % % % o o % % % %k F F * %k ok ok * F * ok ok * *

18

examplecontrol filefor the lLanguagelL
withaninitialisationmodulecalled
LINIT

and a language Librarycalled
MDV1_LLIB_REL

The example hashowbeenmodifiedto
extract therequired
initialisationmodule fromthe Library
(whichmay containmany initialisations
fordifferent purposes).

As the Library commandwillonlyextract
modules whichsatisfycurrently
unresolvedreferences, theinitialisation
routinemay nowbeincludedinthe same
language library, as themodulewillnotbe
read againsinceitalready satisfies
allreferencesthatitcanpossibly
resolve.

startwiththeinitialisationroutines
(canincludeinitinsame library)

XTRACT LINIT FROM MDV1_LLIB_REL

nowinclude theuser module

INPUT *

nowincludeall modules fromthe Language
Librarywhicharerequiredtosatisfyany
unresolvedreferences

IBRARY MDV1_LLIB_REL

4.3 Space allocation commands

The previous section described the commands for determining
which input modules are to be included in the link. This section
describes briefly how the linker allocates space for the modules in
the output file and the linker commands which may affect this
allocation.

Normally the default space allocation methods are adequate and the
user writing normal applications programs will not need to use any
of the commands described in this section (except that some may be
necessary in template files supplied with particular compilers).

Initially the default allocation mechanism will be described and later
the effects of each command on this allocation mechanism will be
considered.

As programs may be loaded and executed anywhere in memory
they must be written in position independent code. Therefore
references in the following sections to low addresses and start
addresses are referring to their positioning in the program file and
not to their position in memory when run.

Generally an object module consists of either Absolute sections
and/or at least one Relocatable (or Common section). The allocation
of each section type is as follows:

B Absolute sections
Absolute sections are allocated space first in the output file from
their start address (relative to the start of the file). The linker will
issue a warning if any absolute sections overlap in the link.

m Relocatable sections
As each input module is read in turn (as ordered by the INPUT,
EXTRACT and LIBRARY commands) the linker builds up a list of

relocatable sections in the order in which they are first
encountered.

19

Once the sizes of each relocatable section is known then the

allocation of space is made such that each relocatable section

starts at the lowest possible address following the previous

relocatable section while avoiding any absolute sections already .
allocated. The start of each relocatable section is word aligned.

m Common sections

By default common sections are treated as relocatable sections
except for the following differences.

— Each common section is placed in the list of relocatable
sections when a COMMON directive is encountered (instead
of SECTION directive)

— If a COMMON directive references a section already used in
a previous module then a subsection is created which starts at
the same address as the section start (i.e. overlayed). The size
of the common section is then the maximum of the
subsection sizes.

4.3.1 Effect of commands on space allocation
The following commands alter the mechanism by which the linker
allocates space for each section.

m SECTION <section name>

This command names a section to be included in the link. The
effect on the storage allocation is that named sections are
allocated space first in the order declared with any unnamed
sections allocated space following (as with the default case).

® COMMON <common option>

The COMMON command instructs the linker how to allocate
space for common sections. In the default case common sections
are treated as if they were relocatable sections for the purposes
of address allocation. However the following options are
available:

20

— END
This option instructs the linker to allocate space for common
sections after all relocatable sections have been placed. This
means that the common sections appear at the high end of
the memory allocation.

If any common sections have been named by a SECTION
command then they are allocated space first followed by the
common sections as encountered in the input files. The
allocation of common sections is such that they avoid any
absolute sections as with the normal relocatable sections.

- DUMMY

This option instructs the linker to build a separate allocation
for common sections. The allocation starts from address zero
and ignores any allocation taken by relocatable or absolute
sections.

The linker will use the dummy allocation to resolve global
symbols in common sections relative to the start of the
common area, so that a run time system can allocate memory
separate from the program for the purposes of storing
common. The global variables are then used as offsets from
the start of the common region.

Note that with this option no space is made in the program file
for the common sections, so they may not be initialised. Any
attempt to place data bytes in the common regions with this
option in effect will cause an error.

B RELOC <section name>

This command is only necessary when the linker is used to link
output from compilers which do not generate position-
independent code. The instructions supplied with the compiler
for the use of this command should be followed.

This command if present instructs the linker to generate run time
relocation information and to place the information in the
SECTION named. The command declares the section (as with a
section command) so that any sections which must come before
this section must be named in SECTION commands before the
RELOC command is given.

21

The run time relocation table is placed at the end of the section
named, so that any data from the relocatable binary files for the
same section will be placed in front of the run time relocation
table in the order encountered.

The command also declares the section to be normal relocatable
so that any attempt to declare the section as a common section
will resultin an error.

OFFSET <value>

This command instructs the linker to start the allocation of
section starting at the value given instead of at address 0. The
value may be decimal or hexadecimal (starting with a ‘$’
character) and is unsigned. The value is written into the spare
four bytes of the information section of the file header of the
program file (see Appendix B).

The effect on the allocation of space is as follows:

— absolute sections
The allocation of absolute sections is not affected. However
any absolute sections which start below this address are not
written to the output file and a warning message is output.

— relocatable sections

Relocatable section allocation begins from the address given in
the OFFSET command instead of at zero.

— common sections

If COMMON DUMMY is in effect then the allocation of
common sections starts from address O regardless of the value
given in the OFFSET command. For all other COMMON
options the allocation is as described under the COMMON
command.

22

4.4 Defining symbols at link time

Normally symbols that the linker knows about are declared and
given values from within relocatable binary files. Sometimes,
however, itis useful to be able to define symbols from the linker
control file; examples of why this might be useful are:

— asubroutine name has accidentally been spelt differently in two
different modules; as a temporary fix (until one of them is
recompiled) the two symbols can be made equivalent using the
DEFINE command

— aset of subroutines have not been written yet but it is desired to
test the part of the program that has been written; the missing
symbols can be made equivalent to an error routine with the
DEFINE command

— anumber contained in a library module, such as a memory
requirement figure, may need to take different values in different
links; these values may be assigned with the DEFINE command.

m DEFINE <symbol>[=]<expression>

The linker allows you to define symbols at link time rather than
needing to declare all symbols in relocatable object modules. The
define command also allows expressions with the following syntax:

<expression> = [—] <term>> { <op> <term> }
<op>=-—|+

<term> = <symbol> | <value>

<value> = <digit> { <digit> } | $<hexdigit> { <hexdigit> }
<hexdigit> = <digit> | A|B|C|D|E|F

A symbol used in the expression side of the DEFINE command may
be a reference to a symbol in a relocatable binary file or a reference
to a previous symbol defined by a define command. A forward
reference to a symbol to be defined by a future define command is
illegal and will produce an error message. The symbol named in the
DEFINE command may not also be used in the expression.

If a symbol used in an expression remains undefined after all
modules have been read in a warning is issued by the linker. The
value of the DEFINEd symbol is then undefined.

23

e.g.

DEFINE SCREEN = $28000

DEFINE MAXPAR = 10

DEFINE USERSPACE = 1000

DEFINE TOTALSPACE = LOCAL+GLOBAL+USERSPACE

(where LOCAL and GLOBAL are declared in relocatable object
modules)

4.5 The DATA command

® DATA<value>[K]

The DATA command specifies the amount of data space to reserve
for a program for the stack and heap. The value may be decimal or
hexadecimal. This value is written to the header of the program file
and is used by the operating system to allocate room for the stack
and heap. The value may be specified in bytes or Kbytes (1024
bytes)

The data space requirement is also read from the header of the input
files for each module to be included in the link (see below). In this
case the maximum of the data requirements of the input modules

is taken as the data requirement unless the value specified in the
DATA command is larger.

Note that the linker checks the type of file for each input file. The
file type is contained in the file header and can currently take the
following values (other types may be added later).

0 textfile.
1 executable program file.
2 relocatable binary file.

The data space requirement is used only if the input file is of type 2
(relocatable binary).

While the linker will accept any file type as a relocatable binary

file it will ignore the data space requirement of any file which is not
type 2. All official Sinclair assemblers and compilers will generate
relocatable binary output files with the file type correctly set to 2.

24

5 Actions of the linker

This section gives a brief description of how the linker functions and
the expected actions when errors are encountered. The linker
functions are split into many phases which are logically separate
although each phase may use information extracted from previous
phases.

5.1 Command line validation

In this phase the linker reads the command line and decides which
input and output files to use. If the command line contains any
errors the linker will display an error message stating the problem
and will reprompt for another command line.

If the command line is valid the linker will attempt to open all output
files requested and the linker control file (if a name is supplied). If
the opening of any files fail the linker will give a message indicating
the problem and will reprompt for another command line.

If the linker is run interactively it will reprompt for another command
line. If not then the linker will display a message indicating an invalid
command line supplied and exit.

5.2 Control file validation

if a control file name is given the linker will read the control file line
by line validating each command in turn. If any errors are reported

at this stage the linker will report the error but continue reading the
control file.

If any errors occur in the control file the linker will not perform the
link but will reprompt for another command line.

25

5.3 Pass 1 of relocatable object modules

If the command line and control file (if given) contain valid
commands the linker will issue a message saying starting
pass 1andwill read all the relocatable object files requested and
determine the sizes of each section to be placed in the output file.
During this pass the linker will issue error and warning messages as
appropriate to indicate any problems encountered.

If it fails to open any requested input files or encounters any errors
during this pass the linker will issue an error message stating the
problem and will continue processing the rest of the input files.

At the end of pass one if any errors have been encountered the
linker will prompt for another command line. If only warnings have
been detected the linker will continue with the link.

5.4 Between pass processing

After pass 1 the linker determines where to place everything in the
program file and resolves all global symbols. The load map is
generated at this time along with a list of all absolute, user defined
and undefined symbols.

5.5 Pass 2 processing

During this pass all the relocatable objects modules are reread and
the program file created. If any errors are encountered at this stage
the link is aborted.

5.6 Post processing

After pass 2 the symbol table is written out and if required a debug
file is created. Upon completion of the symbol table the linker issues
a summary message stating the numbers of errors and warnings and
the number of undefined symbols. The linker then reprompts for
another command line. Entering a blank line at this stage terminates
the linker.

26

Appendix A — Error and warning
messages

This appendix lists the error and warning messages which can be
produced by the linker in the phases in which they should be
encountered.

A.1 Command line errors

The linker on encountering an error in the command line will display
a message indicating the problem and reprompt for another
command line. It will not attempt to parse the line following the
error.

B ERROR-01 File name too long — <file name>
Either a file name entered on the command line or a default file
name generated from the primary file is too long. The full Qdos
file name can only be 44 characters long.

® ERROR-02 No link file given with the —~WITH option
A —WITH option has been entered without a link file name. The
—WITH option must be followed by a file name.

® ERROR-03 Page length missing following —~PAGELEN option
The —PAGELEN expects a value to set the page length for
formatting on a printer.

B ERROR-04 Page lengthis nota number
The item following the —=PAGELEN option is not a number.

m ERROR-05 Page length too small. Minimum is 20 lines
As the listing output is formatted with headers, titles and
subtitles the minimum realistic page length is 20 lines.

® ERROR-06 No input module or control file given
The linker requires as input either a module file name or a control
file name. If neither is given then the linker does not have any
input files to act upon.

27

m ERROR-07 lllegal option given on command line <option>
An unrecognised option has been entered. The option parameter
indicates which option the linker was unable to recognise.

A.2 Control file errors

The linker will on encountering an error in the control file list the line
for which the error has occurred and print a message indicating the
cause of the error. The linker will process the rest of the control file
but will not proceed with the link.

m ERROR-09 lllegal or unrecognised command <command>
Anillegal or unrecognised command has been encountered in
the control file. The command parameter is the command that
the linker failed to recognise.

B ERROR—-0A Too many parameters <parameter>
The linker has encountered too many parameters on the line. The
command has been processed but the link will not be performed.

® ERROR-0B Not enough parameters, expecting <item>
The linker did not find enough parameters on the line. The item
parameter indicates which item was expected which will be one
of the following:

item Command

file name INPUT, EXTRACT or LIBRARY
module name EXTRACT

FROM keyword EXTRACT

section name SECTION

END or DUMMY COMMON

value OFFSET or DATA

symbol name DEFINE

expression DEFINE

® ERROR-0C No module name given in command line for
INPUT *

The linker has encountered an INPUT * in the control file but no
module name was given on the command line.

28

.

ERROR-0D FROM keyword missed out or incorrectly spelt
In an extract command the FROM keyword was not found. This
keyword must be present.

ERROR —0E Section already exists <section>

The section named in the section command has already been
named in a previous SECTION or RELOC command and so
cannet be placed in the order requested.

ERROR - OF lllegal option, DUMMY or END only allowed
An illegal common option has been given. The linker only
recognises the keywords DUMMY and END.

ERROR—-10 Only one COMMON command allowed
Only one common command is allowed in any one link.

ERROR-11 Symbol was used in DEFINE command:
<symbol>

A symbol being defined in a DEFINE command has already been
used in a previous DEFINE expression. Forward referencing of
defined symbols is not allowed.

ERROR-12 Symbol is being redefined <symbol>
The symbol being defined has already appeared in a previous
DEFINE command and cannot be redefined.

ERROR—-13 Syntax error in DEFINE command <expression>
The linker has detected an error in the syntax of the DEFINE
command. The expression following the error message starts
from the character position which caused the syntax error.

ERROR-14 Only one RELOC command allowed

Only one RELOC command is allowed in a link. It is meaningless
to try to place the run time relocation information in more than
one section.

ERROR - 15 OFFSET value is not a number
The value following the OFFSET command is not a number.

ERROR-16 Only one offset value is allowed
As the OFFSET value is the start point for allocation of memory
for the program only one value is allowed.

29

30

ERROR-17 DATA value is not a number

The value entered following the DATA command is not a
number. The DATA value can only be a number, an expression is
not allowed.

ERROR-18 Only one DATA value allowed

The DATA value specifies the amount of memory to be reserved
for data space by Qdos when the program is initially run. Only
one DATA command is allowed in any one link.

A.3 Low level errors

These errors are detected when parsing the line at a low level.
The error messages are followed by a message indicating which
command was being processed at the time the error was
encountered.

ERROR-19 Numeric overflow
The numeric value following an OFFSET or DATA command is
too large to fitin a 32 bit word.

ERROR—-1A Syntax errorin number

The linker has detected an illegal character while processing a
number. This is normally caused by a $ which is not followed by a
hexadecimal digit.

ERROR-1B Invalid character
The linker has detected an illegal character while processing a
line.

ERROR—-1C Decimal number overflow
The linker has detected that a decimal number has overflowed to
negative.

A.4 Processing errors and warnings

These errors are detected while processing the link after
validation of all command inputs to the linker. The description of
the error messages are followed by a description of the actions
performed following the error. Warning messages always result
in the linker continuing from the current position in the link.

ERROR-1D EXTRACT - module not found

The linker could not find the module requested in an extract
command in the file specified. The linker will continue to process
all remaining inputs in pass 1 and then prompt for another
command line. The program file will not be produced.

ERROR —xx Error in relocatable binary file <file name>
This error message indicates a problem with the relocatable
binary file provided to the linker. The linker will continue to
process all remaining input files in pass 1 and then prompt for
another command line. The program file will not be produced.

ERROR-2D Attempt to initialise dummy COMMON in
<file>

The linker has detected an attempt to place datainto a
COMMON section with the COMMON DUMMY option in
effect. As no space is saved for the COMMON blocks they may
not be initialised in this way. The linker will continue to process
all remaining input files in pass 1 and then prompt for another
command line. The program file will not however be produced.

ERROR—2E Absolute section below OFFSET address in
<file name>

This error indicates that an OFFSET command has been given in
the linker control file but an absolute section resides below the
OFFSET address. The linker will continue but the part of the
section below the OFFSET value will not be contained in the file.

ERROR —-31 Phasing error occurred in <file>

The linker has encountered a phasing error either in processing of
the relocatable binary files in pass 2 or when evaluating a DEFINE
expression. This error should not occur.

ERROR~-32 Out of memory

The linker has run out of memory while trying to allocate more
memory for internal tables. The linker will exit after printing this
message.

ERROR —33 Attempt to allocate large record

The linker has attempted to allocate a record which is larger than
the current memory allocation. The linker will exit after printing
this message. This should never occur.

31

ERROR-34 Incompatible section type for section <section>
This error indicates that a section has been used both as a normal
relocatable section and as a COMMON section. The linker will
process all remaining input files in pass 1 however no program file
will be produced.

WARNING —35 Insufficient memory for cross reference

This message indicates that the linker cannot allocate sufficient
memory for the cross reference listing. The linker will continue
but a normal symbol table listing will be given instead of a cross
reference.

WARNING —36 Truncation error at offset <offset>

This warning indicates that a value has had to be truncated to fit
into a byte or word expression. The offset value gives the location
at which the truncation has occurred. The linker will continue,
however the program may encounter problems if run.

WARNING -37 Undefined symbol was used in DEFINE
expression:

This warning indicates that a symbol which was used in the
expression part of a DEFINE command is still undefined. This
means that the result of the DEFINE command is also undefined.

ERROR —-3A Internal error
The linker has detected an internal error (consistency check). This
error should never occur.

WARNING -3B Multiply defined symbol <symbol>

This warning indicates that a symbol has been defined more than
once in the link. The first value encountered will be the value
used by the link.

WARNING - 3E Abs section overlaps next one in <file>
This warning indicates that two absolute sections overlap each
other in the program file. This means that the second absolute
section will overwrite the first.

32

A.5 Operating system errors

When the linker gets an error code from Qdos the action taken is
dependent on what the linker is trying to do when the error is
encountered. The linker will take the following action on
encountering errors:

Open errors on files

These errors are reported by the linker. If the error occurs on
opening the program, listing, debug or control file the linker will
reprompt for a command line. If an error occurs on opening a
relocatable object file the linker will continue until the end of pass
1 to validate that all other files may be opened.

Read and write errors on files
If the linker encounters a read or write error on a file (other than
end of file on read) the linker will report the error and exit.

Close errors on files
If the linker encounters an error on closing files the linker will
report the error and continue.

In most cases the linker will display the file name which caused the
error except in the case of a read error on a module file where the
linker does not display the name of the file which caused the error.

If the linker is run with EXEC_W the error code is passed back to the
EXEC_W command which will display another error message.

33

Appendix B — File formats

This appendix describes the format of output files produced by the
linker.

B.1 Summary of control file commands

This section is a quick summary of the commands possible in the
linker control file.

Lines beginning with *; or ! are comments and are ignored by the
Linker. All letters in the control file input can be in either case and
case is not significant.

m INPUT <file name>

Instructs the linker to include all modules from the named file in
the link.

@ EXTRACT <module name> FROM <file name>
Instructs the linker to find the module named in the file. If the
module is found it is included in the link.

m LIBRARY <file name>
Instructs the linker to search the library from start to finish. Any
modules in the library which satisfy any currently unresolved
references are included in the link.

m SECTION <section name>
Declares a section to the linker. All declared sections are allocated
space before any undeclared sections.

® COMMON <common option>
Instructs the linker how to handle COMMON sections (if any are
encountered).

m RELOC <section hame>

Instructs the linker to collect run time relocation information and
place it in the section named.

34

N

m OFFSET <value>
Instructs the linker to start address allocation and to write the
output file from the address given in the value parameter.

m DEFINE <symbol> [=] <expression>
Defines a symbol at link time. If the expression includes a symbol
which has not already been defined then the linker expects to
find it in a relocatable object module.

m DATA <value> [K]
Defines the amount of data space required by the program when
itis run.

B.2 Relocatable binary format

This section defines the official Sinclair relocatable binary format. It
is self-contained and uses some terms with different meanings from
those used in the rest of the linker manual.

A relocatable object file consists of a sequence of modules, each of
which is a sequence of bytes terminated by an END directive (see
below). It should have a Qdos file type of 2 though this will not be
enforced by the linker. Interspersed with the sequence of bytes can
be directives from the list below; a directive is a sequence of bytes
beginning with the hex value FB.

When otherwise unmodified by a directive, a byte indicates that it
should be inserted at the current address and the address should be
stepped by 1. The special directive FB FB inserts the value FB in this
way.

Note that bytes are overwritten on (not added into) the byte stream,
so that if several sections are located at the same address, it is
possible to overlap (or even interleave) their contents. This is useful
for Fortran block data.

In the following syntax definition, <words>s and <longword>s

need not be word aligned: they just follow on from the preceding
data with no padding bytes.

35

A <string> consists of a length byte (value range 0-255), followed
by the bytes in the string. A <symbol> is a <string> of up to 32
chars. A symbol should start with a letter (A—Z) or a dot and the
other characters may be letters, digits, dollar, underline or dot.

B.2.1 Definition of a SECTION

A SECTION is a contiguous block of code output by the linker.

Each section has a name, and any source file can add code to one or
more of the sections. A module's contribution to a section is called a
subsection.

The linker will arrange that each section or subsection will start on
an even address, by inserting one padding byte if necessary. The
value of this byte will be undefined.

Note that if a module returns to a section, this is part of the same
subsection and the linker will not re-align on a word address.

When a section name is used in an XREF command the address of
the start of the subsection is used.

Note that section names are maintained separately from symbol
names (and module names), so there can be a section, a symbol and
a module all with the same name without any danger of confusion.

B.2.2 Directives

B.2.2.1 SOURCE Syntax: FB 01 <string>

The <string> in this directive indicates information about the
source code file from which the following bytes were generated.
This directive should only appear at the start of a module (ie at the
start of the file orimmediately after an end directive: see section
B.2.3).

The string will start with the module name which may be followed
by a space followed by a field of further information about such
things as the version number or the date of creation or compilation.
The string should contain only printable characters and be no longer
than 80 characters.

36

This module name should conform to the syntax of a <symbol>
defined above, and may be used by the linker to identify individual
modules within a library (see section B.2.4). The module name can
be generated from a Qdos filename, but if so it is recommended that
the Qdos device name is first stripped off.

B.2.2.2 COMMENT Syntax: FB 02 <string>

The <string> in this directive is a line of comment. It will have no
effect on the binary file, but should be included at some suitable
pointin a link map. The string should contain only printable
characters and be no longer than 80 characters.

B.2.2.3 ORG Syntax: FB 03 <<longword>

This indicates that the bytes following the directive are to start at the
absolute address given in the parameter. This applies until the next
ORG, SECTION or COMMON directive,

B.2.2.4 SECTION Syntax: FB 04 <id>

This indicates that the bytes following the directive are to be placed
in the relocatable section whose name was defined in a DEFINE
command with the id value specified. See B.2.2.8.

This applies until the next ORG, SECTION or COMMON directive.

B.2.2.5 OFFSET Syntax: FB 05 <longword>

This directive updates the output address: the longword specifies
the address relative to the start of the current subsection or the
latest ORG directive.

The parameter is unsigned, so the offset may not be negative.
B.2.2.6 XDEF Syntax: FB 06 <symbol> <longword> <id>

This indicates that the symbol whose name is the <symbol> is
defined to be the value given in <longword>, relative to the start of
the subsection referred to by the <id>. Note that an <id> of zero
defines the symbol to be absolute.

See section B.2.2.8 for definition of <id>

B.2.2.7 XREF
Syntax: FB 07 <longword> <truncation-rule> { <op> <id> } FB

37

This indicates that the result of an expression involving user symbols
or other relocatable elements is to be written into the byte stream.
Note that this command does not overwrite some existing bytes, but
appends new bytes to the output.

The <longword> parameter defines an absolute term for inclusion
in the expression to be evaluated by the linker.

The <truncation-rule> parameter is a byte which defines the size of
the final result and the circumstances in which the linker might give
a truncation error, or the mode in which truncation should occur
(undefined bits must be set to zero). These are the effects of setting
each bit:

a If bit Ois set, the result is one byte.
If bit 1 is set, the result is a word.
If bit 2 is set, the result is a longword.
Only one of these three bits may be set.

b If bit 3 is set, then the number is signed.
See notes below.

c If bit4is set, the number is unsigned.
See notes below.

d If bit 5 is set, the reference is PC relative, and the relocated
current address (ie the address to be updated by this directive) is
to be subtracted before the truncation process.

e If bit6is set, runtime relocation is requested (for longwords only).
The address of the longword is included in a table generated by
the linker which can be used by a runtime loader.

After the <truncation rule> is a sequence of terms for the
expression. <op> is a one-byte operator code and can be 2B for
“+" or 2D for " —". <id>is a symbol or section name id as defined
in the DEFINE directive (2.8). The special <id> code of 0000 refers
to the current location counter (ie the address updated by this
directive).

The final FB byte terminates the sequence of terms in the
expression.

38

As an example of the use of the signed/unsigned bits, consider a
value which must be written out as a word value; the
signed/unsigned bits are interpreted as follows:

resulting value

< FFFF8000 always out of range

FFFF8000 — FFFFFFFF illegal if ‘unsigned’ bit is set
00000000 — 00007FFF always allowed
00008000 — OOOOFFFF illegal if ‘signed’ bit is set

> OOOOFFFF out of range
There are some examples of XREF directives in B.2.5 below.

B.2.2.8 DEFINE Syntax: FB 10 <id> <symbo|>
FB 10 <id> <section name>

This directive is used in conjunction with XDEF, XREF, SECTION and
COMMON.

The directive defines that the <<symbol> or <section name> may
be referenced by the 2-byte <id> in XREF directives. A <section
name> has the same syntax as a <symbol>.

Note that positive nonzero <id> values refer to symbols and
negative <id> values refer to section names.

This directive must appear before the <id> value is used in any
other directive.

If two <id> values are used to refer to the same symbol, or if one
<id> value is reassigned to another symbol the effects are
undefined at present.

B.2.2.9 COMMON Syntax: FB 12 <id>

This directive is identical to the SECTION directive except that it
informs the linker that the section is to be a common section so that
references to this section in different object modules refer to the
same memory location.

39

Within the same object module multiple additions to the same
section will be appended together as for an ordinary section.

When different modules create common sections of differing size,
the linker should create a section equal in size to the largest one.

B.2.2.10 END Syntax: FB 13

This directive marks the end of the current object module. if the file
contains only one module, then this will appear at the end of file.
B.2.3 Directive ordering

B.2.3.1 Mandatory Rules

Within a relocatable object file the following rules should be applied
to the ordering of the directives within an object module:

a) A SECTION directive (or ORG or COMMON) must appear before
any data bytes in the module.

b) A symbol or section’s <id> must be defined in a DEFINE
directive before it is used in any other directive.

The ordering of other directives is at the discretion of the authors of
compilers or relocatable assembilers, though it will normally be
dictated by the source code.

B.2.3.2 BNF definition of a relocatable object file

This BNF uses { } to mean O or more repetitions of an item.
<relocatable object file> = <module> { <module> }
<module> = SOURCE { <chunk> } END

<chunk> = <header> <body>

<header> = { <header command> } <section command>

<header command> = COMMAND | XDEF | DEFINE

<section command> = SECTION | ORG | COMMON

40

N

<body> = { <data byte> | <body command> }
<body command> = OFFSET | XDEF | XREF | DEFINE | COMMENT
B.2.4 Library format

B.2.4.1 Use of libraries in the QL Linker

A library is a relocatable object file as described above, but it will
normally contain more than one module. Note that a library can be
created by appending smaller libraries or object files.

When the linker processes a LIBRARY command it checks each
module to see if it resolves any external references. If so, that
module will be included in the link.

The linker also has a facility to extract a specific module from a
library, using the module name in the source directive.

B.2.5 Example

The object module format will be illustrated with the aid of this
example assembler source module: the file name is
“MDV1_EXAMPLE_ASM".

The Program is shown in Fig 1.

a1

"1 84
an3

67872797679 7¢271L“0 8724 :2379v1S0%02£020L000 820000

*=YIHLIO0IHL *=-INILNOYLVHL *-INILNOYSIHL 1720 131GV L XXXXXXXXXXXX 220000

2d 3uaJ4Jdnd 8yl 30U “3uUL] JUSJIJINI BY] 40 3JRISDY] 1€ %
ssaJppesayi se ,x,S319J4dJda3uL JdJqWIsSSe Sy} 3Ly} S30U=x*

$378vLl-V1lvda NOIL1J3S

3T19Y1HIYY3S ¥sr XXXXygd3y 3gzL00
0v“(2d)L319gvl 'ER XXXXYdLY vee2Loo0
(0Y)872319V1-9VLIYNId# M=3IA0W 8000XXXX2/1¢ %¢2100
IINILNOYSIHL %¢2100

3409 NOIL1J3S

4IH103IHL “INILNOYLVYHL 134X

379YLHIYVY3S 434X

gVL1IVYNIA 134X

INILNOYSIHLYL3I19VYL 434X

jewdoyajnpowisalgoaylaiedisnyiI IILIL

42

The generated object module would then look something
like this (in file "MDV1-EXAMPLE-REL"):

FBO1 104558 414D504C 452032382F 3039 2F
38 34
SOURCE EXAMPLE 28/09/8 4

FB0223496C6C75......
COMMENT IlLLlustrate.....

FB10 FFFF 04 43 4F 44 45
DEFINE-1 CODE

FB10 FFFEOB 44 4154 415F 54 4142 4C 4553
DEFINE -2 DATA-TABLES

FBO6 0654 4142 4C 453100000072 FFFE
XDEF TABLE1 DATA-TABLES

FBO60B54 48 495352 4F 5554 49 4E 45
00001234 FFFF
XDEF THISROUTINE CODE

FB10 0001084649 4E 414C 544142
DEFINE +1 FINALTAB

FB1000020B5345415243485441424C 45
DEFINE +2 SEARCHTABLE

FB1000030B54 48 415452 4F 555449 4E 45
DEFINE +3 THATROUTINE

FB10 00040854 48 45 4F 5458 4552
DEFINE +4 THEOTHER

FBO2 FFFF
SECTION CODE

43

317CFBO7 FFFFFF38 02 2B 0001 2D

FFFE FBOOOS8

MOVE XREF-C8 | + FINALTAB-DATA-TABLES
Rules: word

41FAFBO07 00000072 2A 2B FFFE FB
LEA XREF | + DATA-TABLES
Rules: PC-rel, word, signed

4LECAFBO7000000002A2B0002FB
JSR XREF | + SEARCHTABLE
Rules: PC-rel, word, signed

FBOZ2 FFFE
SECTIONDATA-TABLES

FBO7 000011C2042BFFFF 2D FFFEFB
XREF 1234-0072 1 + CODE—DATA-TABLES
Rules: Long

FBO7 FFFFFFS8E 04 2B 0003 2D FFFE FB
XREF -0072 | + THATROUTINE -
DATA-TABLES
Rules: Long

FBO7 FFFFFF8E Q04 2B 0004 2D FFFEFB
XREF -0072 | THEOTHER +
DATA-TABLES

Rules: Long

FB13
END

44

B.3 Program file

The program file created by the linker will be a binary file which can
be executed directly by the operating system. The linker will place
the following information into the type dependent information
section of the file header:

The DATA requirement

The DATA requirement is the amount of data space in bytes
required for the program to run. The system allocates this data
space when the program is loaded.

The value is a longword occupying the first four bytes of the type
dependent information field. The value is entered by the DATA
command.

The OFFSET value
This value represents the start address of the file. Normally this
value is zero unless the OFFSET command has been used in the
linker. A program with a non zero OFFSET in the header should
not be run directly.

The value is a longword occupying the final four bytes of the type
dependent information field.

B.4 The listing file

The listing file consists of a series of reports to indicate what the
linker has done with the program file. The following reports are
generated.

Command line and control file information

This report indicates the command line used to perform the link
and a listing of the control file (if one was used). Any error
messages from processing of the control file are also placed in the
report.

Object module header information

This report indicates which commands were used for input of
modules and the module names read in by the command. Any
error messages produced while reading the module files are also
printed here.

45

46

Load Map

This report generated after pass 1 indicates where the linker has
placed everything. The load map is produced in increasing
address order with the following format:

— For each section a line in the following form:
1 The section type (ABSOLUTE, SECTION, COMMON)
2 The section start address
3 The section end address
4 The section name

— For each subsection {(contribution from a file) a line of the
following form:
1 The start address of the subsection
2 The end address of the subsection
3 The module name

— For each entry point in a relocatable or common subsection a
line of the following form (in increasing address order)
1 The entry point address
2 The entry point name

The load map is then followed by three lists of the following
form:

1 Absolute symbols in address order

2 User defined symbols in defined order

3 Undefined symbols in alphabetical order

Symbol table listing

The linker produces a symbol table listing of all global symbols in
the link in alphabetical order. For each symbol a line is printed
containing the following information:

2 The symbol name

3 The section name the symbol is defined in, or Absolute
(defined or undefined).

4 The module name (unless defined or undefined).

If the ~CRF option is used on the command line then if a symbol
is referenced in other modules the symbol information is
followed by one or more lines of module names which reference
the symbol. This cross reference information is followed by a
blank line before the next symbol table entry.

B.5 The debug file

The debug file is a text file containing a symbol table listing in fixed
format for use by a symbolic debugger. The symbol table is sorted
alphabetically with one line of information for each symbol in the
following format:

1 An 8digit hex number representing the symbol’s value
2 Asingle space
3 The symbol type letter which will be one of the following:

A Absolute

C Common

D User Defined
R Relocated

U Undefined

Assingle space
The symbol name
A newline character

()6, QNN

47

Appendix C — Glossary

The following terms are applied throughout in this manual.

absolute section

A section of code that starts at a specific address in the program file.
Absolute sections are placed in the program file at their start
addresses relative to the start of the file (or the OFFSET value if
supplied). Absolute sections are used for position dependent code
(i.e. not directly runnable by the operating system) and are very
rarely encountered.

common sections

A common section is a section where all contributions to the section
from different files refer to the same memory locations. This type of
section is used in the implementation of FORTRAN type common
blocks.

default parameter

A parameter generated in the absence of an explicit parameter.
Used in the command line handling to generate file names for the
program listing and debug files.

module

Binary data in Sinclair relocatable object module format. Generated
by compilers and assemblers and used as inputs to the linker to
generate a program file. The name of the module is usually part of a
filename but may be any name with the same syntax as a symbol.

positional parameter
Any parameter whose meaning is determined from its position within
a command line.

relocatable binary file
A file containing one or more relocatable binary modules (see
module).

relocatable section
see section

48

section

A section is a portion of data or code that logically belongs together.

Contributions may be made to a section from one or more
relocatable object modules. A section may also be overlayed (see
common section).

A section name has the same syntax as a symbol.

symbol

A symbol is a name of up to 32 characters with the following syntax:

<symbol name> = <letter> { <symchar> }
<symchar> = <letter> | <digit>|_|$|.
<letter>=A|B]|...|Y|Z

<digit>=0]1]...|8]9

49

QL-Screen Editor

Contents

1. Introduction

2. Immediate Commands
2.1 Cursor control

2.2 Inserting text

2.3 Deleting text

2.4 Scrolling

2.5 Repeating commands

3. Extended Commands

3.1 Program control

3.2 Block control

3.3 Movement

3.4 Searching and exchanging
3.5 Altering text

3.6 Repeating commands

4. Command List
4.1 Immediate commands
4.2 Extended commands

Appendix A Changing the Default Window

1. Introduction

The screen editor ED may be used to create a new file or to alter an
existing one. The text is displayed on the screen, and can be scrolled
vertically or horizontally as required. The size of the program is
about 20K bytes and it requires a minimum workspace of 8K bytes.

The editoris invoked using EXE C or EXE C_W as follows

EXEC_W mdvil_ed

The difference between invoking a program with EXE C or
EXEC_Wis as follows. Using EX E C_W means that the editor is
loaded and SuperBASIC waits until the editing is complete. Anything
typed while the editor is running is directed to the editor. When the
editor finishes, keyboard input is directed at SuperBASIC once more.

Using EXE C is slightly more complicated but is more flexible. In this
case the editor is loaded into rnemory and is started, but SuperBASIC
carries on running. Anything typed at the keyboard is directed to
SuperBASIC unless the current window is changed. This is
performed by typing CTRL-C (pressing the CONTROL key and C
together), which switches to another window. If just one copy of ED
is running then CTR L - C will switch to the editor window, and
characters typed at the keyboard will be directed to the editor. A
subsequent CTR L= C switches back to SuperBASIC. When the
editor is terminated a C TR L - C will be needed to switch back to
SuperBASIC once more. More than one version of the editor can be
run concurrently (subject to available memory) if EXE C is used. In
this case C TR L~ C switches between SuperBASIC and the two
versions of the editor in turn.

Once the program is loaded it will ask for a file name which should
conform to the standard Qdos file name syntax. No check is made
on the name used, but if it is invalid a message will be issued when
an attempt is made to write the file out, and a different file name
may be specified then if required. All subsequent questions have
defaults which are obtained by just pressing ENTER.

The next question asks for the workspace required. ED works by
loading the file to be edited into memory and sufficient workspace is
needed to hold all the file plus a small overhead. The default is 12K
bytes which is sufficient for small files. The amount can be specified
as a number or in units of 1024 bytes if the number is terminated by
the character K. If you ask for more memory than is available then
the question is asked again. The minimum is 8K bytes.

You are next asked if you wish to alter the window used by ED. The
default window is normally the same as the window used in the
initialisation of ED although this may be altered if required. See
Appendix A for details of how to do this. If you type N or just press
ENTER then the default window is used. If you type Y then you are
given a chance to alter the window. The current window is displayed
on the screen and the cursor keys can be used to move the window
around. The combination ALT and the cursor keys will alter the size
of the window although there is a minimum size which may be used.
Within this constraint you can specify a window anywhere on the
screen, so that you can edit a file and do something else such as run
a SuperBASIC program concurrently. When you are satisfied with
the position of the window press ENTER.

Next, an attempt is made to open the file specified, and if this
succeeds then the file is read into storage and the first few lines
displayed on the screen. Otherwise a blank screen is provided, ready
for the addition of new data. The message “File too big" indicates
that more workspace should be specified.

When the editor is running the bottom line of the screenis used as a
message area and command line. Any error messages are displayed
there, and remain displayed until another editor command is given.

Editor commands fall into two categories —immediate commands
and extended commands. Immediate commands are those which
are executed immediately, and are specified by a single key or
control key combination. Extended commands are typed in onto the
command line, and are not executed until the command line is
finished. A number of extended commands may be typed on a
single command line, and any commands may be grouped together
and groups repeated automatically. Most immediate commands
have a matching extended version.

Immediate commands use the function keys and cursor keys on the
QL in conjunction with the special keys SHIFT, CTRL and ALT.
For example, delete line is requested by holding down the CTRL
and ALT keys and then pressing the left arrow key. This is described
in this documentas CTRL-ALT~-LEFT. Function keys are
described as F1, F2 etc.

The editor attempts to keep the screen up to date, but if a further
command is entered while it is attempting to redraw the display, the
command is executed at once and the display will be updated later,
when there is time. The current line is always displayed first, and is
always up to date.

2. Immediate commands

2.1 Cursor control

The cursor is moved one position in either direction by the cursor
control keys LEFT, RIGHT, UP and DOWN. If the cursoris on the
edge of the screen the text is scrolled to make the rest of the text
visible. Vertical scroll is carried out a line at a time, while horizontal
scroll is carried out ten characters at a time. The cursor cannot be
moved off the top or bottom of the file, or off the left hand edge of
the text.

The ALT-RIGHT combination will take the cursor to the right
hand edge of the current line, while ALT - LE F T moves it to the
left hand edge of the line. The text will be scrolled horizontally if
required. In a similar fashion SHIF T-UP places the cursor at the
start of the first line on the screen,and SHIFT-DOWN placesit at
the end of the last line on the screen.

The combinations SHIFT-RIGHT and SHIFT-LEFT take the
cursor to the start of the next word or to the space following the
previous word respectively. The text will be scrolled vertically or
horizontally as required. The TAB key can also be used. If the cursor
position is beyond the end of the current line then TAB moves the
cursor to the next tab position, which is a multiple of the tab setting
(initially 3). If the cursor is over some text then sufficient spaces are
inserted to align the cursor with the next tab position, with any
characters to the right of the cursor being shuffled to the right.

2.2 Inserting text

Any letter typed will be added to the text in the position indicated by
the cursor, unless the line is too long (there is a maximum of 255
characters in a line). Any characters to the right of the text will be
shuffled up to make room. If the line exceeds the size of the screen
the end of the line will disappear and will be redisplayed when the
text is scrolled horizontally. If the cursor has been placed beyond the
end of the line, for example by means of the T AB or cursor control
keys, then spaces are inserted between the end of the line and any
inserted character. Although the QL keyboard generates a different

4

code for SHIFT-SPACE and SHIFT-ENTER these are
mapped to normal SPACE and ENT ER characters for convenience.

An ENTER key causes the current line to be split at the position
indicated by the cursor, and a new line generated. If the cursor is at
the end of a line the effect is simply to create a new, empty blank
line after the current one. Alternatively CTRL-DOWN may be used
to generate a blank line after the current, with no split of the current
line taking place. In either case the cursor is placed on the new line
at the position indicated by the left margin (initially column one).

A right margin may be set up so that ENT E Rs are automatically
inserted before the preceding word when the length of the line
being typed exceeds that margin. In detail, if a character is typed
and the cursor is at the end of the line and at the right margin
position then an automatic new line is generated. Unless the
character typed was a space, the half completed word at the end of
the line is moved down to the newly generated line. Initially there is
a right margin set up at the right hand edge of the window used by
ED. The right margin may be disabled by means of the EX command
(see later).

2.3 Deleting text

The CTRL-LEFT key combination deletes the character to the
left of the cursor and moves the cursor left one position. If the cursor
is at the start of a line then the new line between the current line and
the previous is deleted (unless you are on the very first line). The text
will be scrolled if required. CTRL=RIGHT deletes the character at
the current cursor position without moving the cursor. As with all
deletes, characters remaining on the line are shuffled down, and text
which was invisible beyond the right hand edge of the screen may
now become visible.

The combination SHIFT-CTRL-RIGHT may be used to delete
a word or a number of spaces. The action of this depends on the
character at the cursor. If this character is a space then all spaces up
to the next non-space character on the line are deleted. Otherwise
characters are deleted from the cursor, and text shuffled left, until a
space is found. The CTRL-ALT-RIGHT command deletes all
characters from the cursor to the end of the line. The CTRL-ALT -
LE FT command deletes the entire current line.

2.4 Scrolling

Besides the vertical scroll of one line obtained by moving the cursor
to the edge of the screen, the text may be scrolled 12 lines vertically
by means of the commands ALT-UP and ALT-DOWN. ALT-UP
moves to the previous lines, moving the text window up; ALT -

D OWN moves the text window down moving to lines further on in
the file. The F 4 key rewrites the entire screen, which is useful if the
screen is altered by another program besides the editor. Remember
that you can switch out of the editor window and into some other
job by typing CTRL-C atany point, assuming that there is another
job with an outstanding input request. SuperBASIC will be available
only if you entered the editor using EXE C rather than EXEC_W. If
there is enough room in memory you can run two versions of ED at
the same time if you wish.

2.5 Repeating commands

The editor remembers any extended command line typed, and this
set of extended commands may be executed again at any time by
simply pressing F 2. Thus a search command could be set up as the
extended command, and executed in the normal way. If the first
occurrence found is not the one required, typing F 2 will cause the
search to be executed again. As most immediate commands have an
extended version, complex sets of editing commands can be set up
and executed many times. Note that if the extended command line
contains repetition counts then the relevant commands in the group
will be executed many times each time the F 2 key is pressed.

B

3. Extended commands

Extended command mode is entered by pressing the F 3 key.
Subsequent input will appear on the command line at the bottom of
the screen. Mistakes may be corrected by meansof CTRL-LEFT
and CTRL-RIGHT inthe normal way, while LEFT and RIGHT
move the cursor over the command line. The command line is
terminated by pressing ENT ER. After the extended command has
been executed the editor reverts to immediate mode. Note that
many extended commands can be given on a single command line,
but the maximum length of the command line is 255 characters. An
empty command line is allowed, so just typing ENTER after typing
F 3 will return to immediate mode.

Extended commands consist of one or two letters, with upper and
lower case regarded as the same. Multiple commands on the same
command line are separated from each other by a semicolon.
Commands are sometimes followed by an argument, such as a
number or a string. A string is a sequence of letters introduced and
terminated by a delimiter, which is any character besides letters,
numbers, space, semicolon or brackets. Thus valid strings might be

/happy/ !'23feet!:Hello! :"1/2"

Most immediate commands have a corresponding extended
version. See the table of commands for full details (section 4).

3.1 Program control

The command X causes the editor to exit. The text held in storage is
written out to file, and the editor then terminates. The editor may
fail to write the file out either because the file name specified when
editing started was invalid, or because the Microdrive becomes full.
In either case the editor remains running, and a new destination
should be specified by means of the S A command described below.
Alternatively the @ command terminates immediately without
writing the buffer; confirmation is requested in this case if any
changes have been made to the file. A further command allows a
‘snapshot’ copy of the file to be made without coming out of ED.
Thisis the SA command. S A saves the text to a named file or, in the
absence of a named file, to the current file. For example:

*SA/mdv2_savedtext/
or
*SA

This command is particularly useful in areas subject to power failure
orsurge. It should be noted that S A followed by @ is equivalent to
the X command. Any alterations made between the S A and the @
will cause ED to request confirmation again; if no alterations have
been made the program will be quitted immediately with the file
saved in that state. S A is also useful because it allows the user to
specify a file name other than the current one. Itis therefore possible
to make copies at different stages and place them in different files.

The S A command is also useful in conjunction with the R
command. Typing R followed by a file name causes the editor to be
re-entered editing the new file. The old file will be lost when this
happens, so confirmation is requested (as with the @ command} if
any changes to the current file have been made. The normal action
is therefore to save the current file with SA, and then start editing a
new file with R. This saves having to load the editor into memory
again, and means that once the editor is loaded the Microdrive
containing it can be replaced by another.

The U command ‘undoes’ any alterations made to the current line if
possible. When the cursor is moved from one line to another, the
editor takes a copy of the new line before making any changes to it.
The U command causes the copy to be restored. However the old
copy is discarded and a new one made in a number of
circumstances. These are when the cursor is moved off the current
line, or when scrolling in a horizontal or vertical direction is
performed, or when any extended command which alters the
current line is used. Thus U will not ‘undo’ a delete line or insert line
command, because the cursor has been moved off the current line.

The SH command shows the current state of the editor. Information
such as the value of tab stops, current margins, block marks and the
name of the file being edited is displayed. Tabs are initially set at
every three columns; this can be changed by the command ST,
followed by a number n, which sets tabs at every n columns. The left
margin and right margin can be setby S L and SR commands, again
followed by a number indicating the column position. The left

margin should not be set beyond the width of the screen. The EX
command may be used to extend margins; once this command is
given no account will be taken of the right margin on the current
line. Once the cursor is moved off the current line, margins are
enabled once more.

3.2 Block control

A block of text can be identified by means of the BS (block start)
and BE (block end) commands. The cursor should be moved to the
first line required in a block, and the BS command given. The cursor
can then be moved to the last line wanted in the block, by cursor
control commands or in any other way, such as searching. The BE
command is then used to mark the end of the block. Note, however,
that if any change is made to the text the block start and block end
become undefined once more. The start of the block must be on the
same line, or a line previous to, the line which marks the end of the
block. A block always contains all of the line(s) within it.

Once a block has been identified, a copy of it may be moved into
another part of the file by means of the I B (insert block) command.
The previously identified block is replicated immediately after the
current line. Alternatively a block may be deleted by means of the
DB command, after which the block start and end values are
undefined. It is not possible to insert a block within itself.

Block marks may also be used to remember a place in a file. The SB
(show block) command resets the screen window on the file so that
the first line in the block is at the top of the screen.

A block may also be written to a file by means of the WB command.
The command is followed by a string which represents a file name.
The file is created, possibly destroying the previous contents, and
the buffer written to it. A file may be inserted by the I F command.
The file name given as the argument string is read into storage
immediately following the current line.

3.3 Movement

The command T moves the screen to the top of the file, so that the
first line in the file is the first line on the screen. The B command
moves the screen to the bottom of the file, so that the last line in the
file is the bottom line on the screen if possible.

The commands N and P move the cursor to the start of the next line
and previous line respectively. The commands CL and CR move the
cursor one place to the left or one place to the right, while CE places
the cursor at the end of the current line, and CS places it at the start.

It is common for programs such as compilers and assemblers to give
line numbers to indicate where an error has been detected. For this
reason the command M is provided, which is followed by a number
representing the line number which is to be located. The cursor will
be placed on the line number in question. Thus M1 is the same as
the T command. If the line number specified is too large the cursor
will be placed at the end of the file.

3.4 Searching and Exchanging

Alternatively the screen window may be moved to a particular
context. The command F is followed by a string which represents
the text to be located. The search starts at one place beyond the
current cursor position and continues forwards through the file. If
found, the cursor is placed at the start of the located string. To
search backwards through the text use the command BF
(backwards find) in the same way as F. BF will find the last
occurrence of the string before the current cursor position. To find
the earliest occurrence use T followed by F; to find the last, use B
followed by BF. The string after F and B F can be omitted; in this
case the string specified in the last F, BF or E command is used.
Thus

*F /wombat/
*BF

will search for ‘'wombat’ in a forwards direction and then in a reverse
direction.

10

The E (exchange) command takes a string followed by further text
and a further delimiter character, and causes the first string to be
exchanged to the last. So for example

E/wombat/zebra/

would cause the letters ‘wombat’ to be changed to ‘zebra’. The
editor will start searching for the first string at the current cursor
position, and continues through the file. After the exchange is done
the cursor is moved to after the exchanged text. An empty string is
allowed as the search string, specified by two delimiters with
nothing between them. In this case the second string is inserted at
the current cursor position. No account is taken of margin settings
while exchanging text.

A variant on the E command is the EQ command. This queries the
user whether the exchange should take place before it happens. If
the response is N then the cursor is moved past the search string. If
the responseis Y or ENT ER then the change takes place; any other
response (except F 2) will cause the command to be abandoned.
This command is normally only useful in repeated groups; a
response such as Q can be used to exit from an infinite repetition.

All of these commands normally perform the search making a
distinction between upper and lower case. The command U C may

be given which causes all subsequent searches to be made with

cases equated. Once this command has been given then the search
string ‘wombat’ will match ‘Wombat’, ‘WOMBAT', ‘WoMbAt'

and so on. The distinction can be enabled again by the command LC.

3.5 Altering text

The E command cannot be used to insert a new line into the text,
but the I and A commands may be used instead. The I command is
followed by a string which is inserted as a complete line before the
current line. The A command is also followed by a string, which is
inserted after the currentline. 1t is possible to add control characters
into a file in this way.

11

The S command splits the current line at the cursor position, and
acts just as though an ENTER had been typed in immediate mode.
The J command joins the next line on to the end of the current one.

The D command deletes the current line in the same way as the
CTRL-ALT-LEFT command inimmediate mode, while the D C
command deletes the character at the cursor in the same way as
CTRL-RIGHT.

3.6 Repeating commands

Any command may be repeated by preceding it with a number.
For example,

4E/slithy/brillig/

will change the next four occurrences of ‘slithy’ to ‘brillig’. The
screen is verified after each command. The RP (repeat) command
can be used to repeat a command until an error is reported, such as
reaching the end of the file. For example,

RP E/slithy/brillig/
will change all occurrences of ‘slithy’ to *brillig'.

Commands may be grouped together with brackets and these
command groups executed repeatedly. Command groups may
contain further nested command groups. For example,

RP (/f/toves/;3CIB;N))

will insert three copies of the current block whenever the string
‘toves’ is located.

Note that some commands are possible, but silly. For example,
RP SR 60

will set the right margin to 60 ad infinitum. However, any sequence
of extended commands, and particularly repeated ones, can be
interrupted by typing any character while they are taking place.
Command sequences are also abandoned if any error occurs.

12

4. Command list

4.1 Immediate commands

F2

F3

Fé&

LEFT
SHIFT-LEFT
ALT-LEFT
CTRL-LEFT
CTRL-ALT-LEFT
RIGHT
SHIFT-RIGHT
ALT-RIGHT
CTRL-RIGHT

CTRL-ALT-RIGHT
SHIFT-CTRL-RIGHT
Up

SHIFT-UP

ALT-UP

DOWN

SHIFT-DOWN
ALT-DOWN
CTRL-DOWN

Repeat last extended command
Enter extended mode

Redraw screen

Move cursor left

Move cursor to previous word
Move cursor to start of line
Delete left one character
Delete line

Move cursor right

Move cursor to start of next word
Move cursor to end of line
Delete right one character
Delete to end of line

Delete word to right

Move cursor up

Cursor to top of screen

Scroll up

Move cursor down

Cursor to bottom of screen
Scroll down

Insert blank line

4.2 Extended commands

/ s/ indicates a string, /s / t / indicates two exchange strings and

n indicates a number.

A/s/
B

BE
BF
BS
CE
CL
CR

Insert line after current

Mové to bottom of file

Block end at cursor

Backwards find

Block start at cursor

Move cursor to end of line
Move cursor one position left
Move cursor one position right

13

14

Move cursor to start of line
Delete current line

Delete block

Delete character at cursor
Exchange s into t

Exchange but query first
Extend right margin

Find string s

Insert line before current

Insert copy of block

Insert file s

Join current line with next
Distinguish between upper and lower
case in searches

Move to line n

Move cursor to start of next line
Move cursor to start of previous line
Quit without saving text
Re-enter editor with file s
Repeat until error

Split line at cursor

Save text to file

Show block on screen

Show information

Set left margin

Set right margin

Set tab distance

Move to top of file

Undo changes on current line
Equate U/C and I/cin searches
Write block to file s

Exit, writing text back.

Appendix A:
Changing the default window

The window to be used can be altered as part of the initialisation
sequence. If this option is not required then the default window is
used. This is initially the same as the window used during the start of
the program, but if required the default window may be altered
permanently by patching the programs. This is useful where a
certain window size and position is always required and means that
the window does not have to be positioned correctly each time the
program is run.

The program INSTALL is supplied on the distribution Microdrive for
this purpose. It is run by the command

LRUN mdv1_install

The program starts by asking whether the default window is to be
set up for TV or monitor mode. The minimum window size is greater
in TV mode because the characters used are larger. You should
answer T if you are setting the default for use with TV mode and M
if you are setting it for use with monitor mode. Note that the current
mode in use is of no consequence.

The standard window will appear on the screen and can be moved
by means of the cursor keys and altered in size by means of ALT
cursor keys. This is similar to the mechanism used when altering the
window during normal program initialisation. Once the window is in
the right place and of the desired size, press ENTER.

The program now asks for the name of the file which is to be
modified. If you wished to alter the editor then the file would
probably be something like ' mdv1_ed'. The nextitem
requested is the name of the program. When a new job is running
on the QL, it has a name associated with it. This can be inspected by
suitable utilities. The name is six characters long, and whatever is
typed here is used as the name and forced to the correct length. The
name is of little importance except for job identification.

The INSTALL program will then modify the file specified. INSTALL
can be run as many times as you like to alter the default window of
the editor.

15

