
QL
User Guide

Introduction
Beginner's Guide
Reference Guide

Keywords
Concepts

Applications Software
QL Quill
QL Abacus
QL Archive
QL Easel

Information

andy dansby

andy dansby
This manual has been scanned, OCR'ed and PFD'ed by Andy Dansby. andydansby@yahoo.com. There are many mistakes in the OCR'ing of the manuals, please be patient and I'll try to correct them one of these days. Though if someone would like to edit it for me and email it back. I'll give credit of course :)anyway enjoy the manual.Thank you Clive for the concept of the QL.Thanks to Psion for the Brilliant QL software.

QL
User Guide

PLEASE READ THIS BEFORE UNPACKING
THESE PAGES

i

Your QL User Guide is supplied unbound, to avoid damage in transit and to make rapid
updating easy In addition to this packet containing the pages of the Guide itself, you
should also find a ring binder and then divider cards packed wth your QL

Insert the dividers into the binder first The recommended order is as follows

Position Tab Label

Front Introduction
Begmniners Guide
Keywords
Concepts
QL Quill
QL Abacus
QL Archive
QL Easel

Back Information

This will put the divider tabs in a logical order If you wish, you may put the sections
in a different order, perhaps to put often used sections near the front, or even miss out
sections you do not expect to use

Now look through the pages to identify the various sections, each begins with a title
page with the Sinclair logo at the top The pages within each section will be packed
in the correct order, so be careful not to mix them up, the individual sections, however,
may be in a different order to that shown above if a section or sections have recently
been repnnted

Once each section is placed in the binder as you like it, this sheet may be discarded,
it does not form part of the Guide

Sinclair Research has a policy of constant development and improvement of their
products Therefore the right is reserved to change manuals, hardware, software and
firmware at any time and without notice

QL User Guide Second Edition
Published by Sinclair Research Limited 1984

25 Willis Road, Cambridge
Edited by Stephen Berry (Sinclair Research Limited)

©Sinclair Research Ltmited
©Psion Limited

Printed and bound in Great Britain by
William Clowes Limited, Beccles and London

Designed and typeset by
Keywords, Manchester

No part of this User Guide may be reproduced in any form whatsoever without the
written permission of Sinclair Research Limited

QL, QLUB, QL Net, Qdos and QL Microdrive are trade marks of
Sinclair Research Limited

Quill, Archive, Easel and Abacus are trade marks of Psion Limited

QL
Introduction

©1984 SINCLAIR RESEARCH LIMITED

INTRODUCTION
TO THE QLWhen you unpack your QL computer you will find:

The QL User Guide A power supply

Two wallets

one of which contains:
QL Abacus
QL Archive
QL Easel
QL Quill

and the other contains:

four blank QL Microdrive cartridges.

Three plastic feet

these can be fitted under the QL to tilt the keyboard for more comfortable typing. The
pips in the top of the legs should be fitted into the holes in the rubber feet, twisting them
to make them fit securely.

12/84

Introduction

An aerial lead

about two metres long with different connectors at either end It is used for connecting
your QL to your televisions aerial socket

A network lead

also about two metres long with identical connectors at ether end It is used to connect
your QL to other QLs so that data and messages can be sent between them

r\ vlUIL/di/ On the back and sides of the computer there are a senes of connectors

| UUn There are two slots on the right hand side of the computer the two QL Microdnves
The cartridges for these Microdnves are used for storing programs and data on the
QL Next to each slot there is a small light When the light is on the Microdrive is in
use and the cartridge should not be removed The yellow light on the front lefthand
side indicates whether the QL is switched on

On the right-hand end of the QL there is a slot covered by a plastic strip This siot is
for attaching up to six more QL Microdnves ZX Microdnves are not suitable for use
with the QL but blank Microdrive cartridges can be used on either machine

The connectors at the back of the computer are for attaching the following

NET - connector for the QL Network
NET - connector for the QL Network
POWER - power supply for the computer
RGB - connection to a monochrome or colour monitor
UHF - connection to the aerial socket of a television set
SER1 - RS-232 C serial port
SER2 - RS-232-C serial port
CTL1 - control port for joystick
CTL2 - control port for joystick
ROM - QL ROM cartridge software (use reversed one to 10}

ZX ROM cartridges are not compatible with QL ROM cartridges
and cannot be used in the QL.

The slot on the left hand side of the QL is used for adding peripherals (equipment to
expand the computer's capabilities} to the QL One peripheral can be plugged directly
into the expansion slot

The reset button is on the right hand end of the computer near the Microdrive expansion
slot It is used to reset' the QL to its original 'switch on' state Any programs :n the machine
will be lost if reset is pressed and sometimes data already recorded on Microdrive
cartridges can be corrupted Use reset with caution and always remove Microdrive
cartridges before doing so.

To make the computer operate, various connections have to be made OcTTINu UP

Your QL power supply has two leads One is fitted with a small rectangular connector THE POWER
with three holes in it The other is the mains lead and is supplied with bare ends to SUPPLY
which a suitable mains plug must be fitted

Please do not connect the power supply lead to the computer until all other leads
and peripherals have been connected Always connect the power supply lead to the
computer last of all

Connect the mams plug as follows

• The blue wire goes to the terminal marked N or neutral, or coloured blue or
black

• The brown wire goes to the terminal marked L or live and coloured brown or red

• The power supply is double insulated and does not need an earth connection

• If you are using a fused plug it must be fitted with a three amp fuse

• Make sure all connections are sound

If necessary, get someone with electrical experience to help you.

Although the QL will work once the power supply is connected, you will not be able THE DISPLAY
to see what it is doing until you add a television set or a monitor

A monitor has a screen like a television, but it cannot receive television signals It usually
has better resolution than a television set and so can display more text and is therefore
more expensive

A colour television or monitor will of course be required to make use of the QLs colour
display but the computer will work perfectly well in black and white representing colours
as shades of grey

12/84 3

Most television sets in current use will be suitable for the QL provided they are able
to receive 625 line UHF transmissions, le BBC2 and Channel 4

Locate the aerial socket at the back of your TV and remove the aerial cable that may
be plugged into it. If your set has more than one socket, use the one labelled UHF
or 625 Plug in the QLs aerial lead Use the end that looks similar to the original aerial
plug, and plug the other end into the socket marked UHF on the back of the computer.

Plug the power supply into a mains socket and switch on Remove any cartridges from
the Microdrive slots and push the small power supply connector into the three pin plug
marked POWER on the back of the QL The yellow power light below the F5 key should
now be glowing and your set up should look like this

When the computer has been on for a while, the case above the Microdnves will feel
warm, this is quite normal. The QL has no on/off switch but can be turned off by
unplugging the power supply connector Remember that any program or data in the
machine will be lost when it is turned off and should first be saved on a Microdrive
cartridge (for details of how to do this see the Beginner's Guide and Concept sections).
If the QL is not going to be used for a while you should also switch the power supply
off at the mains

TUNING IN The display signal to the television set is near channel 36. If your set has continuous
tuning, tune to channel 36 If your television has push buttons, choose an unused button
and tune this to the computer's signal You may need to consult your dealer or the TV
instruction manual to find out how to do this

Once you are correctly tuned in you should see the copyright screen

The QL doesnt use television sound because it has its own internal loudspeaker. You
can turn the television volume down if you wish

A coloured pattern will appear after you switch on or reset the computer, this ts the QL
testing its memory The pattern will disappear after a few seconds to be replaced by
the copyright screen

If you cannot get a picture at all first check that your television can receive the normal
broadcast stations If it can then try the computer with another television set

If you get a fuzzy or indistinct picture check that you are tuned in correctly it may be
possible to pick up the computers signal in more than one place in the tuning range
Also check that the aerial lead is firmly plugged in, and that you are using the correct
socket on your television set (if it has more than one)

If you wish to use a monitor instead of a television set the connections will depend on
whether tt is colour or monochrome details can be found in the Concepts section under
the heading Monitor A monitor lead with a plug to fit the QL's RGB socket is available
from Sinclair Research The order form is in the Information section of this guide

The QL needs to know if you are using a monitor or a television set Press

|F1 I for a monitor
or

[F2J for a television

Microdrive 1 will run briefly and the red Microdrive light will glow, the QL is looking for
programs to load and run (this can be ignored for now) The computer will start up and
display its cursor a flashing coloured square, and the computer is now ready to accept
commands

USING THE QL
Unlike previous Sinclair computers there is no single keyword entry on the QL However KEYBOARD
various keys and groups of keys have special meanings

The ENTER key is used to indicate to the computer that you want it to do something Enter
Perhaps you have typed in a command and want the computer to execute it or you
may want to teil the computer that you have finished typing in data

The keyboard has two SHIFT keys which perform the same function Pressing SHIFT Shift
and an alphabetic key together will generate capital letters (upper case characters) On
non alphabetic keys SHIFT will cause the upper engraved character to be generated
For example

I SHIFT I & [5] will give %

Pressing the CAPS LOCK key once will force alphabetic keys to generate capital letters Caps Lock
regardless of whether the SHIFT key is pressed This wifl remain in effect until CAPS
LOCK is pressed again

Hold down the CTRL key and then press the H17] key The character to the left of the Delete
cursor will disappear and the cursor will move to the left Hold down CTRL and press
(he I -»I key The cursor will not move, the character it was on will disappear and text
to the right will move to fill the gap

The QL screen may be divided into different areas or windows, at will Once you have InC oUnbtN
switched on (or reset) and pressd F1 or F2 the screen will look like this

The long thin window at the bottom is used to display commands typed into the computer
and initially will display the flashing cursor When the cursor is visible the QL is ready
to accept commands or data it disappears when the computer is busy As you type,
the cursor will move along the line showing where the next character to be typed will
appear

tf the machine ever fails to respond correctly or you want to force a SuperBASIC program
to stop hold down the CTRL key and press the space bar

The computer should then display its cursor If this doesnt work remove any Microdrive
cartridges and then press reset

The message Bad Line appearing in the command window means that the computer
doesn't understand a command that you have typed in Delete or correct the line using
the cursor keys

MlUnUUniVbo The two QL Microdnves are called mdvl on the left and mdv2 on the right

Cartridges must be placed correctly into the Microdnves Hold the cartridge by the ribbed
plastic handle and remove it from its protective cover The cartridge's name label, or
the recess for its stick-on label, should face upwards

Cartridges should always be treated with care You should never turn the QL on or off
with a cartridge in the Microdnves Take care when inserting or removing cartridges,
wait until the Microdrive lights have gone out before removing the cartridge, be gentle
but firm Never touch the tape in the cartridge and always return the cartridge to its
protective cover

Before a blank cartridge can be used it must go through a process called formatting
This process erases any data or programs on a cartridge so always be sure that all
cartridges are clearly labelled with their contents and check that cartridges to be
formatted contain no useful data. Instructions for formatting cartridges are contained
in the Information section

All magnetic storage media including Microdrive cartridges eventually suffer from wear
Hence it is strongly recommended that all important programs and data should be
stored on at least two cartridges, that is 'backed up' This means that if a cartridge
is damaged and the data lost then at least part of the data can be recovered from the
relevant back up cartridge If you are continually adding data to a cartridge it must be
backed up often unless you do so you will lose everything that was added since the
last backup if the main cartridge is damaged Instructions for backing up cartridges
are contained in the Information section

O Inn I INo WUHK There are several ways of using your computer and the User Gutde You can use ready
made programs such as those supplied with the QL, or you can write your own programs
in SuperBASIC

To use the QL programs, first read the Introduction to the QL Programs later in this
introduction and then the relevant section for each program concerned

If you are a newcomer to computing and wish to write your own programs, you should
read the Beginner's Guide If you are familiar with BASIC programming, you may prefer
to read from Chapter 8 in the Beginner's Guide - From BASIC to SuperBASIC This
chapter describes the major differences between BASICS you may already be familiar
with and QL SuperBASIC Alternatively, if you are feeling confident, the Keywords and
Concepts sections should be useful

6 12/84

Introduction

If you have a problem using your QL or QL programs, then Ir YUU rlAVt

1 Refer to the appropriate sections in the QL User Guide A PROBLEM

2 Consider joining the QL Users Bureau for assistance on the QL programs Full
details of the services offered by QLU8 and instructions for joining are contained
in the Information section of the QL User Guide under the heading QLUB

3 Refer to books published about the QL

If your problems persist and you think they may be caused by a fault in either
your QL or in the QL program cartridges then refer to the Guarantee details
m the Information section of the QL User Guide

12'&4 7

INTRODUCTION
TO THE QL

r nv/VJllAIVIw This introduction outlines the four programs supplied with the QL and describes their
common features

The four programs are

QL Quill - a wordprocessor
QL Abacus - A spreadsheet
QL Archive - a database
QL Easel - a graphics program

Individual sections in this guide describe each of the four programs in detail Don't just
read them - try out the examples and experiment with each new idea

MIUnODnlVES Before you use any of the QL programs you should make at least one backup on a
blank cartridge and use this copy only Keep tne original program cartridge in a safe
place and use it only for making copies Any accidents will not then cause permanent
loss of your programs

Each QL program has a built in duplicating routine which is used as follows

• Place the master cartridge in Microdrive 2

• Place the blank cartridge, or one containing nothing that you wish to keep, in
Microdrive 1 Type

I run mdv2_c Lone

• Press the ENTER key and the screen will display the message

FORMAT mdv1_type space to continue

• Press the space bar only when you are sure that the cartridge contains
nothing that you wish to keep as everything on it will be erased The
computer will format the cartridge and will then copy the program in sections,
displaying the name of each one as it does so

• Wait until the Microdrive lights go out before removing the master cartridge
from Microdrive 1

LUnUIIMvJ You should never use any of the original program cartridges except when making a
copy onto a blank cartridge

All the programs are loaded similarly There are two ways of doing this

Without cartridges in the Microdnves, press reset Place your copy of the program
cartridge in Microdrive 1, and then press either Fl or F2 as prompted Microdrive 1
will automatically run and after a short pause a title display will appear on the screen
to confirm that the program is being loaded Once the program is loaded into the
computer the program will start up by itself

When you become more familiar with the programs and when using a printer or the
network you will sometimes find that commands need to be given to the computer before
the programs start You cannot switch off or reset the computer in this instance because
your commands would be lost Instead place the program cartridge in Microdrive 1 and
type

L run mdv1_boot

press ENTER and loading will proceed as before

In both cases the program will occasionally need to load extra information from the
Microdrive so keep the program cartridge in the Microdrive slot until the program has
finished

oOnbbN LAYUU I The control area at the top of the screen will guide you through each program by
displaying the options that you will need most often and prompting you further if
necessary In many cases the program will suggest a suitable answer when it asks for
information Press ENTER to accept this suggestion or simply type in your own answer
and the computer's suggestion will disappear

8 12/84

Introduction

Pressing F2 will remove this area and will make the central area larger Pressing F2
again will restore the control area

The central area of the screen shows the information that you are working on, for example
the text of a document, the contents of a card index a graph or financial forecast It
is shown in the style most suitable for the particular application

The bottom of the screen shows the input line where for example commands that you
type in are displayed

Below this is the status area which reports on the current state of work It displays things
like the name of the data or document on which you are working how much unused
memory remains, etc

Three of the five function keys have the same meaning in all the QL programs These are FUNCTION KEYS

Key Function

F1 request help '
F2 remove or restore the control area
F3 call up the commands for selection

The remaining two function keys are used for actions particular to each program

The first option displayed at the top left of the control area, indicates that help is available HELP
by pressing F1

When you ask for HELP there will be a short pause before the display changes to show
the Help information

Help will suggest other topics for which help is available Type the name of the topic
and press ENTER You do not need to type in the whole name, just enough characters
for it to be distinguished from the other topics. You can repeat this as many times
as necessary

Pressing ENTER without selecting a topic will take you out to the previous level ESC
will take you right out of HELP and back into the program

Help is always available, provided that the program cartridge is in Microdrive 1 Press
F1 and the most appropriate Help information will be displayed

You can use the line editor to change or correct a line of text that you have typed in THE LINE EUI lUn
All the QL programs use the same line editor, but each program uses it in a way most
suitable for that application In QL Qill you use the line editor, for example, for editing
the text in commands and QL Archive uses the editor extensively for editing database
programs

The line editor uses the four cursor keys, together with the CTRL and SHIFT keys

Keys Action

«- Move the cursor one character to the left

— Move the cursor one character to the right

SHIFT & <- Move the cursor one word to the left

SHIFT & -* Move the cursor one word to the right

CTRL & <- Delete the character to the left of the cursor

CTRL & -» Delete the character under the cursor

CTRL & T Delete the line to the left of the cursor

CTRL & 1 Delete the line to the right of the cursor

SHIFT & CTRL & — Delete the word to the left of the cursor

SHIFT & CTRL & — Delete the word to the right of the cursor

T2/84 9

Introducton

The & symbol indicates that the first key should be held down while the second is pressed
When SHIFT and CTRL are used together then hold them both down before pressing
the cursor key

MICRODRIVE USE The program is loaded from the cartridge tn Microdrive You must always make sure
that before using Help or using a print command that this cartridge is in Microdrive 1
Otherwise you can remove the cartridge at any time

Use a cartridge in Microdrive 2 - and in additional Microdnves - for storing information
for example Quill documents Archive data files, etc

HLE NAMEb Information can be stored on a cartridge in a file The file must be given a file name
to distinguish it from others on the cartridge Use a file name of not more than eight
characters long, without spaces It is a good idea to use a name which describes the
contents of a file for instance sales is obviously a better name for a file of sales figures
than fred

File saving and loading will use a data cartridge which is assumed to be in Microdrive
2 unless a different drive number is given The simplest way of replying to a file name
request is just to type in the name by itself, for example

s a l e s

which automatically accesses Microdrive 2 If you wanted to access Microdrive 1 you
would type

m d v 1 _ s a l e s

There is a third component of a file name which you do not usually see because it
is automatically added by the program This is an extension three letters long which
identifies which program saved the file The extensions used are

QL Quill _doc
QL Abacus aba
QL Ease! _grf
QL Archive (data file) _dbf
QL Archive (program file) prg or pro
QL Archive (screen layout) sen

If you want to transfer information between programs, a special file is generated with
the extension exp {for export) All the programs will recognise this extension More
information on this process is contained in the Information section under the heading
QL Program—Import and Export

You can direct printer output to a file instead of to a printer so that you can print the
text later This file has the extension hs,

LloTINu FILEo In all the programs except Archive you can request a list of the file names on a cartridge
whenever a command needs a file name This is useful if you cannot remember the
exact name that you gave to the file when you first saved it

Every time the program is waiting for you to type in a file name, you have the following
options

Press ENTER to accept the name the program suggests
Type in the file name followed by ENTER
Press 9 followed by ENTER for a list of the files on Microdrive 2

If you type in a question mark (and ENTER) instead of the file name, the program
displays

mdv2_

suggesting that it should list the files on Microdrive 2 You can accept this suggestion
or you can edit the drive specifier to refer to a different Microdrive (mdv1_) and then
press ENTER to list the files When the list is complete the program asks you to type
in the file name

Archive does not use this method Instead there is a command (dir) which lists the files
It allows you to type in mdv1_, mdv2 and so on, to specify the drive for which the
list of files is needed

10 12/84

Introduction

In general, ESC cancels the current action and will restore you to a sensible point in toL/ArC
the program. You can also use ESC to cancel any numbers or text that you have typed
into the input line or abort a partially completed command.

Data can be loaded and saved on other devices besides a Microdrive The device is Ul rlhn DcVIC/Co
specified in the standard SuperBASIC way except that the device name is preceded
by an underscore () See the devices entry in the Concept Reference Guide

For example, to load and save via the network

Before loading a QL program, each computer on the network must be given a station
number. Switch the computer on but do not insert a program cartridges; press Ft or
F2 when prompted

To set the station number type the command NET followed by the station number of
your choice. For example, to set the QL to station 5 type the command

NET 5|ENTER|

Place the program cartridge in Microdrive 1 and load the program by typing

1 run mdvt_boot [ENTER]

Once the program is running, you can receive data sent along the network by typing
the load command in the normal way. If the data was being sent by station 12, you
would enter

LOAD _neti_12

This must be done before station 12 starts sedning

To send data, type in the save command. Assuming you were sending to station 23,
you would enter

S A V E _neto_23

Station 23 must be ready to receive before you press ENTER

© SINCLAIR RESEARCH LIMITED
by Roy Atherton (Bulmershe College Computer Centre)

QL
Beginner's Guide

CHAPTER 1
STARTING
COMPUTING

Your QL should be connected to a monitor screen or TV set and switched on Press I nt bUnttN
a few keys say abc and the screen should appear as shown below The small flashing
light is called the cursor

If your screen does not look like th s read the section entitled Introduction This should
enable you to solve any difficulties

The QL is a versatile and powerful computer so there are features of the keyboard which THE KEYBOARD
you do not need yet For the present we will explain just those terns which you need
for this and the next six chapters

This enables you to break out of situations you do not I ke For example BREAK

a line which you have decided to abandon
something wrong whch you do not understand
a running program which has ceased to be of interest
any other problem

Because BREAK is so powerful it has been made difficult to type accidentally

Hold down I CTRL I and then press I SPACE I

If nothing was added or removed from a program while it was halted with BREAK then
it can be restarted by typing

CONTINUE

This is not a key but a small push button on the right hand side of the QL it is placed RESET
here deliberately out of the way because ts effects are more dramatic than the break
keys If you cannot achieve what you need with the break keys then press the RESET
button This is almost the same as switch ng the computer off and on again You get
a clean re start

SHIFT

12/84 1

There are two SHIFT keys because they are used frequently and need to be available
to either hand

Hold down one SHIFT key and type some letter keys You will get upper case
(capita!) letters

Hold down one SHIFT key and type some other key not a letter You will get a
symbol in an upper position on the key

Without a SHIFT key you get lower case (small) letters or a symbol in a lower position
on a key

CAPITALS LOCK

This key works like a switch Just press it once and only the letter keys will be 'locked'
into a particular mode - upper case or lower case

Type some letter keys
Type the CAPS LOCK key once
Type some letter keys

You will see that the mode changes and remains until you type the CAPS LOCK key
again

SPACE BAR

The left cursor together with the CTRL key acts like a rubber You must hold down the
CTRL key while you press the cursor key Each time you then both together the previous
character is deleted

2 12/84

RUBBING OUT

ENTER

The system needs to know when you have typed a complete message or instruction
When you have typed something complete such as RUN you type the ENTER key
to enter it into the system for action

Because this key is needed so often we have used a special symbol for it

•*"

We shall use this for convenience, better presentation, and to save space Test the *»
(ENTER) key by typing

PRINT "Correct"-* '

If you made no mistakes the system will respond with

Co r rec t

multiply

underscore

quotes

comma

semi colon

colon

backslash

left bracket

OTHER KEYBOARD
add SYMBOLS OF

IMMEDIATE USE
becomes equal to (used in LET)

apostrophe

exclamation

ampersand

decimal point or full stop

dollar

right bracket

SuperBASIC recognises commands (keywords) whether they are in upper or lower case UPPEn AND LUWbn
For example the SuperBASIC command to clear the screen is CLS and can be typed pAOC
in as L'AOI:

CLS*"

c L s*»
clS«««

These are all correct and have the same effect Some keywords are displayed partly
in upper case to show allowed abbreviations Where a keyword cannot be abbreviated
it is displayed completely in upper case

The usual use of quotes is to define a word or sentence - a string of characters. Try Uob Ur UUUI CO

PRINT "This works"*"

The computer will respond with

This w o r k s

12/84 3

Starting Computing

The quotes are not printed but they indicate that some text is to be printed and they
define exactly what it it is - everything between the opening and closing quote marks
If you wish to use the quote symbol itself in a string of characters then the apostrophe
symbol can be used instead For example

PRINT 'The quote symbol is " '

will work and will print

The quote symbol is "

COMMON TYPING The zero key is with the other numeric digits at the top of the keyboard and is slightly

ERRORS thinner

The letter 0' key is amongst the other letters Be careful to use the right symbol

Similarly avoid confusion between one, amongst the digits and the letter T amongst
the letters

KEEP SHIFT DOWN When using a SHIFT key hold it down while you type the other key so that the SHIFT
key makes contact before the other key and also remains in contact until after the other
key has lifted

The same rule applies to the control CTRL and alternate ALT keys which are used in
conjunction with others but you do not need those at present

Type the two simple instructions

CIS*'
PRINT 'Hello'*"

Strictly speaking these constitute a computer program however, it is the stored program
that is important in computing The above instructions are executed instantly as you type
*« (ENTER)

Now type the program with line numbers

10 CLS«'<
20 PRINT 'HELLO1* '

This time nothing happens externally except that the program appears in the upper part
of the screen This means that it is accepted as correct grammar or syntax It conforms
to the rules of SuperBASIC but it has not yet been executed merely stored To make
it work, type

RUN—

The distinction between direct commands for immediate action and a stored sequence
of instructions is discussed in the next chapter For the present you can experiment with
the above ideas and two more

LIST*"

causes an internally stored program to be displayed (listed) on the screen or elsewhere

NEW—

causes an internally stored program to be deleted so that you can type in a NEW one

4 12/84

SELF TEST ON
You can score a maximum of 16 points from the following test Check your score with PHAPTER 1
the answers on page 105 V/nHr I tn I

1 In what circumstances might you use the BREAK sequence9

2 Where is the RESET button?

3 What is the effect of the RESET button?

4 Name two differences between a SHIFT key and the CAPS LOCK key

5 How can you delete a wrong character which you have just typed?

6 What is the purpose of the ENTER key7

7 What symbol do we use for the ENTER key7

What is the effect of the commands in questions 8 to 11

8 CIS*.

9 RUN*.»

10 LIST*

11 NEW*"'

12 Do keywords have the proper effect if you type them in lower case9

13 What is the significance of the parts of keywords which the QL displays in upper
case9

CHAPTER 2
INSTRUCTING

THE
W VlVIl U I Cn Computers need to store data such as numbers The storage can be imagined as pigeon

holes

Though you cannot see them, you do need to give names to particular pigeon holes
Suppose you want to do the following simple calculation

A dog breeder has 9 dogs to feed for 28 days, each at the rate of one tin of 'Beefo'
per day Make the computer print (display on the screen) the required number of tins

One way of solving this problem would require three pigeon holes for

number of dogs
number of days
total number of fins

SuperBASiC allows you to choose sensible names for pigeon holes and you may choose
as shown

You can make the computer set up a pigeon hole name it, and store a number in it
with a single instruction or statement such as

LET dogs = 9*»

This will set up an internal pigeon hole named dogs, and place in it the number 9 thus

The word LET has a special meaning to SuperBASiC It is called a keyword SuperBASiC
has many other keywords which you will see later You must be careful about the space
after LET and other keywords Because SuperBASiC allows you to choose pigeon hoie
names with great freedom LETdogs would be a valid pigeon hole name

The LET keyword is optional in SuperBASiC and because of this statements like

LETdogs = 9*»

are valid This would refer to a pigeon hole called LETdogs

Just as, in English, names, numbers and keywords should be separated from each other
by spaces if Jhey are not separated by special characters

Even if it were not necessary, a program line without proper spacing is bad style Machines
with small memory size may force programmers into it, but that is not a problem with
theQL

You can check that a pigeon hole exists internally by typing

PRINT dogs^i

The screen should display what is in the pigeon hole

9

Again, be careful to put a space after PRINT

12/84

To solve the problem we can write a program which is a sequence of instructions or
statements You can now understand the first two

LET dogs = 9*»
LET days = 28*

These cause two pigeon holes to be set up named and given numbers or values

The next instruction must perform a multiplication, for which the computer's symbol is
* and place the result in a new pigeon hole called fins thus

LET t ins = dogs * days-*'

1 The computer gets the values 9 and 28, from the two pigeon holes named dogs
and days

2 The number 9 is multiplied by 28

3 A new pigeon hole is set up and named tins

4 The result of the multiplication becomes the value in the pigeon hole named tins

All this may seem elaborate but you need to understand the ideas, which are very
important

The only remaining task is to make the computer print the result which can be done
by typing

PRINT tins *i

which will cause the output

252

to be displayed on the screen

In summary the program

LET dogs = 9*"
LET days = 28*»
LET tins = dogs * days*"
PRINT tins*.

causes the internal effects best imagined as three named pigeon holes containing
numbers

Instructing the Computer

and the output on the screen

252

Of course, you could achieve this result more easily with a calculator or a pencil and
paper You could do it quickly with the QL by typing

PRINT 9 * 28-*»

whtch would give the answer on the screen However, the ideas we have discussed are
the essential starting points of programming in SuperBASIC They are so essential that
they occur in many computer languages and have been given special names

1 Names such as dogs, days and tins are called identifiers

2 A single instruction such as

LET dogs = 9*»

is called a statement

3 The arrangement of name and associated pigeon hole is called a variable The
execution of the above statement stores the value 9 in the pigeon hole 'identified'
by the identifier dogs

12/84 7

A statement such as

LET dogs = 9*»

is an instruction for a highly dynamic internal process but the printed text is static and
it uses the = sign borrowed from mathematics It is better to think or say {but not type)-

LET dogs become 9

and to think of the process having a right to left direction (do not type this)

dogs <j= 9

The use of = in a LET statement is not the same as the use of = in mathematics.
For example, if another dog turns up you may wish to write

LET dogs = dogs + 1*»

Mathematically, this is not very sensible but in terms of computer operations it is simple.
If the value of dogs before the operation was 9 then the value after the operation would
be 10. Test this by typing

LET dogs = 9*u»
PRINT dogs*™
LET dogs = dogs + 1*»
PRINT dogs*»

The output should be.

9
10

proving that the final value in the pigeon hole is as shown:

A good way to understand what is happening to the pigeon holes, or variables, is to
do what is called a 'dry run! You simply examine each instruction in turn and write down
the values which result from each instruction to show how the pigeon holes are set up
and given values, and how they retain their values as the program is executed

LET dogs = 9*"
LET days = 28*"
LET tins = dogs * days*
PRINT tins*"

The output should be'

252

You may notice that so far a variable name has always been used first on the left hand
side of a LET statement. Once the pigeon hole is set up and has a value, the
corresponding variable name can be used on the right hand side of a LET statement

Now suppose you wish to encourage a small child to save money. You might give two
bars of chocolate for every pound saved. Suppose you try to compute this as follows:

LET bars = pounds * 2*«
PRINT bars*«

You cannot do a dry run as the program stands because you do not know how many
pounds have been saved.

We have made a deliberate error here in using pounds on the right of a LET statement
without it having been set up and given some value. Your QL will search internally for
the variable pounds. It will not find it so it concludes that there is an error in the program
and gives an error message. If we had tried to print out the value of pounds, the QL
would have printed a * to indicate that pounds was undefined. We say that the variable
pounds has not been initialised (given an initial value). The program works properly
if you do this first.

12/84

LET pounds = 7*»
LET bars = pounds * 2*'

The program works properly and gives the output

14

Typing statements without line numbers may produce the desired result but there are A STORED
two reasons why this method as used so far, is not satisfactory except as a first PROGRAM
introduction rnvAJnnm

1 The program can only execute as fast as you can type This is not very impressive
for a machine that can do millions of operations per second

2 The individual instructions are not stored after execution so you cannot run the
program again or correct an error without re-typing the whole thing

Charles Babbage a nineteenth century computer ptoneer, knew that a successful
computer needed to store instructions as well as data in internal pigeon holes These
instructions would then be executed rapidly in sequence without further human
intervention

The program instructions will be stored but not executed if you use line numbers Try this

10 LET price = 15«"
20 LET pens = 7*
30 LET cost = price * pens*"
40 PRINT cost««

Nothing happens externally yet but the whole program is stored internally You make
it work by typing

RUN*,

and the output

105

should appear

The advantage of this arrangement is that you can edit or add to the program with minimal
extra typing

Later you will see the full editing features of SuperBASIC but even at this early stage EDITING A
you can do three things easily PRDPRAM

replace a line
insert a new line
delete a line

Suppose you wish to alter the previous program because the price has changed to Replace a line
20p for a pen Simply re-type line 10

10 LET p r i c e = 20*»

This line will replace the previous line 10 Assuming the other lines are stil! stored, test
the program by typing

RUN*'

and the new answer 140 should appear

Suppose you wish to insert a line just before the last one to print the words Total Cost' Insert a new line
This situation often arises so we usually choose line numbers 10, 20 30 to allow space
to insert extra lines

To put in the extra line type

35 PRINT "Total Cost"*"'

12/84 9

Instructing the Computer

Instructing the Computer

and it will be inserted just before line 40 The system allows line numbers in the range
1 to 32768 to allow plenty of flexibility in choosing them It is difficult to be quite sure
in advance what changes may be needed

Now type

RUN*"

and the new output should be

T o t a L cost
140

Delete line You can delete line 35 by typing

35*.

It is as though an empty line has replaced the previous one

OUTPUT-PRINT Note how useful the PRINT statement is You can PRINT text by using quotes or
apostrophes

PRINT "Choco la te bars"*'

You can print the values of variables (contents of pigeon holes) by typing statements
such as

PRINT bars*«

without using quotes

You will see later how very versatile the PRINT statement can be in SuperBASIC It will
enable you to place text or other output on the screen exactly where you want it But
for the present these two facilities are useful enough

printing of text
printing values of variables (contents of pigeon holes)

INPUT- INPUT, READ A carpet making machine needs wool as input It then mates carpets according to the

AND DATA current des'9n

If the wool is changed you may get a different carpet

The same sort of relations exist in a computer

However, if the data is input into pigeon holes by means of LET there are two
disadvantages when you get beyond very trivial programs

writing LET statements is laborious
changing such input is also laborious

You can arrange for data to be given to a program as it runs The INPUT statement
will cause the program to pause and wait for you to type in something at the keyboard
First type

NEW*»

so that the previous stored program (if it is still there) will be erased ready for this new
one Now type

10 LET pr ice = 15*.
20 PRINT "How many pens?" *»
30 INPUT pens *•
40 LET cost = price * pens *»
50 PRINT cost *«
RUN *»

12/84

The program pauses at line 30 and you should type the number of pens you want say

4«.

Do not forget the ENTER key The output will be

60

The INPUT statement needs a variable name so that the system knows where to put
the data which comes in from your typing at the keyboard The effect of line 30 with
your typing is the same as a LET statements effect It is more convenient for some
purposes when interaction between computer and user is desirable However, the LET
statement and the INPUT statement are useful only for modest amounts of data We
need something else to handle larger amounts of data without pauses in the execution
of the program

SuperBASIC, like most BASICs, provides another method of input known as READing
from DATA statements We can retype the above program in a new form to give the
same effects without any pauses Try this

NEW—
10 READ p r i c e , pens*«
20 LET cost = p r i c e * pens*™
30 PRINT cost*"
40 DATA 15,4*»
RUN*

The output should be

60

as before

Each time the program is run, SuperBASIC needs to be told where to start reading DATA
from This can either be done by typing RESTORE followed by the DATA line number
or by typing CLEAR Both these commands can also be inserted at the start of the
programs

When line 10 is executed the system searches the program for a DATA statement It then
uses the values in the DATA statement for the variables in the READ statement in exactly
the same order We usually place DATA statements at the end of a program They are
used by the program but they are not executed in the sense that every other line is
executed m turn DATA statements can go anywhere in a program but they are best
at the end out of the way Think of them as necessary to, but not really part of, the
active program The rules about READ and DATA are as foliows

1 All DATA statements are considered to be a single long sequence of items So
far these items have been numbers but they could be words or letters

2 Every time a READ statement is executed the necessary items are copied from
the DATA statement into the variables named in the READ statement

3 The system keeps track of which items have been READ by means of an internal
record If a program attempts to READ more items than exist in all the DATA
statements an error will be signalled

You have used names for pigeon holes such as dogs bars You may choose words lUbN I Irlbnb
like these according to certain rules /NAMF^

A name cannot include spaces

A name must start with a letter

A name must be made up from letters, digits, S, %, (underscore)

The symbols S, % have special purposes, to be explained later, but you can use
the underscore to make names such as

dog food
m onth wag e_total

more readable

12/84 11

SuperBASIC does not distinguish between upper and lower case letters so names
like TINS and tins are the same

The maximum number of characters in a name is 255

Names which are constructed according to these rules are called identifiers Identifiers
are used for other purposes in SuperBASIC and you need to understand them The
rules allow great freedom in choice of names so you can make your programs easier
to understand Names like total, count, pens are more helpful than names like Z, R Q

btLr I tb I ON You can score a maximum of 21 points from this test Check your score with the answers

CHAPTER 2 onPa9e106

1 How should you imagine an internal number store7

2 State two ways of storing a value in an internal 'pigeon hole' to be created (two
points)

3 How can you find out the value of an internal pigeon hole"?

4 What is the usual technical name for a pigeon hole"7

5 When does a pigeon hole get its first value9

6 A variable is so called because its value can vary as a program is executed What
is the usual way of causing such a change9

7 The = sign in a LET statement does not mean 'equals' as in mathematics What
does it mean7

8 What happens when you ENTER an un numbered statement9

9 What happens when you ENTER a numbered statement9

10 What is the purpose of quotes in a PRINT statement?

11 What happens when you do not use quotes in a PRINT statement7

12 What does an INPUT statement do which a LET statement does not?

13 What type of program statement is never executed9

14 What is the purpose of a DATA statement?

15 What is another word for the name of a pigeon hole (or variable)9

16 Write down three valid identifiers which use letters, letters and digits, letters and
underscore (three points)

17 Why is the space bar especially important in SuperBASIC9

18 Why are freely chosen identifiers important in programming9

1 Carry out a dry run to show the values of all variables as each line of the following rKUDUtlVIo UN
program is executed CHAPTER 2

10 LET hours = 40*«"
20 LET rat e = 3*«
30 LET wage = hours * rate*»
40 PRINT hours, rate, wage*"

2 Write and test a program, similar to that of problem 1, which computes the area
of a carpet which is 3 metres in width and 4 metres in length Use the variable
names width length, area

3 Re-write the program of problem 1 so that it uses two INPUT statements instead
of LET statements

4 Re-write the program of problem 1 so that the input data {40 and 3} appears in
a DATA statement instead of a LET statement

5 Re-write the program of problem 2 using a different method of data input Use
READ and DATA if you originally used LET and vice-versa

6 Bill and Ben agree to have a gamble Each will take out of his wallet all the pound
notes and give them to the other Write a program to simulate this entirely with
LET and PRINT statements Use a third person Sue, to hold Bill's money while
he accepts Ben's

7 Re-write the program of problem 6 so that a DATA statement holds the two numbers
to be exchanged

12/84 13

CHAPTER 3
DRAWING ON
I nt OwllttlN In order to use either a television set or monitor with the QL two different screen modes

are available MODE 8 permits eight colour displays with a graphics resolution of 256
by 256 pixels and large characters for display on a television set MODE 4 allows four
colours with a resolution of 512 by 256 pixels and a maximum of eighty character lines
for which a monitor must be used for successful display However, it would be unfortunate
if a program was written to draw circles or squares in one mode and produced ellipses
or rectangles in another mode (as some systems do) We therefore provide a system
of scale graphics which avoids these problems You simply choose a vertical scale and
work to it The other type of graphics (pixel oriented) is also available and is described
fully in a later chapter

Suppose, for example, that we choose a vertical scale of 100 and we wish to draw a
line from position (50,60) to position (70,80)

A COLOURED LINE We need to specify three things

PAPER (background colour)
INK {drawing colour)
LINE (start and end points)

The following program will draw a line as shown in the above figure in red (colour code
2) on a white (colour code 7) background

NEW ««i
10 PAPER 7 : C L S «•
20 INK 2 *
30 LINE 50,60 TO 70.80 *•
RUN «i

In line 10 the paper colour is selected first but it only comes into effect with a further
command such as CLS, meaning clear the screen to the current paper colour

MODES AND So far it does not matter which screen mode you are using but the range of colours

rni ni IR^ IS affected bv tne cn°ice °* mode
MODE 8 allows eight basic colours
MODE 4 atiows four basic colours

Colours have codes as described below

Drawing on the Screen

Code Effect

8 colour 4 colour

0 black black
1 blue black
2 red red
3 magenta red
4 green green
5 cyan green
6 yellow white
7 white white

For example, INK 3 would give magenta in MODE 8 and red in MODE 4

We will explain in a later chapter how the basic colours can be mixed in various ways
to produce a startling range of colours shades and textures

You can get some interesting effects with random numbers which can be generated RANDOM hrruUlb
with the RND function For example

PRINT R N D < 1 TO 6) *<

will print a whole number in the range 1 to 6, like throwing an ordinary six-sided dtce
The following program will illustrate this

NEW *
10 LET die = R N D C 1 TO 6) *•
20 PRINT die «•
RUN •»«

If you run the program several times you will get different numbers

You can get random whole numbers in any range you like For example

R N D C O TO 100)

will produce a number which can be used in scale graphics You can re-write the line
program so that it produces a random colour Where the range of random numbers
starts from zero you can omit the first number and write

RNDdOO)

NEW ««
10 PAPER 7 : CIS «
20 INK RNO(5) *»
30 L I N E 50,60 TO RNDdOO), RNDdOO) *«>
RUN *i

This produces a line starting somewhere near the centre of the screen and finishing
at some random point The range of possible colours depends on which mode is
selected You will find that a range of numbers 'something TO something' occurs often
in SuperBASIC

The part of the screen in which you have drawn lines and create other output is called DUnUbHo
a window Later you will see how you can change the size and position of a window
or create other windows For the present we shall be content to draw a border round
the current window The smallest area of light or colour you can plot on the screen is
called a pixel In mode 8, called low resolution mode there are 256 possible pixel
positions across the screen and 256 down In mode 4 called high resolution mode,
there are 512 pixels across the screen and 256 down Thus the size of a pixel depends
on the mode

You can make a border round the inside edge of a window by typing for example

BORDER 4,2 «•«

This will create a border 4 pixels wide in colour red (code 2) The effective size of the
window is reduced by the border This means that any subsequent printing or graphics
will automatically fit within the new window size. The only exception to this is a further
border which will overwrite the existing one.

12/84 15

The STAR program

You can stop it by pressing the break keys-

Hold down I CTRL I and then press I SPACE

A SIMPLu LUUr Computers can do things very quickly but it would not be possible to exploit this great
power if every action had to be written as an instruction A building foreman has a similar
problem If he wants a workman to lay a hundred paving stones that is roughly what
he says. He does not give a hundred separate instructions

A traditional way of achieving looping or repetition in BASIC is to use a GO TO (or GOTO,
they are the same) statement as follows

NEW *«
10 PAPER 6 : CLS *•
20 BORDER 1 ,2 +<
30 INK R N D C 5) «i
40 LINE 50,60 TO RNDdOO), RNDdOO) «»
50 GOTO 0 *n
RUN *..

You may prefer not to type in this program because SuperBASIC allows a better way
of doing repetition Note certain things about each line

1(^ Fixed part - not repeated

^ i Changeable part - repeated

50 [Controls program

You can re-write the above program by omitting the GOTO statement and, instead, putting
REPeat and END REPeat around the part to be repeated.

NEW *»<
10 PAPER 6 : CLS *n
20 BORDER 1,2 *•
30 R E P E A T s tar «•
40 INK R N D C 5) •»«
50 L I N E 50,60 TO RNDdOO), R N D d O O) •*»
60 E N D REPEAT star *»
RUN ««

We have give the repeat structure a name, star The structure consists of the two lines

REPeat star
END REPeat star

and what lies between them is called the content of the structure The use of upper
case letters indicates that REP is a valid abbreviation of REPeat

This program should produce coloured lines indefinitely to make a star as shown in the
figure below.

Drawing on the Screen

Drawing on the Screen

SuperBASiC provides a consistent and versatile method of stopping repetitive processes
Imagine running round and round inside the program activating statements How can
you escape? The answer is to use an EXIT statement But there must be some reason
for escaping You might extend the choice of line colours by typing as an amendment
to the program (do not type NEW)

40 INK R N D C O TO 6) *»

so that if RND produces 6 the ink ts the same colour as the paper and you will not
see it This could be the reason for terminating the repetition We can re-arrange the
program as follows

NEW «.«
10 PAPER 6 : CLS *.
20 BORDER 1 ,2 «»
30 REPeat star <•»
40 LET colour = RND(6) «•
50 IF cotour = 6 THEN EXIT star *<
60 INK colour «.
70 LINE 50,60 TO RNDCIOO), RNDC100) «*
80 END REPeat star *»

The important thing to note here is that the program continues until colour becomes
6 Control then escapes from the loop to the point just after line 80 Since there are no
program lines after 80 the program stops

Another important concept has been introduced It is the idea of a decision

IF colour = 6 THEN E X I T star

This is another very useful structure because it is a choice of doing something or not,
we call it a simple binary decision Its general form is

IF condition THEN statement(s)

You will see later how the two concepts of repetition {or looping) and decision-making
{or selection) are the main structures for program control You can stop the program
by pressing the break keys hold down CTRL and then press the space bar

You can score a maximum of 13 points from the following test Check your score with SELF TEST ON
the answers on page 107 CHAPTER 3
1 What is a pixel7

2 How many pixels fit across the screen in the low resolution mode7

3 How many pixels fit from bottom to top in low resolution mode9

4 What are the two numbers which determine the address' or position of a graphics
point on the screen7

5 How many colours are available in the low resolution mode7

6 Name the keywords which do the following
i draw a line
11 select a colour for drawing
in select a background cotour
iv draw a border (5 points)

7 What are the statements which open and close the REPeat loop7

8 When does an executing REPeat loop terminate7

9 Why do loops in SuperBASiC have names7

12/84 17

PROBLEMS ON 1 Write a program to draw straight lines all over the screen The lines should be
PUADTPD 3 of randorn leriQ!n and direction Each should start where the previous one finished
UMAr I tn 0 and each should have a randomly chosen colour

2 Write a program to draw lines randomly with the restriction that each line has a
random start on the left hand edge of the screen

3 Write a program to draw lines randomly with the restriction that the lines start at
the same point on the bottom edge of the screen

4 Write a program to produce lines of random length starting points and colour
All tines must be horizontal

5 As problem 4 but make the lines vertical

6 Write a program to produce a square spiral' in such a way that each line makes
a random colour

HINT First find the co ordmates of some of the corners then put them in groups
of four You should discover a pattern

CHAPTER 4
CHARACTERS
AND

Teachers sometimes wish to assess the reading ability needed for particular books or O I flllidO
classroom materials Various tests are used and some of these compute the average
lengths of words and sentences We wtlf introduce ideas about handling words or
character strings by examining simple approaches to finding average word lengths

We are talking about sequences of letters, digits or other symbols which may or may
not be words That is why the term 'character string' has been invented It is usually
abbreviated to string Strings are handled in ways similar to number handling but, of
course, we do not do the same operations on them We do not multiply or subtract strings
We join them, separate them search them and generally manipulate them as we need

NAMES AND
PIGEON HOLES FOR

You can create pigeon holes for strings You can put character strings into pigeon holes oTHINvJO
and use the information just as you do with numbers If you intend to store (not all at
once) words such as

FIRST SECOND THIRD
and

JANUARY FEBRUARY MARCH

you may choose to name two pigeon holes

Notice the dollar sign Pigeon holes for strings are internally different from those for
numbers and SuperBASIC needs to know which is which All names of string pigeon
holes must end with $. Otherwise the rules for choosing names are the same as the
rules for the names of numeric pigeon holes

You may pronounce

weekdays as weekdaydollar
month$ as monthdollar

The LET statement works in the same way as for numbers If you type

LET weekdays = "FIRST" ««

an internal pigeon hole named weekdays, will be set up with the value FIRST in it thus

The quote marks are not stored They are used in the LET statement to make it absolutely
clear what is to be stored in the pigeon hole You can check by typing

PRINT w e e k d a y s •*»

and the screen should display what is in the pigeon hole

FIRST

You can use a pair of apostrophes instead of a pair of quote marks

12/84 19

Characters and Strings

LENGTHS OF
oTHINub SuperBASIC makes it easy to find the length or number of characters of any string. You

simply write, for example:

PRINT LEN(weekday$) *>»

If the pigeon hole, weekdays, contains FIRST the number 5 will be displayed. You can
see the effect in a simple program.

NEW «.'
10 LET weekdays = "FIRST" «•
20 PRINT UEN(weekdays) «"
RUN *«

The screen should display

5

LEN is a keyword of SuperBASIC.

An alternative method of achieving the same result uses both a string pigeon hole and
a numeric pigeon hole.

NEW-*.'
10 LET weekdays = "FIRST"-*"
20 LET Length = LEN (weekday*)*"
30 PRINT length*".
RUN*

The screen should display

5

as before, and two internal pigeon holes contain the values shown;

Let us return to the problem of average lengths of words.

Write a program to find the average length of the three words:

FIRST, OF, FEBRUARY

PROGRAM DESluN When problems get beyond what you regard as very trivial, it is a good idea to construct
a program design before writing the program itself.

1. Store the three words in pigeon holes.
2. Compute the lengths and store them.
3. Compute the average.
4. Print the result.

NEW*.
10 LET weekdays - "FIRST"*"
20 LET wordS = "OF"*"
30 LET monthS = "FEBRUARY"-*!
40 LET lengthl = LEN (weekdays)-*"
50 LET Iength2 = LEN (word$)*»>
60 LET Length3 = LEN (monthS)-*"
70 LET sum = (.engthl + LengthZ + Iength3*»
80 LET average = sum/3-*"
90 PRINT average-»iii
RUN*»

The symbol / means divided by. The output or result of running the program is simply:

5

,,„ 12/84

and there are eight internal pigeon holes involved

If you think that is a iot of fuss for a fairly simple problem you can certainly shorten it
The shortest version would be a single line but it would be less easy to read A reasonable
compromise uses the symbol & which stands for the operation

Join two strings

Now type

NEW
10 LET weekday! = "FIRST"*.
20 LET wordS = "OF"«n
30 LET month$ = "FEBRUARY"*.
40 LET phraseS = weekdays 8 wordS 8 months*
50 LET L e n g t h = LENCphraseS)*
60 PRINT Length/3*i
RUN**

The output is 5 as before but there are some different internal effects

There is one more reasonable simplification which is to use READ and DATA instead
of the first three LET statements Type

NEW*.'
10 READ weekdays, wordS, month$*«
20 LET phraseS = weekdays & wordS & months*.
30 LET Length = LEN(phrase$)*i
40 PRINT Length/3*n
50 DATA "FIRST","OF","FEBRUARY"*
RUN*i<

The internal effects of this version are exactly the same as those of the previous one
READ causes the setting up of internal pigeon holes with values in them in a similar
way to LET

12/84 21

IDENTIFIERS AND Names of pigeon holes such as

STRING VARIABLES ««****
word$
months
phraseS

are called string identifiers The dollar signs imply that the pigeon holes are for character
strings The dollar must always be at the end

Pigeon holes of this kind are called string variables because they contain only character
strings which may vary as a program runs

The contents of such pigeon holes are called values Thus words like FIRST and OF'
may be values of string variables named weekdays and +word$

HAI\IUUM You can use character codes (see Concept Reference Guide) to generate random letters
PHARAPTFR^ ^e uPPer case letters A to Z have the codes 65 to 90 The function CHR$ converts
^nr\nrtUI L_no tnese codes |nto letters The f0uowing pr0gram will print a tetter B

NEW*
10 LET Le t te r -code = 66*»
20 PRINT CHRSCtet tercode)* -
RUN*

The following program will generate trios of letters A B or C until the word CAB is spelled
accidentally

NEW-
10 REPeat taxi
20 LET firsts = CHR$(RNO(65 TO 67))
30 LET second$ = CHR$(RND(65 TO 67))
40 LET t h i r d S = C H R S C R N D C 6 5 TO 67))
50 LET word$ = f i r s t s & seconds & thirds
60 PRINT ' wordS '
70 IF wordS = "CAB" THEN EXIT taxi
80 END REPeat t a x i

Random characters like random numbers or random points are useful for learning to
program You can easily get interesting effects for program examples and exercises

Note the effect the ' ' have on the spacing of the output

SELF TEST ON You can score a maximum of 10 points from the following test Check your score with

PHAPTFR 4 the answers on page 107

1 What is a character string'?

2 What is the usual abbreviation of the term character string"?

3 What distinguishes the name of a string variable''

4 How do some people pronounce a word such as VvordS9

5 What keyword is used to find the number of characters in a string9

6 What symbol is used to join two strings?

7 Spaces can be part of a string How are the limits of a string defined9

8 When a statement such as

LET meat$ = "steak"

is executed are the quotes stored7

9 What function will turn a suitable code number into a letter9

10 How can you generate random upper case letters9

22 12/84

1 Store the words 'Good' and 'day' in two separate variables Use a LET statement PROBLEMS ON
to join the values of the two variables in a third variable Print the result. PHAPTFR d

2 Store the following words in four separate pigeon holes

Iight Let be there

Join the words to make a sentence adding spaces and a full stop Store the whole
sentence in a variable, sentS, and print the sentence and the total number of
characters it contains

3 Write a program which uses the keywords'

C H R S R N D C 6 5 TO 90))

to generate one hundred random three letter words See if you have accidentally
generated any real English words Test the effects of

a) ; at the end of a PRINT statement
b) ! on either side of item printed

CHAPTER 5
KNOWN

GOOD
f^f^.f^f. You have already begun to work effectively with short programs You may have found

PRACTICE the fotlowin9 practices are helpful

1 Use of lower case for identifiers names of variables (pigeon holes) or repeat
structures, etc

2 Indenting of statements to show the content of a repeat structure

3 Well chosen identifiers reflecting what a variable or repeat structure is used for

4 Editing a program by

replacing a line
inserting a line
deleting a line

PROGRAMS AS You have reached the stage where it is helpful to be able to study programs to learn
FYAIMPI PQ ^rom them ancl to try to understand wnat ^ev do Tne mechanics of actually running
tAnlVlrLCO them should now be well understood and in the following chapters we will dispense

with the constant repetition of

NEW before each program
*• at the end of each line
RUN to start each program

You will understand that you should use all these features when you wish to enter and
run a program But their omission in the text will enable you to see the other details
more clearly as you try to imagine what the program will do when it runs

If we dispense with the above details we may use and understand programs more easily
without the technical clutter For example, the following program generates random upper
case letters until a Z appears It does not show the words NEW or RUN or the ENTER
symbol but you still need to use these

10 REPeat Letters
20 LET letter-code = RNDC65 TO 90)
30 cap$ = CHR$(tetter-code)
40 PRINT cap$
50 IF cap$ = "Z" THEN EXIT le t ters
60 END REPeat L e t t e r s

In this and subsequent chapters programs will be shown without ENTER symbols Direct
commands will also be shown without ENTER symbols But you must use these keys
as usual You must also remember to use NEW and RUN as necessary

AUTUMAI !v LINE It is tedious to enter line numbers manually Instead you can type

NUMBERING
before you start programming and the QL will reply with a line number

100

Continue typing lines until you have finished your program when the screen will show

100 PRINT "Fi rst"
110 PRINT "Second"
120 PRINT "End"

To finish the automatic production of line numbers use the BREAK sequence

Hold down the CTRL and press the SPACE bar, This will produce the message
130 not complete

and line 130 will not be included in your program

12/84

Known Good Practice

If you make a mistake which does not cause a break from automatic numbering you
can continue and EDIT the line later If you want to start at some particular I ne number
say 600 and use an increment other than 10 you can type tor an increment of 5

AUTO 600,5

Lines will then be numbered 600 605, 610 etc

To cancel AUTO press CTRL and the space bar at the same time

To edit a line simply type EDIT followed by the line number for example hUl I INb A LINh

EDIT 110

The line will then be d splayed with the cursor at the end thus

110 PRINT "Second"

You can move the cursor using

<J= one place left
•=*> one place right

To delete a character to the left use

CTRL with <}=

To delete the character in the cursor position type

CTRL with =s>

and the character to the right of the cursor will move up to close the gap

Before using a new Microdrive cartridge it must be formatted Follow the instructions UoINu MILinUUnlVb
in the Introduction The choice of name for the cartridge follows the same rules as PARTRIDPF-^
SuperBASIC identifers, etc but limited to only 10 characters It is a good idea to write ^"n' niL-'VJt-^
the name of the cartridge on the cartridge itself using one of the supplied sticky labels

You should always keep at least one back up copy of any program or data Follow the
instructions in the Information section of the User Guide

WARNING

If you F0RMAT a cartridge which holds programs and&r data,
, * , ALL tha programs andtor data wrff be fost.

The following program sets borders 8 pixels wide in red (code 2) in three windows SAVING PROGRAMS
designated #0 #1 #2

100 R E M a r k Border
110 FOR k = 0 TO 2 : B O R D E R #k,8,2

You can save it on a microdrtve by inserting a cartridge and typ ng

S A V E mdv1_bord

The program will be saved in a Microdrive file called bord

If you want to know what programs or data files are on a particular cartridge place it CHECKING A
in Microdrive 1 and type CARTRIDGE

DIR mdv1_

The directory will be displayed on the screen If the cartridge is in Microdrive 2 then
type instead

DIR mdv2_

12'84 25

Known Good Practce

COPYING Once a program is stored as a file on a Microdrive cartridge it can be copied to other
PROGRAMS AND files This is one way of making a backup copy of a Microdrive cartridge You might

FILES copy ail the previous programs and similar commands for other programs, onto another
cartridge in Microdrive 2 by typing

COPY mdv1_bord TO mdv2_bord

DELETING A A file is anything, such as a program or data stored on a cartridge To delete a program
CARTRIDGE FILE called prog you type

DELETE mdv1_prog

LOADING A program can be loaded from a Microdrive cartridge by typing
PROGRAMS , n A n . , . .

LOAD mdv2_bord

If the program loads correctly it will prove that both copies are good You can test the
program by using

LIST to list it
RUN to run it

Instead of using LOAD followed by RUN you can combine the two operations in one
command

LRUN mdv2_bord

The program will load and execute immediately

MERGING Suppose that you have two programs saved on Microdrive 1 as progl and prog2

PROGRAMS 100 PRINT "F lrst"
110 PRINT "Second"

If you type

LOAD mdv1_prog1

followed by

MERGE mdv1_prog2

The two programs will be merged into one To verify this, type LIST and you should see

100 PRINT "First"
110 PRINT "Second"

If you MERGE a program make sure that all its line numbers are different from the
program already in mam memory Otherwise it will overwrite some of the lines of the
first program This facility becomes very valuable as you become proficient in handling
procedures It is then quite natural to build a program up by adding procedures or
functions to it

GENERAL Be careful and methodical with cartridges Always keep one back-up copy and if you
suspect any problem with a cartridge or microdnve keep a second back-up copy
Computer professionals very rarely lose data They know that even the best machines
or devices wtll be occasional faults and they allow for this

If you want to call a program by a particular name, say square, it may be a good idea
to use names like sq1 sq2 for preliminary versions When the program is in its final
form take at least two copies called square and the others may be deleted by re-formatting
or by some more selective method

26 12/84

You can score a maximum of 14 points from the following test Check your score with obLr I to I U
the answers on page 108 CHAPTER 5

1 Why are lower case letters preferred for program words which you choose?

2 What is the purpose of indenting?

3 What should normally guide your choice of identifiers for variables and loops'7

4 Name three ways of editing a program tn the computers main memory (three
points)

5 What should you remember to type at the end of every command or program
line when you enter ii?

6 What should you normally type before you enter a program at the keyboard?

7 What must be at the beginning of every line to be stored as part of a program?

8 What must you remember to type to make a program execute?

9 What keyword enables you to put into a program information which has no effect
on the execution? '

10 Which two keywords help you to store programs on and retrieve from cartridges?
(two potnts)

1 Re-write the following program using lower case letters to give a better presentation PROBLEMS 0
Add the words NEW and RUN Use line numbers and the ENTER symbol just pu ADTCR C
as you would to enter and run a program Use REMark to give the program a wnnr I Cn 0
name

LET TWOS = "TWO"
LET FOURS = "FOUR"
LET S IXS = TWOS & FOURS
PRINT L E N (s i x S)

Explain how two and four can produce 7

2 Use indenting, lower case letters, NEW, RUN line numbers and the ENTER
symbol to show how you would actually enter and run the following program

REPEAT LOOP
LETTER_CODE = RNDC65 TO 90)

LET LETTERS* = CHR$(LETTER_CODE)
PRINT LETTERS
IF LETTERS = '!' THEN EXIT LOOP
END REPEAT LOOP

3 Re-write the following program m better style using meaningful variable names
and good presentation Write the program as you would enter it

LET S = 0
REPeat TOTAL
LET N = RNDd TO 6)
PRINT i N i
LET S = S + N
IF n = 6 THEN EXIT TOTAL
END REPeat TOTAL
PRINT S

Decide what the program does and then enter and run it to check your decision

12/84

CHAPTER 6
ARRAYS AND

FOR LOOPS
WHAI lo AN AnnAY You know that numbers or character strings can become values of variables You can

picture this as numbers or words going into internal pigeon holes or houses Suppose
for example that four employees of a company are to be sent to a small village, perhaps
because oil has been discovered The village is one of the few places where the houses
only have names and there are four available for rent All the house names end with
a dollar symbol.

Westlea$ Lakestde$ RoselawnS Oaktree$

The four employees are called

They can be placed in the houses by one of two methods

Program 1 100 LET w e s t i e a s = "VAL"
110 LET lakeside* = "HAL"
120 LET rose lawnS = "MEL"
130 LET oak t reeS = "DEL"
140 PRINT ' w e s t l e a S ' Lakes ideS i r o s e l a w n S i oakt reeS

Program 2 100 READ west leaS, lakesideS, r o s e l a w n S , oak t reeS
110 PRINT i w e s t l e a S ' lakes ideS i rose lawnS ' o a k t r e e S
120 DATA "VAL". "HAL", "MEL", "DEL"

westlea$ lakesideS roselawnS oaktreeS
1 1 i • 1

VAL HAL MEL DEL

As the amount of data gets larger the advantages of READ and DATA over LET become
greater But when the data gets realty numerous the problem of finding names for houses
gets as difficult as finding vacant nouses in a small village.

The solution to this and many other problems of handling data lies in a new type of
pigeon hole or variable in which many may share a single name However, they must
be distinct so each variable also has a number like numbered houses in the same street.
Suppose that you need four vacant houses in High Street numbered 1 to 4. In
SuperBASIC we say there is an array of four houses. The name of the array is high st$
and the four houses are to be numbered 1 to 4

But you cannot just use these array variables as you can ordinary (simple) variables
You have to declare the dimensions (or size) of the array first The computer allocates
space internally and it needs to know how many string variables there are in the array
and also the maximum length of each string variable. You use a DIM statement thus.

DIM high_st$(4,3)

i maximum length of string

number of string variables

After the DIM statement has been executed the variables are available for use. It is as
though the houses have been built but are still empty The four 'houses' share a common
name, high^stS, but each has its own number and each can hold up to three characters

There are five programs below which all do the same thing they cause the four 'houses
to be 'occupied' and they PRINT to show that the occupation' has really worked The
final method uses only four lines but the other four lead up to it in a way which moves
all the time from known ideas to new ones or new uses of old ones The movement
is also towards greater economy

If you understand the first two or three methods perfectly well you may prefer to move
straight onto methods 4 and 5 But if you are in any doubt methods 1, 2 and 3 will
help to clarify things

100 DIM h igh_st$(4,3) Program 1
110 LET h i g h _ s t $ C 1) = " V A L "
120 LET h i g h _ s t $ < 2) = "HAL"
130 LET h i g h _ s t $ < 3 > = "MEL"
140 LET rngh_st$<4) = "DEL"
150 PRINT i h igh_st$<1) ' h igh_st$(2) i
160 PRINT i h igh_st$(3) i h igh_st$(4) i

100 DIM h igh_st$(4,3) Program 2
110 READ h i g h _ s t $ (1) , h i g h _ s t $ C 2) , h i g h _ s t $ C 3) , h i g h _ s t $ < 4)
120 PRINT i h igh_st$(1) i h i g h _ s t (2) <
130 PRINT ' h igh_st$(3) i Mgh_st<4> '
140 DATA "VAL" , "HAL" , "MEL", "DEL"

This shows how to economise on variable names but the constant repeating of high__st$
ts both tedious and the cause of the cluttered appearance of the programs We can,
again, use a known technique - the REPeat loop - to improve things further We set
up a counter number which increases by one as the REPeat loop proceeds

100 RESTORE 190 Program 3
110 DIM high_st$(4,3)
120 LET number = 0
130 REPeat houses
140 LET number = number + 1
150 R E A D high_st$(number)
160 IF num = 4 THEN EXIT houses
170 END REPeat houses
180 PRINT highest(1)! high_st(2)! h i g h _ s t < 3) ! high_st(4)
190 DATA "VAL", "HAL", "MEL", "DEL"

This special type of loop, in which something has to be done a certain number of times,
is well known A special structure, called a FOR loop, has been invented for it In such
a loop the count from 1 to 4 is handled automatically So is the exit when all four items
have been handled

100 RESTORE 160 Program 4
110 D I M high_st$(4,3)
120 FOR number = 1 TO 4
130 READ high_st$(number)
140 PRINT i high_st$(number) i
150 END FOR number
160 DATA "VAL","HAL","MEL","DEL"

The output from all four programs is the same

VAL HAL MEL DEL

Which proves that the data is properly stored internally in the four array variables

Arrays and For Loops

Method 4 is clearly the best so far, because it can deal equally well with 4 or 40 or
400 items by just changing the number 4 and adding more DATA items You can use
as many DATA statements as you need

In its simplest form the FOR loop is rather like the simplest form of REPeat loop The
two can be compared

100 REPeat greeting 100 FOR greeting = 1 TO 40
110 P R I N T "Hello" 110 P R I N T "Hello"
120 END REPeat greeting 120 END FOR greeting

Both these loops would work The REPeat loop would print 'Hello' endlessly (stop it
with the BREAK sequence) and the FOR loop would print 'Hello' just forty times

Notice that the name of the FOR loop is also a variable, greeting, whose value varies
from 1 to 40 in the course of running the program This variable is sometimes called
the loop variable or the control variable of the loop

Note the structure of both loops takes the form

Opening statement
Content

Closing statement

However, certain structures have allowable short forms for use when there are only one
or a few statements in the content of the loop Short forms of the FOR loop are allowed
so we could write the program in the most economical form of all

Program 5 100 R E S T O R E uo : CLS
110 DIM high_st$(4,3)
120 FOR number = 1 TO 4 : R E A D high_st$(number)
130 FOR number = 1 TO 4 : PRINT ' high_st$<number) '
140 DATA "VAL" , "HAL", "MEL", "DEL"

Colons serve as end of-statement symbols instead of ENTER and the ENTER symbols
of tines 120 and 130 serve as END FOR statements

There is an even shorter way of writing the above program To print out the contents
of the array high_st$ we can replace line 130 by

130 PRINT i high_st$ i

This uses an array siicer which we will discuss later in chapter 13

We have introduced the concept of an array of string variables so that the only numbers
involved would be the subscripts in each variable name. Arrays may be string or numeric,
and the following examples illustrate the numeric array

Program 1 Simulate the throwing of a pair of dice four hundred times Keep a record of the number
of occurrences of each possible score from 2 to 12.

100 R E M a r k DKE1
110 LET two = 0:three = 0:four = 0:five - 0:six = 0
120 LET seven = 0 : e i g h t = 0 : n i n e = 0:ten = 0:eLeven = 0:t we lve = 0
130 FOR throw - 1 TO 400
140 LET die! = R N D C 1 TO 6)
150 LET d i e 2 = R N D C 1 TO 6)
160 LET score = diel + die2
170 IF score = 2 THEN LET two = two + 1
180 IF score = 3 THEN LET t h r e e = t h r e e + 1
190 IF score = 4 THEN LET four = four + 1
200 IF score = 5 THEN LET f i v e = f i v e + 1
210 IF score = 6 THEN LET s i x = s i x + 1
220 IF score = 7 THEN LET seven = seven + 1
230 IF score = 8 THEN LET e i g h t = e i g h t + 1
240 IF score = 9 THEN LET n i n e = nine + 1
250 IF score = 10 THEN LET ten = ten + 1
260 IF score = 11 THEN LET eleven = e l e v e n + 1
270 IF score = 12 THEN LET t w e l v e = t w e l v e + 1
280 END FOR throw
290 PRINT i two ' three ' four ' f i v e ' s i x
300 PRINT i seven i e i g h t ' mne ' ten i e l e v e n i t w e l v e

30 12/84

Arrays and For Loops

In the above program we establish eleven simple variables to store the tally of the scores
If you plot the tallies printed at the end you find that the bar chart is roughly triangular
The higher tallies are for scores six, seven eight and the lower tallies are for two and
twelve As every dice player knows this reflects the frequency of the middle range of
scores (six.seven eight) and the rarity of twos or twelves

100 REMark o i c e 2 Program 2
110 DIM tally(12)
120 FOR throw = 1 TO 400
130 LET die_1 = RNDC1 TO 6)
140 LET die_2 = RNDd TO 6)
150 LET score = die_1 + die_2
160 LET talLy(score) = taLly(score) + 1
170 END FOR throw
180 FOR number = 2 to 12 : PRINT ta L Ly (number)

In the first FOR loop, using throw, the subscript of the array variable is score This means
that the correct array subscript is automatically chosen for an increase in the tally after
each throw You can think of the array, tally, as a set of pigeon-holes numbered 2 to
12 Each time a particular score occurs the tally of that score is increased by throwing
a stone into the corresponding pigeon-hole

In (he second (short form) FOR loop the subscript is number As the value of number
changes from 2 to 12 all the values of the tallies are printed

Notice that in the DIM statement for a numeric array you need only declare the number
of variables required There is no question of maximum length as there is in a string array

If you have used other versions of BASIC you may wonder what has happened to the
NEXT statement All SuperBASIC structures end with END something That is consistent
and sensible but the NEXT statement has a part to play as you will see in later chapters

You can score a maximum of 16 points from the following test Check your score with SELF TEST ON
the answers on page 109 PHAPTFP fi
1 Mention two difficulties which arise when the data needed for a program becomes

numerous and you try to handle it without arrays (two points)

2 If, in an array, ten variables have the same name then how do you know which
is which'?

3 What must you do normally in a program, before you can use an array variable?

4 What is another word for the number which distinguishes a particular variable of
an array from the other variables which share its name?

5 Can you think of two ideas in ordinary life which correspond to the concept of
an array in programming? (two points)

6. In a REPeat loop, the process ends when some condition causes an EXIT
statement to be executed What causes the process in a FOR loop to terminate?

7 A REPeat loop needs a name so that you can EXIT to its END properly A FOR
loop also has a name but what other function does a FOR loops name have?

8 What are the two phrases which are used to describe the variable which is also
the name of a FOR loop? (two points)

9 The values of a loop variable change automatically as a FOR loop is executed.
Name one possible important use of these values

10 Which of the following do the long form of REPeat loops and the long form of
FOR loops have in common? For each of the four items either say that both have
it or which type of loop has it.
a An opening keyword or statement
b A closing keyword or statement
c A loop name.
d A loop variable or control variable (four points)

12/84 31

rnUbLhlVIo UN 1 Use a FOR loop to place one of four numbers 1234 randomiy in five array

CHAPTER 6 variables

card(1) card(2). card(3), card(4), card(5)

It does not matter if some of the four numbers are repeated Use a second FOR
loop to output the values of the five card variables

2 Imagine that the four numbers 1 234 represent Hearts, Clubs; 'Diamonds; Spades!
What extra program lines would need to be inserted to get output in the form of
these words instead of numbers7

3 Use a FOR loop to place five random numbers in the range 1 to 13 in an array
of five variables

card(1), card(2), card(3) card(4) and card(5)

Use a second FOR loop to output the values of the five card variables

4 Imagine that the random numbers generated in problem 1 represent cards Write
down the extra statements that would cause the following output

Number Output

1 the word Ace'
2 to 10 the actual number
11 the word Jack
12 the word Queen'
13 the word King

CHAPTER 7
If you were to try to write computer programs to solve complex problems you might QIMDI p
find it difficult to keep track of things A methodical problem solver therefore divides a wllwlr UUi
large or complex job into smaller sections or tasks, and then divides these tasks again DQO^Fni IDPQ
into smaller tasks, and so on until each can be be easily tackled I OwN/Cl/UnCO

This is similar to the arrangement of complex human affairs. Successful government
depends on a delegation of responsibility The Prime Minister divides the work amongst
ministers, who divide it further through the Civil Service until tasks can be done by
individuals without further division There are complicating features such as common
services and interplay between the same and different levels, but the hierarchical structure
is the dominant one

A good programmer will also work in this way and a modern language like SuperBASIC
which allows properly named well defined procedures will be much more helpful than
older versions which do not have such features

The idea is that a separately named block of code should be written for a particular
task It doesn't matter where the block of code is in the program If it is there somewhere,
the use of its name will ,

activate the code
return control to the point in the program immediately after that use

If a procedure, square, draws a square the scheme is as shown below

In practice the separate tasks within a job can be identified and named before the
definition code is written. The'name is all that is needed in calling the procedure so
the main outline of the program can be written before all the tasks are defined

Alternatively if it is preferred, the tasks can be written first and tested. If it works you
can then forget the details and just remember the name and what the procedure does.

The following example could quite easily be written without procedures but it shows how Example
they can be used in a reasonably simple context. Almost any task can be broken down
in a similar fashion which means that you never have to worry about more than, say,
five to thirty lines at any one time If you can write thirty-line programs well and handle
procedures, then you have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians or others who wish to give
an impression of technological fluency without actually knowing anything. Store the
following words in three arrays and then produce ten random buzz phrases.

adjec1$ adjec2$ noun$

Full fifth-generation systems
Systematic knowledge-based machines
Intelligent compatible computers
Controlled cybernetic feedback
Automated user-friendly transputers
Synchronised parallel micro-chips
Functional learning capability
Optional adaptable programming
Positive modular packages
Balanced structured databases
Integrated logic-oriented spreadsheets
Coordinated file-oriented word-processors
Sophisticated standardised objectives

Simple Procedures

ANALYblb We will write a program to produce ten buzzword phrases The stages of the program are

1 Store the words in three string arrays

2 Choose three random numbers which will be the subscripts of the array variables

3 Print the phrase

4 Repeat 2 and 3 ten times

DESIGN
VARIABLES We identify three arrays of which the first two will contain ad|ectives or words used as

adjectives - describing words The third array will hold the nouns There are 13 words
in each section and the longest word has 16 characters including a hyphen

Array Purpose

adjec1${13,12) first adjectives
adjec2$(13,16) second adjectives
noun$(13,15) nouns

PROCEDURES We use three procedures to match the jobs identified

store data stores the three sets of thirteen words
get random gets three random numbers in range 1 to 13
make phrase prints a phrase

MAIN PROGRAM This is very simple because the mam work is done by the procedures.

Declare (DIM) the arrays
Store data
FOR ten phrases
get random
make phrase
END

Program 100 REMark ************
110 REMark * Buzzword *
120 R E M a r k ************
130 DIM adjec1$(13,12), adjec2$(13,16),noun$(13,15)
140 store_data
150 FOR phrase = 1 TO 10
160 get_random
170 make_phrase
180 END FOR phrase
190 REMark **************************
200 R E M a r k * Procedure D e f i n i t i o n s *
210 R E M a r k **************************
220 D E F i n e PROCedure store_data
230 REMark *** procedure to store the buzzword data ***
240 RESTORE 420
250 FOR item = 1 TO 13
260 R E A D adjed$(i tern) , ad j ec2$ Ci tern) ,noun$ C i tern)
270 END FOR item
280 END DEFine
290 D E F i n e PROCedure get_random
300 R E M a r k *** procedure to s e L e c t t h e phrase ***
310 LET ad1 = R N D C 1 TO 13)
320 LET ad2 = R N D < 1 TO 13)
330 LET n = R N D C 1 TO 13)
340 END D E F i n e
350 D E F i n e PROCedure make_phrase
360 REMark *** p r o c e d u r e to p r i n t out the phrase ***
370 PRINT i adjed$(ad1) i adjec2$(ad2> ' noun$(n)

34 12/84

380 END DEFine
390 REMark ****************
400 REMark * Program Data *
410 REMark ****************
420 DATA "Full", "fifth-generation", "systems"
430 DATA "Systematic", "knowledge-based", "machines"
440 DATA "IntelLigent", "compatible", "computers"
450 DATA "Controlled", "cybernetic", "feedback"
460 DATA "Automated", "user-friendly", "transputers"
470 DATA "Synchronised", "parallel", "micro-chips"
480 DATA "Functional", "learning", "capability"
490 DATA "Optional", "adaptable", "programming"
500 DATA "Positive", "modular", "packages"
510 DATA "Balanced", "structured", "databases"
520 DATA "Integrated", "logic-oriented", "spreadsheets"
530 DATA "Coordinated", "file-oriented", "word-processors"
540 DATA "Sophisticated", "standardised", "objectives"

Automated fifth-generation c a p a b i l i t y
Functional learning packages
Full parallel objectives
Positive user-friendly spreadsheets
Intelligent file-oriented capability
Synchronised cybernetic transputers
Functional Logic-oriented micro-chips
Positive parallel feedback
Balanced learning databases
Controlled cybernetic objectives

Suppose we wish to draw squares of various sizes and various colours in various positions rnOOiNu

on the scale graphics screen INFORMATION TO

If we define a procedure, square, to do this it will require four items of information PRnPFHI IRFQ

length of one side
colour (colour code)
position (across and up)

The square's position is determined by giving two values, across and up, which fix the
bottom left hand corner ot the square as shown below

The colour of the square is easily fixed but the square itself uses the values of side and
ac and up as follows

200 DEFine PROCedure square(side,ac,up)
210 LINE ac,up TO ac+side,up
220 LINE TO ac+side,up+side
230 LINE TO ac.up+side TO ac,up
240 END DEFine

In order to make this procedure work values of stde,ac and up must be provided. These
values are provided when the procedure is called For example you could add the
following main program to get one green square ot side 20

12/84

100 PAPER 7: CIS
110 INK 4
120 square 20,50,50

The numbers 20,5050 are called parameters and they are passed to the variables named
in the procedure definition thus

square 20,50,50

DEFine PROCedure square(side,ac,up)

The numbers 20,50,50 are called actual parameters They are numbers in this case but
they could be variables or expressions. The variables side,ac,up are called formal
parameters They must be variables because the 'receive' values.

A more interesting main program uses the same procedure to create a random pattern
of coloured pairs of squares Each pair of squares is obtained by offsetting the second
one across and up by one-fifth of the side length thus

Assuming that the procedure square is still present at line 200 then the following program
will have the classical effect

100 R E M a r k Squares P a t t e r n
110 PAPER 7 : CLS
120 FOR p a i r = 1 TO 20
130 INK R N D C 5)
140 LET side = RNOdO TO 20)
150 LET ac = R N D C 5 0) : up = R N D C 7 0)
160 square s ide ,ac ,up
170 LET a c = a c + s i d e / 5 : up = up+side/5
180 square side,ac,up
190 END FOR pair

The advantage of procedures are-

1. You can use the same code more than once in the same program or in others.

2. You can break down a task into sub-tasks and write procedures for each sub-task
This helps the analysis and design

3 Procedures can be tested separately. This helps the testing and debugging.

4 Meaningful procedure names and clearly defined beginnings and ends help to
make a program readable

When you get used to properly named procedures with good parameter facilities, you
should find that your problem-solving and programming powers are greatly enhanced.

You can score a maximum of 14 points from the following test Check your score with SELF TEST ON
the answers on page 110 CHAPTER 7

1 How do we normally tackle the problem of great size and complexity in human
affairs'?

2 How can this principle be applied in programming'''

3 What are the two most obvious features of a simple procedure definition'? (two points)

4 What are the two main effects of using a procedure name to 'call' the procedure7

(two points)

5 What is the advantage of using procedure names in a main program before the
procedure definitions are written9

6 What is the advantage of writing a procedure definition before using its name in
a main program7

7 How can the use of procedures help a thirty line-programmer' to write much bigger
programs7

8 Some programs use more memory in defining procedures, but in what
circumstances do procedures save memory space7

9 Name two ways by which information can be passed from a main program to
a procedure (two points)

10 What is an actual parameter7

11 What is a formal parameter7

1 Write a procedure which outputs one of the four suits Hearts,'Clubs!'Diamonds; PROBLEMS ON
or 'Spades Calf the procedure five times to get five random suits PHADTPR 7

2 Write another program for problem 1 using a number in the range 1 to 4 as a
parameter to determine the output word If you have already done this then try
writing the program without parameters

3 Write a procedure which will output the value of a card that is a number in the
range 2 to 10 or one of the words Ace, Jack; 'Queen; King'

4 Write a program which calls this procedure five times so that five random values
are output

5 Write the program of problem 3 again using a number in the range 1 to 13 as
a parameter to be passed to the procedure If this was the method you used first
time, then try writing the program without parameters

6 Write the most elegant program you can, using procedures, to output four hands
of five cards each Do not worry about duplicate cards You can take elegance
to mean an appropriate mixture of readability, shortness and efficiency Different
people and/or different circumstances wtll place different importance on these three
qualities which sometimes work against each other

CHAPTER 8
FROM BASIC

TO
wUi triDAwl w If you are familiar with one of the earlier versions of BASIC you may find it possible to

omit the first seven chapters and use this chapter instead as a bridge between what
you know already and the remaining chapters If you do this and still find areas of difficulty
it may be helpful to backtrack a little into some of the earlier chapters

If you have worked through the earlier chapters this one should be easy reading You
may find that, as well as introducing some new ideas it gives an interesting slant on
the way BASIC is developing Apart from its program structuring facilities SuperBASIC
also pushes forward the frontiers of good screen presentation, editing, operating facilities
and graphics In short it is a combination of user-friendliness and computing power which
has not existed before

So, when you make the transition from BASIC to SuperBASIC you are moving not only
to a more powerful, more helpful language, you are also moving into a remarkably
advanced computing environment

We will now discuss some of the main features of SuperBASIC and some of the features
which distinguish it from other BASICs

ALr nAbh I \(j The usual simple arithmetic comparisons are possible You can write

COMPARISONS LET p.t1$ = "CAT-
LET pet2$ = "DOG"
IF pet1$ < pet2$ THEN PRINT "Meow"

The output wiil be Meow because in this context the symbol < means

earlier (nearer to A in the alphabet)

SuperBASIC makes comparisons sensible For example you would expect

'cat' to come before 'DOG'

and

'ERD98L1 to come before 'ERD746L

A simplistic approach, blindly using internal character coding, would give the 'wrong'
result in both the above cases but try the following program which finds the 'earliest'
of two character strings

100 INPUT item1$, item2S
110 IF item1$ < item2$ THEN PRINT item1$
120 IF item1$ = item2$ THEN PRINT "Equal"
130 IF item1$ > item 2$ THEN PRINT item2$

INPUT OUTPUT

cat dog cat
cat OOG cat
ERD98L ERD746L ERD98L
ABC abc ABC

The Concept Reference Guide section wiil give full details about the way comparisons
of strings are made in SuperBASIC

36 12/84

From Basic toSuperBASC

Most BASICS have numeric and string variables As in other BASICs the distinguishing VARIABLES AND
feature of a string variable name in SuperBASIC is the dollar sign on the end Thus MAMCC

numeric count string word$ inrTMTinrDO
sum high_st$ ILJtlN IINCHO
total day^.of_week$

You may not have met such meaningful variable names before though some of the more
recent BASICs do allow them The rules for identifiers in SuperBASIC are given in the
Concept Reference Guide The maximum length of an identifier is 255 characters Your
choice of identifiers is a personal one Sometimes the longer ones are more helpful in
conveying to the human reader what a program should do But they have to be typed
and, as in ordinary English spade is more sensible than horticultural earth turning
implement Shorter words are preferred if they convey the meaning but very short words
or single letters should be used sparingly Variable names like X.Z P3.Q2 introduce a
level of abstraction which most people find unhelpful

SuperBASIC allows integer variables which take only whole-number values We distinguish IN I uutn VAHIADLho
these with a percentage sign thus

count%
number%
nearest pound°/o

There are now two kinds of numeric variable We call the other type, which can take
whole or fractional values floating point Thus you can write

LET pn ce = 9
LET cost = 7.31
LET count% = 13

But f you write

LET countZ = 5 .43

the value of counWo will become 5 On the other hand

LET count* = 5,73

will cause the value of count°/o to be 6 You can see that SuperBASIC does the best
it can, rounding off to the nearest whole number

The principle of always trying to be intelligently hefpfui, rather than give an error message COERCION
or do something obviously unwanted is carried further For example, if a string variable
markS has the value

'64'

then

LET score = mark$

will produce a numeric value of 64 for score Other versions of BASIC would be likely
to halt and say something like

Type mis-match'
or 'Nonsense in BASIC'

If the string cannot be converted then an error is reported

There is one other type of variable in SuperBASIC or rather the SuperBASIC system LOGICAL VARIABLES
makes it seem so Consider the SuperBASIC statement AND 9IMPI F

IF«,ndyTHEHfly_kit. PROCEDURES
In other BASICs you might write

IF w=1 THEN GOSUB 300

12/84 39

From Base to SuperBASIC

In this case w=1 is a condition or logical expression which is either true or false If it
is true then a subroutine starting at line 300 would be executed This subroutine may
deal with kite flying but you cannot tell from the above line A careful programmer would
write

IF w=1 THEN GOSUB 300 : REM fly_kite

to make it more readable But the SuperBASIC statement is readable as it stands The
identifier windy is interpreted as true or false though it is actually a floating point variable
A value of 1 or any non-zero value is taken as true Zero is taken as false Thus the
single word, windy, has the same effect as a condition of logical expression

The other word, fly kite, is a procedure It does a job similar to but rather better than
GOSUB 300.

The following program will convey the idea of logical variables and the simplest type
of named procedure

100 INPUT windy
110 IF w indy THEN f l y_k i te
120 IF NOT windy THEN tidy_shed
130 OEF ine PROCedure f l y_k i te
HO PRINT "See it in the air ."
150 END DEFine
160 DEFine PROCedure t idy_shed
170 PRINT "Sort out rubbish."
180 END DEFine

INPUT OUTPUT

0 Sort out rubbi sh.
1 S e e i t i n t h e a i r
2 S e e i t i n t h e a i r

-2 See it in the air

You can see that only zero is taken as meaning false You would not normally write
procedures with only one action statement but the program illustrates the idea and syntax
in a very simple context More is said about procedures later in this chapter

LET STATEMENTS In SuperBASIC LET is optional but we use it in this manual so that there will be less
chance of confusion caused by the two possible uses of = The meanings of = in

LET count = 3

and in

IF count = 3 THEN EXIT

are different and the LET helps to emphasise this However, if there are two or a few
LET statements doing some simple job such as setting initial values, an exception may
be made

For example.

100 LET first = 0
110 LET second = 0
120 LET third = 0

may be re-written as

100 LET first = 0 : second = 0 : third = 0

without loss of clarity or style It is also consistent with the general concept of allowing
short forms of other constructions where they are used in simple ways

The colon : is a valid statement terminator and may be used with other statements besides
LET

40 12/84

From Basic to SuperOASIC

In a later chapter we will explain how other graphics facilities, such as drawing circles, THE BASIC SCREEN
can be handled but here we outline the pixel-oriented features. There are two modes
which may be activated by any of the following:

Low resolution n,i/-inc OCG
8 Colour Mode ^F f
256 pixels across, 256 down ____^__

,Hi^h
1
reSOMti^ MODE 512

4 Colour Mode MODE 4
512 pixels across, 256 down

In both modes pixels are addressed by the range of numbers:

0 - 511 across
and 0 - 255 down

Since mode 8 has only half the number of pixels across the screen as mode 4, mode
8 pixels are twice as wide as mode 4 pixels and so in mode 8 each pixel can be specified
by two coordinates For example.

0 or 1 2 or 3 510 or 511

It also means that you use the same range of numbers for addressing pixels irrespective
of the mode. Always think 0-511 across and 0-255 down,

If you are using a television then not all the pixels may be visible.

The coiours available are: L/ULUUnO

MODE 256 Code MODE 512

black 0 black
blue 1
red 2 red
magenta 3

green 4 green
cyan 5
yelfow 6 white
white 7

You may find the following mnemonic helpful in remembering the codes:

Bonny Babies Really Make Good Children, You Wonder

fn the high-resolution mode each colour can be selected by one of two codes. You will
see later how a startling range of colour and stipple (texture) effects can be produced
if you have a good quality colour monitor.

Some of the screen presentation keywords are as follows:

INK colour foreground colour

BORDER width, colour draw border at edge of screen
or window

PAPER colour background colour

BLOCK width, height, across, down, colour colour a rectangle which has its
top left hand corner at position
across, down

12/84

From Base loSuperBASIC

CPDCCM When you switch on your QL the screen display is split into three areas called windows
OUntCIN as shown below Note than in order to fit these windows into the area covered by a

ORGANISATION television screen, some pixels around the border are not used in Television mode

The windows are identified by #0, # 1 and #2 so that you can relate various effects
to particular windows For example

CLS

will clear window # 1 (the system chooses) so if you want the left hand area cleared
you must type

CLS #2

If you want a different paper (background colour) type for green

PAPER 4 : CLS

or

PAPER #2,^ : CLS #2

if you want to clear window #2 to the background colour green

The numbers #0, #1, #2 are called channel numbers In this particular case they
enable you to direct certain effects to the window of your choice You will discover later
that channel numbers have many other uses but for the moment note that all of the
following statements may have a channel number The third column shows the default
channel - the one chosen by the system if you do not specify one

Note that windows may overlap If you use a TV screen the system automatically overlaps
windows # 1 and #2 so that more character positions per line are available for program
listings

Keyword Effect Default

AT Character Position #1
BLOCK Draws block # 1
BORDER Draw border #1
CLS Clear screen # 1
CSIZE Character size # 1
CURSOR Position cursor #1
FLASH Causes/cancels flashing # 1
INK Foreground colour # 1
OVER Effect of printing and graphics # 1
PAN Moves screen sideways # 1
PAPER Background colour # 1
RECOL Changes colour # 1
SCROLL Moves screen vertically # 1
STRIP Background for printing # 1
UNDER Underlines # 1
WINDOW Changes existing window #1
LIST Lists program #2
DIR Lists directory #1
PRINT Prints characters #1
INPUT Takes keyboard input #1

Statements or direct commands appear tn window #0

For more detail about the syntax or use of these keywords see other parts of the manual

42 12/84

From Base to SuperBASIC

The program below draws a green rectangle in 256 mode on red paper with a yellow RECTANbLbo AND
border one pixel wide The rectangle has its top left corner at pixel co ordmates 100,100 I IMPS
(see QL Concepts) Its width is 80 units across (40 pixels) and its height is 20 units down
(20 pixels)

100 R E M a r k R e c t a n g l e
110 MODE 256
120 BORDER 1 ,6
130 PAPER 2 : CLS
140 B L O C K 80,20,100,100,4

You have to be a bit careful in mode 256 because across values range from 0 to 511
even though there are only 256 pixels We cannot say that the block produced by the
above program is 80 pixels wide so we say 80 units

SuperBASIC has the usual LET, INPUT READ and DATA statements for input The INPUT AND OUTPUT
PRINT statement handles most text output in the usual way with the separators

tabulates output

; just separates - no formatting effect

\ forces new line

! normally provides a space but not at the start of line If an item will not fit at the
end of a line it performs a new line operation

TO Allows tabulation to a designated column position

You will be familiar with two types of repetitive loop exemplified as follows LUUiO

(a) Simulate 6 throws of an ordinary six-sided die
100 FOR t h r o w = 1 TO 6
110 PRINT R N D C 1 TO 6)
120 NEXT throw

(b) Simulate throws of a die until a six appears
1 00 dl e = RND (1 TO 6)
1 1 0 P R I N T d i e
120 IF di e <> 6 T H E N GOTO 10

Both of these programs will work in SuperBASIC but we recommend the following instead
They do exactly the same jobs Although program (b) is a little more complex there are
good reasons for preferring it

(a) 100 FOR t h r o w = 1 TO 6
110 PRINT R N D d TO 6)
120 END FOR throw

(b) 100 REPeat throws
110 d i e = RNDd TO 6)
120 PRINT d i e
130 IF d i e = 6 THEN EXIT throws
140 END REPeat throws

It is logical to provide a structure for a loop which terminates on a condition (REPeat
loops) as well as those which are controlled by a count

The fundamental REPeat structure is

REPeat identifier
statements

END REPeat identifier

The EXIT statement can be placed anywhere in the structure but it must be followed
by an identifier to tell SuperBASIC which loop to exit, for example

EXIT throws

would transfer control to the statement after

END REPeat throws.

This may seem like a using a sledgehammer to crack the nut of the simple problem
illustrated However the REPeat structure is very powerful It will take you a long way

12/84 ^

From Base to SuperBASIC

If you know other languages you may see that it will do the jobs of both REPEAT and
WHILE structures and also cope with other more awkward, situations

The SuperBASIC REPeat loop is named so that a correct clear exit is made The FOR
loop, like all SuperBASIC structures ends with END, and its name is given for reasons
which will become clear later

You will also see later how these loop structures can be used in simple or complex
situations to match exactly what you need to do We will mention only three more features
of loops at this stage They will be familiar if you are an experienced user of BASIC

The increment of the control variable of a FOR loop is normally 1 but you can make
it other values by using the STEP keyword As the examples show

i 100 FOR even = 2 TO 10 STEP 2
110 P R I N T i even i
120 E N D FOR even

Output is 2 4 6 8 10

ii 100 FOR b a c k w a r d s = 9 TO 1 STEP -1
110 PRINT i backwards «
120 END FOR b a c k w a r d s

output i s 9 8 7 6 5 4 3 2 1

The second feature is that loops can be nested You may be familiar with nested FOR
loops For example the following program outputs four rows of ten crosses

100 R E M a r k Crosses
110 FOR row = 1 TO 4
120 PRINT "Row n u m b e r 1 ' row
130 FOR cross = 1 TO 10
140 PRINT i 'X1 '
150 END FOR cross
160 PRINT
170 PRINT \ 'End of row number' i row
180 END FOR row

output is
Row number 1
X X X X X X X X X X
End of row number 1
Row number 2
X X X X X X X X X X
End of row number 2
Row number 3
X X X X X X X X X X
End of row number 3
R o w number 4
X X X X X X X X X X
End of row number 4

A big advantage of SuperBASIC is that it has structures for all purposes, not just FOR
loops, and they can all be nested one inside the other rejecting the needs of a task
We can put a REPeat loop in a FOR loop The program below produces scores of
two dice in each row until a seven occurs, instead of crosses

100 REMark Dice rows
110 FOR row = 1 TO 4
120 PRINT 'Row number '" row
130 REPeat throws
140 LET d i e l = R N D C 1 TO 6)
150 LET die2 = R N D C 1 TO 6)
160 LET score = die 1 + die2
170 PRINT i score '
180 IF score = 7 THEN EXIT throws
190 END REPeat throws
200 PRINT V'End of row 1 ' row
210 END FOR row

44 12/84

From Base to SuperSASIC

sample output

Row number 1
8 1 1 6 3 7
End of row number 1
Row number 2
4 6 2 9 4 5 1 2 7
End of row number 2
Row number 3
7
End of row number 3
Row number 4
6 2 4 9 9 7
End of row number 4

The third feature of loops in SuperBASIC allows more flexibility in providing the range
of values in a FOR loop The following program illustrates this by printing all the divisible
numbers from 1 to 20 (A divisible number is divisible evenly by a number other than
itself or 1)

100 R E M a r k D i v i s i b l e n u m b e r s
110 FOR num = 4,6,8. TO 10,12,14 TO 16,18,20
120 PRINT i num i
130 END FOR num

More will be said about handling repetition in a later chapter but the features described
above will handle all but a few uncommon or advanced situations

You will have noticed the simple type of decision. UcUolUIN MAMNo

IF d ie = 6 THEN E X I T th rows

This is available in most BASICs but SuperBASIC offers extensions of this structure and
a completely new one for handling situations with more than two alternative courses
of action

However, you may find the following long forms of IF .. THEN useful They should explain
themselves.

I 100 REMark Long form IF...END IF
110 LET sunny = R N O C O TO 1)
120 IF sunny THEN
130 PRINT 'Wear sunglasses'
140 PRINT 'Go for w a l k '
150 END IF

n 100 R E M a r k Long form IF .. . ELSE...END IF
110 LET sunny = R N D C O TO 1)
120 IF sunny THEN
130 PRINT 'Wear sunglasses'
140 PRINT 'Go for w a l k 1

150 ELSE
160 PRINT 'Wear coat'
170 PRINT 'Go to c i n e m a '
180 END IF

The separator, THEN, is optional in long forms or it can be replaced by a colon in short
forms The long decision structures have the same status as loops You can nest them
or put other structures into them When a single variable appears where you expect
a condition the value zero will be taken as false and other values as true.

Most BASICs have a GOSUB statement which may be used to activate particular blocte SUBROUTINES AND
of code called subroutines. The GOSUB statement is unsatisfactory in a number of ways PPflppni IRPQ
and SuperBASIC offers properly named procedures with some very useful features rnUvCUUnco

Consider the following programs both of which draw a green 'square' of side length
50 pixel screen units at a position 200 across 100 down on a red background

12/64 45

From Base to SuperBASIC

(a) Using GOSUB

100 LET colour = 4 : background = 2
110 LET across = 20
120 LET down = 100
130 LET side = 50
140 GOSUB 170
150 PRINT 'END'
160 STOP
170 REMark Subroutine to draw square
180 PAPER background : CLS
190 BLOCK STde, side, across, down, colour
200 RETurn

(b) Using a procedure with parameters

100 square 4, 50, 20, 100, 2
110 PRINT 'END1

120 DEFine PROCedure square(colour,side,across,down,background)
130 PAPER background : CLS
140 BLOCK side, side, across, down, colour
150 END DEFine

In the first program the values of colour, across, down, side are fixed by LET statements
before the GOSUB statement activates lines 180 and 190 Control is then sent back
by the RETURN statement

In the second program the values are given in the first line as parameters in the procedure
call, square, which activates the procedure and at the same time provides the values
it needs.

In its simplest form a procedure has no parameters It merely separates a particular piece
of code, though even in this simpler use the procedure has the advantage over GOSUB
because it is properly named and properly isolated into a self-contained unit

The power and Simplifying effects of procedures are more obvious as programs get
larger. What procedures do, as programs get larger; is not so much make programming
easier as prevent it from getting harder with increasing program size The above example
just illustrates the way they work in a simple context.

Examples The following examples indicate the range of vocabulary and syntax of SuperBASIC which
has been covered in this and earlier chapters, and will form a foundation on which the
second part of this manual will build

The letters of a palindrome are given as single items in DATA statements. The terminating
item is an asterisk and you assume no knowledge of the number of letters in the
palindrome. READ the tetters into an array and print them backwards Some palindromes
such as MADAM I'M ADAM1 only work if spaces and punctuation are ignored The
one used here works properly

100 REMark Palindromes
110 DIM text$(30)
120 LET texts = FILLS C' ' ,30)
130 LET count = 30
140 REPeat get_letters
150 READ characters
160 IF characters = '*' THEN EXIT get_Letters
170 LET count = count-1
180 LET textS(count) = characters
190 END REPeat get_letters
200 PRINT textS
210 DATA 'A'.'B'.'L'.'E1 .'W'.'A'.'S' .'I' .'E'.'R1

220 DATA 'E' ,'!' .'S'.'A'.'W .'E'.'L'.'B'.'A',1*1

The following program accepts as input numbers in the range 1 to 3999 and converts
them into the equivalent in Roman numerals It does not generate the most elegant form,
it produces INI rather than IV

46 12y84

From Basic toSuperBASC

100 R E M a r k Roman numbers
110 INPUT number
120 RESTORE 210
130 FOR type = 1 TO 7
140 R E A D Letters, v a l u e
150 REPeat output
160 IF number < v a l u e : EXIT output
170 PRINT letter*;
180 LET number = number - v a l u e
190 END REPeat output
200 END FOR type
210 DATA • N ' , i a O O , l D l . 5 0 0 , l C l , 1 0 0 (

l L l , 5 0 t ' X
l , 1 0 . l V r 5 , ' I

l , 1

You should study the above examples carefully using dry runs if necessary until you
are sure that you understand them

In SuperBASIC full structuring features are provided so that program elements either LrUNOLUolUN
follow in sequence or fit into one another neatly All structures must be identified to the
system and named There are many unifying and simplifying features and many extra
facilities

Most of these are explained and illustrated in the remaining chapters of this manual,
which should be easier to read than the Keyword and Concept Reference sections
However, it is easier to read because it does not give every technical detail and exhaust
every topic which it treats There may, therefore, be a few occasions when you need
to consult the reference sections On the other hand some major advances are discussed
in the following chapters Few readers will need to use all of them and you may find
it helpful to omit certain parts, at least on first reading

CHAPTER 9
DATA TYPES

VARIABLES
AND

IL/tli I II ICnO You will have noticed that a program (a sequence of statements) usually gets some data
to work on (input) and produces some kind of results (output) You will also have
understood that there are internal arrangements for storing this data In order to avoid
unnecessary technical explanations we have suggested that you imagine pigeon holes
and that you choose meaningful names for the pigeon holes For example if it is
necessary to store a number which represents the score from simulated dice-throws you
imagine a pigeon hole named score which might contain a number such as 8

Internally the pigeon holes are numbered and the system maintains a dictionary which
connects particular names with particular numbered pigeon holes We say that the name,
score, points to its particular pigeon-hole (by means of the internal dictionary)

The whole arrangement is called a variable

What you see is the word score We say that this word, score is an identifier It is what
we see and it identifies the concept we need, in this case the result, 8 of throwing a
pair of dice Because the identifier is what we see it becomes the thing we talk or write
or think about We write about score and its value at any particular moment

There are four simple data types called floating point integer, string and logical and
these are explained below We talk about data types rather than variable types because
data can occur on its own, for example 34 or Blue hat' as the value of a variable But
if you understand the different types of variables you must also understand the different
types of data

IDENTIFIERS AND 1 A SuperBASIC identifier must begin with a letter and is a sequence of

VARIABLES upper or lower case letters
digits or underscore

2 An identifier may be up to 255 characters in length so there is no effective limit
in practice.

3 An identifier cannot be the same as a keyword of SuperBASIC

4 An integer variable name is an identifier with % on the end

5 A string variable name is an identifier with $ on the end

6 No other identifiers must use the symbofs °/o and $

7 An identifier should usually be chosen so that it means something to a human
reader, but for SuperBASIC it does not have any particular meaning other than
that it identifies certain things

rLUAl INb rUIN I Examples of the use of floating point variables are

VARIABLES 100 LET days = 24
110 LET sales = 3649.84
120 LET sales_per_day = sales/days
130 PRINT sales_per_day

43 !2/84

Data Types, Variables and Identifiers

The value of a floating point variable may be anything in the range

+ 10~6's to +10+615 with 8 significant figures

Suppose in the above program sales were, exceptionally, only 3p Change line 110 to

110 LET sa les = 0.03

This system will change this to

110 LET sa les = 3E-2

To interpret this, start with 3 or 30 and move the decimal point -2 places, i e two places
left This shows that

3E-2 is the same as 003

After running the program the average daily sales are

1 25E-3 which is the same as 000125

Numbers with an E are said to be in exponent form

(mantissa) E (exponent) = (mantissa) x 10 to the power (exponent)

Integer variables can have only whole number values in the range -32678 to 32768 The INTEGER VARIABLES
following are examples of valid integer variable names which must end with %

LET count% = 10
LET six_tally% = RNDC10)
LET number_3% = 3

The only disadvantage of integer variables, when whole numbers are required, is the
slightly misleading % symbol on the end of the identifier It has nothing to do with the
concept of percentage It is just a convenient symbol tagged on to show that the variable
is an integer

Using a function is a bit like making an omelette You put in an egg which is processed NUMbHUj
according to certain rules (the recipe) and get out an omelette For example the function ri JMrTjQMQ
INT takes any number as input and outputs the whole number part Anything which rUINUi ivjno
is input to a function is called a parameter or argument INT is a function which gives
the integer part of an expression You may write

PRINT INTC5.6)

and 5 would be the output We say that 56 is the parameter and the function returns
the value 5 A function may have more than one parameter You have already met

R N D C 1 TO 6)

which is a function with two parameters But functions always return exactly one value
This must be so because you can put functions into expressions For example

PRINT 2 * INT(5.6)

would produce the output 10 It is an important property of functions that you can use
them in expressions It follows that they must return a single value which is then used
in the expression INT and RND are system functions, they come with the system but
later you will see how to write your own

The following examples show common uses of the INT function

100 REMark Rounding
110 INPUT decimal
120 PRINT I N T C d e c i m a L + 0.5)

In the example you input a decimal fraction and the output is rounded Thus 4 7 would
become 5 but 43 would become 4

You can achieve the same result using an integer variable and coercion

Trigonometrical functions will be dealt with in a later section but other common numeric
functions are given in the list befow

12/84 49

Data Types Variables and Identifiers

Function Effect Examples Returned values

Absolute or ABS(7) 7
Atsb unsigned value ABS(-43) 43

Integer part of a INT(2 4) 2
INT floating point INT(04) 0

number INT(-27) -3

SQRT(2) 1414214
SORT Square root SQRT(16) 4

SQRT{26) 1612452

There is a way of computing square roots which is easy to understand To compute
the square root of 8 first make a guess It doesnt matter how bad the guess maybe
Suppose you simply take half of 8 as the first guess which is 4

Because 4 is greater than the square root of 8 then 8 / 4 must be less than it The reverse
is also true If you had guessed 2 which is less than the square root then 8 / 2 must
be greater than it

It follows that if we take any guess and compute number / guess we have two numbers,
one too small and one too big We take the average of these numbers as our next
approximation and thus get closer to the correct answer

We repeat this process until successive approximations are so close as to make little
difference

100 REMark Square Roots
110 LET number = 8
120 LET approx = number/2
130 REPeat root
140 LET newval = (approx + number/approx) 12
150 IF newval == approx THEN EXIT root
160 LET approx = newval
170 END REPeat root
180 PRINT 'Square root of i number i 'is 1 i newval

sample output

Square root of 8 is 2.828427

Notice that the conditional EXIT from the loop must be in the middle The traditional
structures do not cope with this situation as well as SuperBASIC does

The == sign in line 150 means 'approximately equal to" that is equal to withtn 0000001
of the values being compared

INUMbnlU SuperBASIC allows the usual mathematical operations You may notice that they are like
OPERATIONS functions with exactly two operands each It is also conventional in these cases to put

ivjlNO an Operanc| on eac|-| SKje Of the symbol Sometimes the operation is denoted by a familiar
symbol such as + or * Sometimes the operation is denoted by a keyword like DIV
or MOD but there is no real difference Numeric operations have an order of priority
For example, the result of

PRINT 7 + 3*2

is 13 because the multiplication has a higher priority However

PRINT (7 + 3)*2

will output 20, because brackets over-ride the usual priority As you will see later so many
things can be done with SuperBASIC expressions that a full statement about priority
cannot be made at this stage (see the Concept Reference Guide if you wish) but the
operations we now deal with have the following order of priority

highest - raising to a power
multiplication and division (including DIV, MOD)

lowest - add and subtract

50 12/84

Data Types Variables and Identifiers

The symbols + and - are also used with only one operand which simply denotes
positive or negative Symbols used in this way have the highest priority of all and can
only be over-ridden by the use of brackets

Finally if two symbols have equal priority the leftmost operation is performed first so that

PRINT 7-2 + 5

will cause the subtraction before the addition This might be important if you should ever
deal with very targe or very small numbers

Operation Symbol Examples Results Note

Add + 7+66 136

Subtract - 7-66 04

Multiply * 3*21 63
21*(-3) -63

Divide / 7/2 35 Do not divide by zero
-17/5 -34

Raise to power A 4A15 8

Integer divide DIV -8 DIV 2 -4 Integers only
7 DIV 2 3 Do not divide by zero

Modulus MOD 13 MOD 5 3
21 MOD 7 0

-17 MOD 8 7

Modulus returns the remainder part of a division Any attempt to divide by zero will
generate an error and terminate program exection

Strictly speaking, a numeric expression is an expression which evaluates to a number NUMERIC
and there are more possibilities than we need to discuss here SuperBASIC allows you FYDDCCCinM^
to do complex things if you want to but it also allows you to do simple things in simple tAr nCuOIUIMO
ways In this section we concentrate on those usual straightforward uses of mathematical
features

Basically numeric expressions in SuperBASIC are the same as those of mathematics
but you must put the whole expression in the form of a sequence

5 + 3

6 - 4

becomes in SuperBASIC (or other BASIC)

(5 + 3)1(6 - 4)

In secondary school algebra there is an expression for one solution of a quadratic
equation

axz + bx + c = 0

One solution in mathematical notation is

x = -b + / b2 -4ac

2a

If we start with the equation

2x2 - 3x + 1 = 0

The following program will find one solution Example 1

100 R E A D a,b,c

110 PRINT 'Root is' ' (-b +SQRT(bA2 - 4*a*c))/(2*a)
120 DATA 2,-3,1

12/84 51

D.M.i Types Variables and Identifiers

Example 2 In problems which need to simulate the dealing of cards you can make cards correspond
to the numbers 1 to 52 as follows

1 to 13 Ace, two king of hearts
14 to 26 Ace, two king of cfubs
27 to 39 Ace, two king of diamonds
40 to 52 Ace, two king of spades

A particular card can be identified as follows

100 REM Card identification
110 LET card = 23
120 LET s u i t = < c a r d - 1 > DIV 13
130 LET v a l u e = card MOD 13
140 IF v a l u e = 0 T H E N LET v a l u e = 13
150 IF v a l u e = 1 THEN PRINT "Ace of ";
160 IF value >= 2 AND value <= 10 THEN PRINT value i "of ";
170 IF value = 11 THEN PRINT "Jack of ";
180 IF value = 12 THEN PRINT "Queen of ";
190 IF v a l u e = 13 THEN PRINT "King of ";
200 IF s u i t = 0 THEN PRINT "hearts"
210 IF suit = 1 THEN P R I N T "clubs"
220 IF suit = 2 THEN PRINT "diamonds"
230 IF suit = 3 THEN PRINT "spades"

There are new ideas in this program They are in line 160 The meaning is clearly that
the number is actually printed only if two logical statements are true These are

value is greater than or equal to 2 AND value is less than or equal to 10

Cards outside this range are either aces or court cards' and must be treated differently.

Note also the use of ! in the PRINT statement to provide a space and ; to ensure that
output continues on the same line

There are two groups of mathematical functions which we have not discussed here They
are the trigonometric and logarithmic. You may need the former in organising screen
displays. Types of functions are also fully defined in the reference section

LOGICAL VARIABLES Strictly speaking, SuperBASIC does not allow logical variables but it allows you to use
other variables as logical ones. For example you can run the following program

100 R E M a r k L o g i c a l V a r i a b l e
110 LET hungry = 1
120 IF hungry THEN P R I N T "Have a bun"

You expect a logical expression in line 120 but the numeric variable, hungry is there
on its own The system interprets the value, 1, of hungry as true and the output is

Have a bun

If line 110 read

LET hungry = 0

there would be no output The system interprets zero as false and all other values as
true. That is useful but you can disguise the numeric quality of hungry by writing:

100 REMark Logical Variable
110 LET true =1 : false = 0
120 LET hungry = true
130 IF hungry THEN P R I N T "Have a bun"

bTRING VARIABLES There is much to be said about handling strings and string variables and this is left to
a separate chapter

<# 12/84

1 A rich oil dealer gambles by tossing a coin in the following way If it comes down PROBLcMo ON
heads he gets 1 If it comes down tails he throws again but the possible reward CHAPTER 9
is doubled This is repeated so that the rewards are as shown V/nrtr I tn J

THROW 1 2 3 4 5 6 7
REWARDS 1 2 4 8 16 32 64

By simulating the game try to decide what would be a fair initial payment for each
such game

(a) if the player is limited to a maximum of seven throws per game

(b) if there is no maximum number of throws

2 Bill and Ben agree to gamble as follows At a given signal each divides his money
into two halves and passes one half to the other player Each then divides his new
total and passes half to the other Show what happens as the game proceeds
if Bill starts with 16p and Ben starts with 64p

3 What happens if the game is changed so that each hands over an amount equal
to half of what the other possesses7

4 Write a program which forms random three-letter words chosen from A B,C,D and
prints them until BAD appears

5 Modify the last program so that it terminates when any real three letter word appears

12/84 53

CHAPTER 10
LwOlv/ If you have read previous chapters you wilt probably agree that repetition, decision making

and breaking tasks into sub-tasks are major concepts in problem analysis program design
and encoding programs Two of these concepts, repetition and decision making, need
logical expressions such as those in the following program lines

IF score = 7 THEN EXIT throws
IF suit = 3 THEN PRINT "spades"

The first enables EXIT from a REPeat loop The second is simply a decision to do
something or not A mathematical expression evaluates to one of millions of possible
numeric values Similarly, a string expression can evaluate to millions of possible strings
of characters You may find it strange that logical expressions for which great importance
is claimed can evaluate to one of only two possible values true or false

In the case of

score = 7

this is obviously correct Either score equals 7 or it doesn t ' The expression must be
true or false - assuming that its not meaningless It may be that you do not kpow the
value at some time, but that will be put right in due course

You have to be a bit more careful of expressions involving words such as OR, AND,
NOT but they are well worth investigating - indeed, they are essential to good
programming They will become even more important with the trend towards other kinds
of languages based more on precise descriptions of what you require rather than what
the computer must do

AND The word AND in SuperBASIC is like the word 'and' in ordinary English Consider the
following program

100 REMark AND
110 PRINT "Enter two vatues" \ "1 for TRUE or 0 for FALSE"
120 INPUT raining, hole_in_roof
130 IF r a i n i n g AND hole_in_roof THEN PRINT "Get wet"

As in real life, you wtll only get wet if it is raining and there is a hole in the roof If one
(or both) of the simple logical variables

raining
hole in roof

is false then the compound logical expression

raining AND hole in roof

is also false It takes two true values to make the whole expression true This can be
seen from the rules below Only when the compound expression is true do you get wet

raining hole in roof raining AND hole in roof effect

FALSE FALSE FALSE DRY
FALSE TRUE FALSE DRY
TRUE FALSE FALSE DRY
TRUE TRUE TRUE WET

Rules lor AND

UH In everyday life the word 'or is used in two ways We can illustrate the inclusive use of
OR by thinking of a cricket captain looking for players He might ask "Can you bat or
bowP" He would be pleased if a player could do just one thing well but he would also
be pleased if someone could do both So it is in programming a compound expression
using OR is true if either or both of the simple statements or variables are true Try the
following program

100 REMark OR test
110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"
120 INPUT "Can you baf>", batsman
130 INPUT "Can you bowl1'", b o w l e r
140 IF batsman OR bowler THEN P R I N T "In the team"

54 12/84

Logic

You can see the effects of different combinations if answers in the rules below

batsman bowler batsman OR bowler effect

FALSE FALSE FALSE not in team
FALSE TRUE TRUE in the team
TRUE FALSE TRUE in the team
TRUE TRUE TRUE in the team

Rules for OR

When the inclusive OR is used a true value in either of the simple statements will produce
a true value in the compound expression If Ian Botham, the England all-rounder were
to answer the questions both as a bowler and as a batsman, both simple statements
would be true and so would the compound expression He would be in the team

If you write 0 for false and 1 for true you will get all the possible combinations by counting
in binary numbers

00
01
10
11

The word NOT has the obvious meaning NUT

NOT true is the same as false
NOT false is the same as true

However you need to be careful Suppose you hold a red triangle and say that it is

NOT red AND square

In English this may be ambiguous

If you mean

(NOT red) AND square

then for a red triangle the expression is false

If you mean

NOT (red AND square)

then for a red triangle the whole expression is true There must be a rule in programming
to make it clear what is meant The rule is that NOT takes precedence over AND so
the interpretation

(NOT red) AND square

is the correct one This is the same as

NOT red AND square

To get the other interpretation you must use brackets If you need to use a complex
logical expression it is best to use brackets and NOT if their usage naturally reflects what
you want But you can if you wish always remove brackets by using the following laws
(attributed to Augustus De Morgan)

NOT (a AND b) is the same as NOT a OR NOT b
NOT (a OR b) is the same as NOT a AND NOT b

For example

NOT (tall AND fair) is the same as
NOT tall OR NOT fair

NOT (hungry OR thirsty) is the same as
NOT hungry AND NOT thirsty

12/84 55

Logic

Test this by entering:

100 REMark NOT and brackets
110 P R I N T "Enter two values"\"1 for TRUE or 0 for FALSE"
120 INPUT "tall"; t a l l
130 INPUT "fai r"; f a i r
140 IF NOT (tall AND fair) THEN PRINT "FIRST"
150 IF NOT t a l l OR NOT f a i r THEN P R I N T "SECOND"

Whatever combination of numbers you give as input, the output will always be either
two words or none, never one This will suggest that the two compound logical expressions
are equivalent

XUn-bXClUSIVS UH Suppose a golf professional wanted an assistant who could either run the shop or give
golf lessons If an applicant turned up with both abilities he might not get the job because
the golf professional might fear that such an able assistant would try to take over. He
would accept a good golfer who could not run the shop. He would also accept a poor
golfer who could run the shop This is an exclusive OR situation: either is acceptable
but not both. The following program would test applicants:

100 R E M a r k XOR test
110 P R I N T "Enter 1 for yes or 0 for no."
120 INPUT "Can you run a shop'", shop
130 INPUT "Can you t e a c h golf", g o l f
140 IF shop XOR g o l f THEN PRINT "Suitable"

The only combinations of answers that will cause the output "Suitable" are (0 and 1)
or (1 and 0) The rules for XOR are given below

Able to run shop Able to teach Shop XOR teach effect

FALSE FALSE FALSE no job
FALSE TRUE TRUE gets the job
TRUE FALSE TRUE gets the job
TRUE TRUE FALSE no job

rules for XOR

PRIORITIES The order of priority for the logical operators is (highest first)

NOT
AND

OR, XOR

For example the expression

rich OR tall AND fair

means the same as

rich OR (fa// AND fair]

The AND operation is performed first. To prove that the two logical expressions have
identical effects run the following program

100 R E M a r k P r i o r i t i e s
110 PRINT "Enter three va lues"\"Type 1 for Yes and 0 for No"i
120 INPUT ri c h , t a l l , f a i r
130 IF r i c h OR t a l l A N D f a i r THEN P R I N T "YES"
140 IF r i c h OR (t a l l A N D f a i r) THEN PRINT "AYE"

Whatever combination of three zeroes or ones you input at line 120 the output will be
either nothing or1

Y E S
A Y E

You can make sure that you test all possibilities by entering data which forms eight three-
digit binary numbers 000 to 111

000 001 010 011 100 101 110111

^ 12/84

1 Place ten numbers in a DATA statement READ each number and if it is greater PROBLEMS ON
than 20 then print it PHAPTFR 1(1

2 Test all the numbers from 1 to 100 and print only those which are perfect squares
or divisible by 7

3 Toys are described as Safe (S), or Unsafe (U), Expensive (E) or Cheap (C), and
either for Girls (G), Boys (B) or Anyone (A) A trio of letters encodes the qualities
of each toy Place five such trios in a DATA statement and then search it printing
only those which a/e safe and suitable for girls

4 Modify program 3 to print those which are expensive and not safe

5 Modify program 3 to print those which are safe, not expensive and suitable for
anyone

CHAPTER 11
HANDLING

TEXT -
O I rilliVJO You have used string variables to store character strings and you know that the rules

for manipulating string variables or string constants are not the same as those for numeric
variables or numeric constants SuperBASIC offers a full range of facilities for manipulating
character strings effectively In particular the concept of string slicing both extends and
simplifies the business of handling substrings or sices of a strng

AobluNllNU Storage for string variables is allocated as it is required by a program For example

STRINGS thehnes

100 LET wordsS = "LONG"
110 LET wordsS = "LONGER"
120 PRINT wordsS

would cause the six letter word LONGER to be printed The first line would cause space
for four letters to be allocated but this allocation would be overruled by the second line
which requires space for six characters

It is, however, possible to dimension (i e reserve space for) a string variable, in which
case the maximum length becomes defined, and the variable behaves as an array

JUIININci OI HIlNub You may wish to construct records in data processing from a number of sources Suppose
for example that you are a teacher and you want to store a set of three marks for each
student in Literature, History and Geography The marks are held in variables as shown

As part of student record keeping you may wish to combine the three string values into
one six character string called mark$ You simply write

LET mark$ = t i t $ S hist$ & geog$

You have created a further variable as shown

But remember that you are dealing with a character string which happens to contain
number characters rather than an actual number Note that in SuperBASIC the & symbol
is used to join strings together whereas in some other BASICs the + symbol is used
for that purpose

UUrY A OI nlNo A string slice is part of a string It may be anything from a single character to the whole
CI ipc string In order to identify the string slice you need to know the positions of the required
OLIO[- characters

Suppose you are constructing a children's game in which they have to recognise a word
hidden in a jumble of letters Each letter has an internal number - an index -
corresponding to its position in the string Suppose the whole string is stored in the variable
]umble$, and the clue is Big cat

Handing Text

You can see that the answer is defined by the numbers 6 to 9 which indicate where
it is You can abstract the answer as shown

100 jumbleS = "APQOLLIONATSUZ"
110 LET an$ = j umb le$ (6 TO 9)
120 PRINT anS

Now suppose that you wish to change the hidden animal into a bull You can write two REPLACE A OI HlrJu
extra lines qi ipr

130 LET jumble$(6 TO 9) = "BULL"
140 PRINT jumbleS

The output from the whole five-line program is

LION
APQOLBULLATSUZ

All string variables are initially empty, they have length zero If you attempt to copy a
string into a string-slice which has insufficient length then the assignment may not be ,
recognised by SuperBASIC

If you wish to copy a string into a string-slice then it is best to ensure the destination
string is long enough by padding it first with spaces

100 LET subjects = "ENGLISH MATHS COMPUTING"
110 LET students = "
120 LET student$(9 TO 13) = sub jec t$ (9 TO 13)

We say that "BULL is a slice of the string APQOLBULLATSUZ' The defining phrase

(6 TO 9)

is called a slicer It has other uses Notice how the same notation may be used on both
sides of the LET statement If you want to refer to a single character it would be clumsy
to write

jumble$(6 TO 6)

just to pick out She "B1 {possibly as a clue) so you can write instead

jumble$(6}

to refer to a single character

Suppose you have a variable, mark$ holding a record of examination marks The slice OUbHUUN
giving the history mark may be extracted and scaled up, perhaps because the history
teacher has been too strict in the marking The following lines will extract the history mark

100 LET markS = "625671"
110 LET hi st$ = mark$(3 TO 4)

The problem now is that the value "56' of the variable, hist$ is a string of characters
not numeric data If you want to scale it up by multiplying by, say 1125, the value of
histS must be converted to numeric data first, SuperBASIC will do this conversion
automatically when we type

120 LET num = 1 .125 * h i s t S

Line 120 converts the string '56' to the number 56 and multiplies it by 1125 giving 63

Now we should replace the old mark by the new mark but now the new mark is still
the number 63 and before it can be inserted back into the original string it must be
converted back to the string '63' Again SuperBASIC will convert the number automatically
when we type

130 LET mark$(3 TO 4) = num
140 PRINT markS

The output from the whole program is

626371

which shows the history mark increased to 63

12/84 59

Handing Text

Strictly speaking it is illegal to mix data types in a LET statement It would be silly to write

LET num = "LION"

and you would get an error message if you tried but if you write

LET num = "65"

the system will conclude that you want the number 65 to become the value of num
and do that The complete program is

100 LET mark$ = "625671"
110 LET hist$ = mark$(3 TO 4)
120 LET num = 1 .125 * histS
130 LET mark$(3 TO 4) = num
140 PRINT marks

Again the output is the same1

In line 120 a string value was converted into numeric form so that it could be multiplied,
In line 130 a number was converted into string form This converting of data types is
known as type coercion

You can write the program more economically if you understand both string-slicing and
coercion now

100 LET mark$ = "625671"
110 LET mark$<3 TO 4) = 1 .125 * mark$(3 TO 4)
120 PRINT mark$

If you have worked with other BASICS you will appreciate the simplicity and power of
string-slicing and coercion

oEAnLrlINu A You can search a string for a given substring The following program displays a jumble
CTDIKIf^ of letters and invites you to spot the animal

100 REM A n i m a l S p o t t i n g
110 LET j u m b L e S = "SYNDICATE"
120 PRINT j u m b l e S
130 INPUT "What is the a n i m a l ? " i an$
140 IF an$ INSTR jumbLeS AND an$<1) = "C"
150 PRINT "Correct"
150 ELSE
170 PRINT "Not correct"
180 END IF

The operator INSTR, returns zero if the guess is incorrect If the guess is correct INSTR
returns the number which is the starting position of the string-slice, in this case 6

Because the expression

an$ INSTR j u m b L e S

can be treated as a logical expression the position of the string in a successful search
can be regarded as true while in an unsuccessful search it can be regarded as false

(Jl Hbn bl HINu You have already met LEN which returns the length {number of characters) of a string

FUNCTIONS You may wish to repeat a particular string or character several times For example if
you wish to output a row of asterisks, rather than actually enter forty asterisks in a PRINT
statement or organise a loop you can simply write

PRINT FILLS ("+",40)

Finally it is possible to use the function CHR$ to convert internal codes into string
characters For example

PRINT C H R $ (6 5)

would output A

pn 12/84

Lo£

A great deal of computing is concerned with organising data so that it can be searched CUMrAnlNu
quickly Sometimes it is necessary to sort it in to alphabetical order The basis of various CTDIMfiC
sorting processes is the facility for comparing two strings to see which comes first. OlnllNVJO
Because the letters A,B,C are internally coded as 65,66,67 tt is natural to regard as
correct the following statements

A is less than B
B is less than C

and because internal character by character comparison is automatically provided

CAT is less than DOG
CAN is less than CAT

You can write, for example

IF "CAT" < "DOG" THEN PRINT "MEOW"

and the output would be

MEOW

Similarly

IF "DOG" > "CAT" THEN PRINT "WOOF"

would give the output

WOOF

We use the comparison symbols of mathematics for string comparisons All the following
logical statements expressions are both permissible and true

'ALF ' < "BEN"

'KIT' > "BEN"

'KIT' <= "LEN'

'KIT1 >= "KIT'

'PAT1 >= "LEN1

'LEN1 <= "LEN1

'PAT' <> "PET1

So far, comparisons based simply on internal codes make sense, but data is not always
conveniently restricted to upper case letters We would like, for example.

Cat to be less than COT
and K2N to be less than K27N

A simple character by character comparison based on internal codes would not give
these results so SuperBASIC behaves in a more intelligent way The following program
with suggested mput and the output that will result, illustrates the rules for comparison
of strings

100 REMark comparisons
110 REPeat comp
120 INPUT "input a string" ' firsts
130 INPUT "input another string" i second*
140 IF firsts < seconds THEN PRINT "Less"
150 IF firsts > seconds THEN PRINT "Greater"
160 IF firsts = seconds THEN PRINT "Equal"
170 END REPeat comp

input output

CAT COT Greater
CAT CAT Equal
PET PETE Less
K6 K7 Less
K66 K7 Greater
K12N K6N Greater

12/84 61

Loge

> Greater than - Case dependent compansion, numbers compared in numerical
order

< Less than - Case dependent, numbers compared in numerical order

= Equals - Case dependent, strings must be the same

== Equivalent - String must be 'almost' the same, Case independent, numbers
compared in numerical order

>= Greater than or equal to - Case dependent, numbers compared in numerical
order

<= Less than or equal to - Case dependent, numbers compared in numerical order

PnUDLtMb UN 1 Place 12 letters, all different, in a string variable and another six letters in a second
CHAPTER 11 string variable Search the first string for each of the six letters in turn saying in
V/n each case whether it ts found or not found

2 Repeat using single character arrays instead of strings Place twenty random upper
case letters in a string and list those which are repeated

3 Write a program to read a sample of text all in upper case letters. Count the
frequency of each letter and print the results

"GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE
GOVERNMENT ARE TRUSTEES, AND BOTH THE TRUST AND THE
TRUSTEES ARE CREATED FOR THE BENEFIT OF THE PEOPLE. -
HENRY CLAY, 1829"

4 Write a program to count the number of words in the following text A word is
recognised because it starts with a letter and is followed by a space, full stop or
other punctuation character

"THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED -
CABLE FROM MARK TWAIN TO THE ASSOCIATED PRESS, LONDON
1896."

5 Rewrite the last program illustrating the use of logical variables and procedures

CHAPTER 12

SCREEN
SuperBASIC has so extended the scope and variety of facilities for screen presentation \J\J I r U I
that we describe the features in two sections Simple Printing and Screen

The first section describes the output of ordinary text Here we explain the minimal welt
established methods of displaying messages, text or numerical output Even in this
mundane section there is innovation in the concept of the intelligent space - an example
of combining ease of use with very useful effects

The second section is much bigger because it has a great deal to say The wide range
of features actually makes things easier For example you can draw a circle by simply
writing the word CIRCLE followed by a few details to define such things as its position
and size Many other systems require you to understand some geometry and trigonometry
in order to do what is, in concept, simple

Each keyword has been carefully chosen to relect the effect it causes WINDOW defines
an area of the screen BORDER puts a border round it, PAPER defines the background
colour, INK determines the colour of what you put on the paper

If you work through this chapter and get a little practice you will easily remember which
keyword causes which effect You will add that extra quality to your programming fairly
easily With experience you may see why computer graphics is becoming a new art form

The keyword PRINT can be followed by a sequence of print items A print item may ollVlrLt rnlN I lINu
be any of

text such as This is text
variables such as num wordS
expressions such as 3 * num, day$ & week$

Print items may be mixed in any print statement but there must be one or more print
separators between each pair Print separators may be any of

, No effect - it just separates print items

i Normally inserts a space between output items If an item will not fit on the current
line it behaves as a new line symbol If the item is at the start of line a space is
not generated

, A tabulator causes the output to be tabulated in columns of 8 characters

\ A new line symbol will force a new line

TO Allows tabbing

The numbers 1,2,3 are legitimate print items and are convenient for illustrating the effects
of print separators

Statement Effect

100 PRINT 1,2.3 1 2 3

100 print 1 f 2 i 3 i 1 2 3

100 PRINT 1\2\3 1
2
3

100 PRINT 1;2;3 123

100 PRINT "This is tex t " This TS t e x t

100 LET words = " " moves print position
110 PRINT wordS

100 LET num = 13 13
110 PRINT num

100 LET an$ = "yes"
110 PRINT "I say" i an$ I say yes

110 PRINT "Sum is" i 4 + 2 Sum is 6

12/84 63

Screen Output

You can position print output anywhere on the screen with the AT command

For example

AT 10,15 : PRINT "This is on row 10 at column 15"

The CURSOR command can be used to position the print output anywhere on the
screen's scale system. For example

CURSOR 100,150 : PRINT "this is 100 p i x e t grid units across and
150 down"

If you read the Keyword Reference Guide you may find it difficult to reconcile the section
on PRINT with the above description Two of the difficulties disappear if you understand
that

Text in quotes, variables and numbers are all strictly speaking, expressions; they
are the simplest (degenerate) forms of expressions

Print separators are strictly classified as print items

bCnCcN This section introduces general effects which apply whether you wish to output text or
graphics. The statement.

MODE 8 or MODE 256

will select MODE 8 in which there are.

256 pixels across numbered 0-511 (two numbers per pixel)
256 pixels down numbered 0-255
8 colours

A pixel is the smallest area of colour which can be displayed. We use the term, solid
colour because these start wrth ordinary solid-looking colours of which there are only
eight. However, by using various effects a variety of shades and textures can be achieved
If you are using your QL with an ordinary television set then the television set will not
be able to reproduce any of these extra effects

The statement.

MODE 4 or MODE 512

will select MODE 4 in which there are

512 pixels across numbered 0 to 511
256 pixels down numbered 0 to 255
4 colours

OULUUn You can select a colour by using the following code in combination with suitable keywords
such as PAPER, INK etc. Note that the numbers by themselves mean nothing. The
numbers are only interpreted as colours when they are used with PAPER and INK, etc.

8 Colour Mode Code 4 Colour Mode

black 0 black
blue 1 black
red 2 red
magenta 3 red
green 4 green
cyan 5 green
yellow 6 white
white 7 white

Colour Codes

For example INK 3 would give magenta in MODE 8.

STIPPLES You can if you wish specify two colours in a suitable statement For example 2,4 would
give a chequerboard stipple as shown. In each group of four pixels two would be red
(code 2) corresponding to the colour selected first The other two pixels would be a
contrast It is not really possible to display this effect on a domestic television set.

64 12/84

If you write.

INK 2,4

the mix colour is formed from the two codes 2 and 4. We will call these choices colour
and contrast!

INK colour, con t ras t

You can find out what the stipple effects are by trying them but we give more technical
details below.

100 REMark Colour/Contrast
110 FOR colour- = 0 TO 7 STEP 2
120 PAPER colour : CLS
140 FOR contrast = 0 TO 7 STEP 2
150 BLOCK 100,50,40,50,colour,contrast
160 PAUSE 50
170 END FOR contrast
180 END FOR colour

If you wish to try different stipples you can add a third code number to the colour
specification. For example

INK 2,4,1

would specify a red and green horizontal stripe effect A block of four pixels would be:

The possible effects are shown using red and contrast

Code Name Effect

0 Single pixel of contrast

1 Horizontal Stripes

2 Vertical Stripes

3 Chequerboard

Stipple Patterns

12/84 65

UULUUH You can specify a colour/stipple effect as described above by using three numbers For

PARAMETERS example

INK colour, contrast, stipple

could be used with

colour in range 0 to 7
contrast in range 0 to 7
stipple m range 0 to 3

You could achieve the same effect with a single number if you wish though it is not
so easy to construct See the Concept Reference Guide - colour

The following program will display all the possible colour effects

1GO R E M a r k C o l o u r E f f e c t s
110 FOR num = 0 TO 255
120 B L O C K 100,50,40,50,num
130 P A U S E 50
1 4 0 E N D F O R n u m

rnr un PAPER followed by one two or three numbers specifies the background For example

PAPER 2 (redj
PAPER 2,4 [red/green chequerboard]
PAPER 2,4,1 (red/green horizontal stnpesj

The colour will not be visible until something else is done, for example, the screen is
cleared by typing CLS

INK INK followed by one, two or three numbers specifies the colour for printing characters
lines or other graphics The colour and stipple effects are the same as for PAPER For
example

INK 2 [red ink]
INK 2,4 [red/green chequerboard ink 3}
INK 2,4,1 [red/green horizontal striped ink]

The ink will be changed for ail subsequent output

CLS CLS means clear the window to the current paper colour - like a teacher cleaning
a blackboard, except that it is electronic and multi-coloured

FLASHING You can make the ink colour flash in mode 8 only To turn flash on you might type

FLASH 1

and to turn it off

FLASH 0

Allowing flashing characters to overlap can produce alarming results

rlLhb You will have used Microdnves for storing programs and you will have used the
commands LOAD and SAVE Cartridges can be used for storing data as well as
programs The word file usually means a sequence of data records a record being
some set of related information such as name, address and telephone number

Two of the most widely used types of file are serial and direct access files Items in a
serial file are usually read in sequence starting with the first If you want the fiftieth record
you have to read the first forty-nine in order to find it On the other hand the fiftieth record
in a direct access file can be found quickly because the system does not need to work
through the earlier records to get it Pop music on a cassette is like a serial file but eight
pieces on a long playing record form a direct access file You can move the pick up
arm directly onto any of the eight tracks

The simplest possible type of file is just a sequence of numbers To illustrate the idea
we will place the numbers 1 to 100 in a file called numbers However, the complete
file name is made up of two parts

device name
appended information

66 12/S4

Screen Outf

Suppose that we wish to create the file, numbers on a cartridge in Microdrive 1 The
device name is

mdv1_

and the appended information is just the name of the file

numbers

So the complete file name is

mdv1_rtumbers

It is possible for a program to use several files at once, but it is more convenient to refer UHAIMNbLo
to a file by an associated channel number This can be any integer in the range 0 to
15 A file is associated with a channel number by using the OPEN statement or, if it
is a new file, OPEN NEW For example you may choose channel 7 for the numbers
file and write

You can now refer to the file just by quoting the number # 7 The complete program is

100 REMark Simple file
110 OPEN_NEW #7, mdv1_numbers
120 FOR number = 1 to 100
130 PRINT #7, number
140 END FOR number
150 CLOSE #7

The PRINT statement causes the numbers to be 'printed' on the cartridge file because
#7 has been associated with it. The CLOSE #7 statement is necessary because the
system has some internal work to do when the file has been used It also releases channel
7 for other possible uses After the program has executed type

DIP mdv1_

and the directory should show that the file numbers exists on the cartridge in Microdrive
mdvl

You also need to know that the file is correct and you can only be certain of this if the
file is read and checked The necessary keyword is OPEN)N, otherwise the program
for reading data from a file is similar to the previous one.

100 REMark Reading a f i l e
110 OPEN_IN #6, mdv1_numbers
120 FOR item = 1 TO 100
130 INPUT n, number
140 PRINT i number i
150 END FOR item
160 CLOSE #6

The program should output the numbers 1 to 100, but only if the cartridge containing
the file numbers is still in Microdrive moV1

You have seen one example of a device, a file of data on a Microdrive We may say, DEVICES AND
loosely that a file has been opened but strictly we mean that a device has been associated pu A MM pi C
with a particular channel Any further necessary information has also been provided. ^nnlMINL.LO
Certain devices have channels permanently associated with them by the system.

channel use

#0 OUTPUT - command window
INPUT - keyboard

1 OUTPUT - print window
#2 LIST - list output

12^84 67

DUnUbH You can place a border round the edge of the screen or a window For example

BORDER #5,6

would create a border round the channel #5 window It would be 6 units thick and
the size of the window would be correspondingly reduced The border would be
transparent protecting anything that was under tt You can specify a coloured border
by the usual method

80RDER # 5 , 6 , 2

would produce a red border You can make a border of other colours and textures by
the usual methods For example

BORDER 10

will add a 10 pixel thick transparent border to the current window (transparent because
no colour was specified) and

BORDER 2 ,0 ,7 ,0

will add a 2 pixel thick black and white stipple border

66 12/84

WINUUWo You can create a window of any size anywhere on the screen The device name for
a window is

scr

and the appended information is for example

The following program creates a window with the channel number 5 and fills it with
green (code 4) and then closes it

100 REMark Create a w i n d o w
110 OPEN #5, scr_400x200a20x50
120 PAPER # 5 , 4 : CLS #5
130 CLOSE #5

Notice that each window can have its own features such as paper ink etc The fact
that a window has been opened does not mean that it is the current default window

You can change the position or shape of an opened window without closing it and
reopening it Try adding two lines to the previous program

124 WINDOW #5,300,100,110,65
126 PAPER # 5 , 2 : CLS ttS

Re run the program and you will find a red window within the original green one This
red window is now the one associated with channel 5 see figure

Screen Output

You can specify a blocks size position and colour with a single statement It is placed uLUL/fx
in the pixel co ordinate system relative to the current window or screen For example

BLOCK #5 ,10 ,20 ,50 ,100 ,2

would create a block in the #5 window at a position 50 units across and 100 units
down It would be 10 units wide and 20 units high Its colour would be red

It is worth noting that WINDOW and BLOCK statements work without alteration in 4
and 8 colour mode (though the colours may vary) because the across values are always
on a 0 to 511 scale and there are always 256 pixel positions down

You can alter the size of characters For example SPECIAL PRiN I INu

C S I Z E 3 . 1 CSIZE

will give the largest possible characters and

CSIZE 0,0

will give the smallest The first number must be 01 2 or 3 and determines the width
The second must be 0 or 1 and determines the height The normal sizes are

MODE 4 CSIZE 0,0
MODE 8 CSIZE 2,0

The number of lines and columns available for each character size is dependent on
whether the output is viewed on a monitor or on a television set, the row and column
sizes given are for a monitor, those for a television set will be smaller and also will vary
between different televisions

If you are using low resolution mode the QL will not allow you to select a character size
smaller than default size

You can provide a special background for characters to make them stand out For STRIP
example

STRIP 7

will give a white strip while

STRIP 2 ,4 ,2

will give a red/green vertical striped strip All the normal colour combinations are possible

Normally printing occurs on the current paper colour You can alter this by using strip OVER

You can make further effects by using

OVER 1 1 prints in ink on a transparent strip
OVER -1 -1 prints in ink over existing display on screen

To revert to normal printing on current strip use

OVER 0

You can underline characters UNDER

UNDER 1 underlines all subsequent output in the current ink
UNDER 0 switches off underling

If you wish to draw reasonably true geometric figures on a TV or video screen you cannot oGALE uRAPrllCo
easily use a pixel-based system If you use scale graphics then the system will do the
necessary work to ensure that you can fairiy easily draw reasonable circles, squares
and other shapes

The default scale of the graphics coordinate system is 100 in the vertical direction and
whatever is needed in the across direction to ensure that shapes drawn with the special
graphics keywords (PLOT, DRAW CIRCLE) are true

The graphics origin is not the same as the pixel origin which is used to define the position
of windows and blocks. The graphics origin is at the bottom left hand corner of the current
screen or window

12/84 69

POINTS AND LINEo It is easy to draw points and lines using scale graphics Using a vertical scale of 100
a point near the centre of the window can be plotted with

POINT 60,50

The point (60 units across and 50 units up) will be plotted in the current ink colour

Similarly a line may be drawn with the statement

LINE 60,50 TO 80,90

Further elements can be added For example the following will draw a square

LINE 60,50 TO 70,50 TO 70,60 TO 60,60 TO 60,50

RELATIVE MODE Pair of coordinates such as

across, up

normally define a point relative to the origin 0,0 in the bottom left hand corner of a window
(or elsewhere if you choose) It is somettmes more convenient to define points relative
to the current cursor position For example the square above may be plotted in another
way using the LINE R statement which means

"Make all pairs of coordinates relative to the current cursor position'

POINT 60,50
LINE_R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

First the point 6050 becomes the origin, then, as lines are drawn, the end of a line
becomes the origin for the next one

The following program will plot a pattern of randomly placed coloured squares

100 REMark Coloured Squares
110 PAPER 7 : CLS
120 FOR sq = 1 TO 100
130 INK R N D d TO 6)
140 POINT RNDC90), RNDC90)
150 LINE_R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10
160 END FOR sq

The same result could be achieved entirety with absolute graphics but it would require
a little more effort

UnvLhu AMU If you want to draw a circle you need to specify

ELLIPSES position say 5050
radius say 40

The statement

C I R C L E 50 ,50 ,40

will draw a circle with trie centre at position 50,50 and radius (or height) 40 units, see figure

70 12/84

If you add two more parameters

eg CIRCLE 50,50,40,.5

You will get an ellipse The keywords CIRCLE and ELLIPSE are interchangeable

The height of the ellipse ts 40 as before but the horizontal 'radius' is now only 05 of
the height. The number 05 is called the eccentricity If the eccentricity is 1 you get a
circle if it is less than 1 and greater than zero you get an ellipse If you want to tilt an
ellipse you can change the fith parameter, for example

C I R C L E 5 0 , 5 0 , 4 0 , . 5 , 1

This will tilt !he ellipse anti-clockwise by one radian, about 57 degrees, as shown in figure

A straight angle is 180 degrees or PI radians, so you can make a pattern of ellipses
with the program

100 FOR rot = 0 TO 2*PI STEP PI/6
110 C I R C L E 50,50,40,0.5,rot
120 END FOR rot

12/84

Screen Output

The order of the parameters for a circle or ellipse is

centre_across centre_up, height, [eccentricity angle]

The last two parameters are optional and this is indicated by putting them inside square
brackets ([])

Example Write a program which does the following

1 Open a window 100x100 at (100,50)

2 Scale 100 in mode 8

3 Select black paper and clear window

4 Make green border 2 units wide

5 Draw a pattern of six coloured circles

6 Close the window

100 REMark pattern
110 MODE 8
120 OPEN #7, scr_100x100a 100x50
130 SCALE #7,100,0,0
140 PAPER #7,0 : CIS #7
150 BORDER #7,2,4
160 FOR colour = 1 TO 6
170 INK #7, colour
180 LET rot = 2*PI/colour
190 CIRCLE #7,50,50,30,0.5,rot
200 END FOR colour
210 CLOSE m

You can get some interesting effects by altering the program For example try the
amendments

160 FOR c o l o u r = 1 TO 100
180 LET rot = colour*PI/5Q

AHC/O If you want to draw an arc you need to decide

starting point
end point
amount of curvature

The first two items are straightforward but the amount of curvature ts not so easy You
can do it by drawing accurately or by trial and error but you must decide what angle
the arc subtends and then specify the angle in radians An angle of 1 5 radians would
give a sharp bend and a small angle would give a very gentle curvature Try, for example

ARC 10,50 TO 50,90, 1

which gives a moderate curvature in the current INK colour

Screen Output

You can fill a closed shape with the current INK colour by simply writing FILL

FILL 1

before the shape is drawn The following program produces a green circle

INK 4
FILL 1
C I R C L E 50,50,30

The FILL command works by drawing touching horizontal lines between suitable points

The statement

FILL 0

will turn off the FILL effect

You can scroll or pan the display in a window like a film cameraman You arrange scrolling SCROLLINo AND
in terms of pixels A positive number of pixels indicates upwards scrolling thus PANNING

S C R O L L 10

moves the display in the current window or screen 10 pixels downwards

S C R O L L -8

Moves the display 8 pixels up You can add a second parameter to induce part scrolling

S C R O L L -8, 1

wtll scroll the part above (not including) the cursor line and

S C R O L L -8,2

wilt scroll the part below (not including) the cursor line

As scrolling occurs, the space left by movement of the display is ftlled with the current
paper colour A second parameter 0 has no effect

You can PAN the display in the current window left or right The RAN statement works
in a similar manner to SCROLL but

PAN 40 moves display right
PAN -40 moves display left

A second parameter gives a partial PAN

0 - whole screen
3 - the whole of the tine occupied by the cursor
4 - the right hand side of the line occupied by the cursor

The area of the cursor is also included

If you are using stipples or are in 8 colour mode then windows must be panned or
scrolled in multiples of 2 pixels

1 Write a program which draws a Snakes and Ladders' grid of ten rows of ten PROBLEMS ON

squares CHAPTER 12
2 Place the numbers 1 to 100 in the squares starting at the bottom left and place

F for finish in the last square

3 Draw a dartboard on the screen It should consist of an outer ring which could
hold numbers A doubles' ring and triples' ring as shown and a centre consisting
of a bull's eye' and a ring around it

12/84 ra

CHAFER 13
AMriAYo Suppose you are a prison governor and you have a new prison block which is called

the West Block It is ready to receive 50 new prisoners You need to know which prisoner
(known by his number) is in which cell You could give each cell a name but it is simpler
to give them numbers 1 to 50

In a computing simulation we wtll imagine just 5 prisoners with numbers which we can
put in a DATA statement

DATA 50, 37, 86, 41, 32

We set up an array of variables which share the name, west, and are distinguished by
a number appended in brackets

It is necessary to declare an array and give its dimensions with a DIM statement

DIM w e s t (5)

This enables SuperBASIC to allocate space, which might be a large amount After the
DIM statement has been executed the five variables can be used

The convicts can be READ from the DATA statement into the five array variables

FOR cell = 1 TO 5 : READ wes t (ce l l)

We can add another FOR loop with a PRINT statement to prove that the convicts are
in the cells

The complete program is shown below

100 REMark Pnsoners
110 DIM west(S)
120 FOR cell = 1 TO 5 : READ westCceLl)
130 FOR c e l l = 1 TO 5 : PRINT cell i west<ce 11)
UO DATA 50, 37, 86, 41, 32

The output from the program is

1 50
2 37
3 86
4 41
5 32

The numbers 1 to 5 are called subscripts of the array name, west The array west is
a numeric array consisting of five numeric array elements

You can replace line 130 by

130 PRINT west

This wi!! output the values only

0
50
37
86
41
32

The zero at the top of the list appears because subscripts range from zero to the declared
number We will show later how useful the zero elements in arrays can be

Note also that when a numeric array is DIMensioned its elements are all given the value
zero

74 12/84

String arrays are similar to numeric arrays but an extra dimension m the DIM statement OlRlNu AHnAYo
specifies the length of each string variable in the array Suppose that ten of the top players
at Royal Birkdale for the 1982 British Go^hampionship were denoted by their first names
and placed in DATA statements

DATA "Tom", "Graham" , " S e v v y " , " J a c k " , "Lee"
DATA " N i c k " , "Bernard" , "Ben", "Gregg", "Hal"

You would need ten different variable names but if there were a hundred or a thousand
players the job would become impossibly tedious An array is a set of variables designed
to cope with problems of this kind Each variable name consists of two parts

a name according to the usual rules
a numeric part called a subscript

Write the variable names as

f la t$(1) , f L a t $ (2) , f l a t $ < 3 > etc

Before you can use the array variables you must tell the system about the array and
its dimensions '

DIM f L a t $ C 1 0 , 8)

This causes eleven (0 to 10) variables to be reserved for use in the program Each string
variable in the array may have up to eight characters DIM statements should usually
be placed all together near the beginning of the program Once the array has been
declared in a DIM statement all the elements of the array can be used One important
advantage is that you can give the numeric part (the subscript) as a numeric variable
You can write

FOR number =1 TO 10 : READ f lat$(number)

This would place the golfers in their flats' '

You can refer to the variables in the usual way but remember to use the right subscript
Suppose that Tom and Sevvy wished to exchange flats In computing terms one of them
Tom say, would have to move into a temporary flat to allow Sevvy time to move You
can write

LET temp$ = flat$(1): R E M a r k Tom into temporary
LET flat$(1> = ftat$(3): REMark Sevvy into flat$(1)
LET flat$(3> = tempS: R E M a r k Tom i n t o flat$(3)

The following program places the ten goifers in an array named flats and prints the
names of the occupants with their flat numbers' (array subscripts) to prove that they
are in residence The occupants of flats 1 and 3 then change places The list of occupants
is then printed again to show that the exchange has occurred

100 REMark G o l f e r s ' F l a t s
110 DIM flat$C10,8)
120 FOR number = 1 TO 10 : R E A D f l a t S C n u m b e r)
130 p r i nt l i s t
140 exchange
150 p r i n t l i s t
160 REMark End of main program
170 D E F i n e PROCedure p r i n t l i s t
180 FOR num = 1 TO 10 : PRINT num, f lat$(num)
190 END D E F i n e
200 D E F i n e PROCedure exchange
210 LET temp$ = f lat$(1)
220 LET f l a t $ (1 > = f lat$(3)
230 LET f la t$(3> = temp$
240 END DEFine
250 DATA "Tom", "Graham". "Sevvy" , "Jack" , "Lee"
260 D A T A "Nick" , "Bernard", "Ben", "Greg", "Hal"

1?/R4 7S

I VVU UIMtNolUNAL Sometimes the nature of a problem suggests two dimensions such as 3 floors of 10

ARRAYS flats ratner tnan Just a single row of 30.

Suppose that 20 or more golfers need flats and there is a block of 30 flats divided into
three floors of ten flats each. A realistic method of representing the block would be with
a two-dimensional array. You can think of the thirty variables as shown below:

Assuming DATA statements with 30 names, a suitable way to place the names in the
flats is:

120 FOR floor = 0 TO 2
130 FOR num = 0 TO 9
140 READ f L a t s $ (f L o o r , num)
150 END FOR num
160 END FOR floor

You also need a DIM statement:

ZO DIM f l a t$C2 ,9 ,8)

which shows that the first subscript can be from 0 to 2 (floor number) and the second
subscript can be from 0 to 9 (room number). The third number states the maximum
number of characters in each array element

We add a print routine to show that the golfers are in the flats and we use letters to
save space.

100 REMark 30 G o l f e r s
110 DIM flat$C2,9,8)
120 FOR floor = 0 TO 2
130 FOR num = 0 TO 9
140 R E A D f l a t $ (f L o o r , n u m) : R E M a r k Golfer goes in
150 END FOR num
160 END FOR floor
170 REMark End of input
180 FOR floor = 0 TO 2
190 PRINT "Floor number" ' floor

12/84

200 FOR num = 0 TO 9
210 P R I N T ' F l a t ' ' num i f l a t S C f l o o r , n u m)

220 END FOR num
230 END FOR floor

240 DATA ''A'V'B'V'C'V'D'VE'V'F'V'G'V'H'V'rV'J"
250 DATA "K",''L","M","N","0","P","Q","R","S","T"
260 DATA "U'vv'V'W'V'X'V'Y'V'Z", "3", "£","$","%"

The output starts

F Loor number 0
F l a t 0 A
F l a t 1 B
F l a t 2 C

and continues giving the thirty occupants

You may find this section hard to read though it is essentially the same concept as string- AnHAY oLIUIlNb
slicing You will probably need string slicing if you get beyond the learning stage of
programming The need for array slicing is much rarer and you may wish to omit this
section particularly on a first reading

We now use the golfers' flats to illustrate the concept of array slicing The flats will be
numbered 0 to 9 to keep to single digits and names will be single characters for space
reasons

Given the above values the following are array slices

f la ts (1,3) Means a single array element with value N
f L a t $ (1,1 TO 6) Means six elements with values L M N 0 P Q

Array Element Value

f l a t $ C 1 , 1) L
f l a t $ (1 , 2) M
f l a t $ (1 , 3) N
f l a t $ < 1 , 4) 0
f la tS(1 ,5) P
f l a t$ (1 ,6) Q

i i t t f-n Means flats (1,0 TO 9)
ten elements with values K L M N O P Q R S T

In these examples a range of values of a subscript can be given instead of a single
value If a subscript is missing completely the complete range is assumed In the third
example the second subscript is missing and it is assumed by the system to be 0 TO 9

The techniques of array slicing and string slicing are similar though the latter is more
widely applicable

PROBLEMS ON 1 SORTING
CHAPTER 13 Place ten numbers in an array by reading from a DATA statement Search the array

to find the lowest number Make this lowest number the value of the first element
of a new array Replace it in the first array with a very large number Repeat this
process making the second lowest number the second value in the new array
and so on until you have a sorted array of numbers which should then be printed

2 SNAKES AND LADDERS

Represent a snakes and ladders game with a 100 element numeric array Each
element should contain either

zero

or a number in the range 10 to 90 meaning that a player should transfer to
that number by going up a ladder' or down a snake

or the digits 1 2, 3 etc to denote a particular players position

Set up six snakes and six ladders by placing numbers in the array and simulate
one solo run by a single player to test the game

3 CROSSWORD BLANKS

Crosswords usually have an odd number of rows or columns in which the black
squares have a symmetrical pattern The pattern is said to have rotational symmetry
because rotation through 180 degrees would not change it

Note that after rotation through 180 degrees the square in row 4, column 1 could
become the square in row 2 column 5 That is row 4, column 1 becomes row
2 column 5 in a 5 x 5 grid

Write a program to generate and display a symmetrical pattern of this kind

4 Modify the crossword pattern so that there are no sequences, across or down,
of less than four white squares

5 CARD SHUFFLE

Cards are denoted by the numbers 1 -52 stored in an array They can be converted
easily to actual card values when necessary The cards should be 'shuffled' as
follows

Choose any position in range 1-51 eg 17

Place the card in this position in a temporary store

Shunt all the cards in positions 52 to 18 down to positions 51 to 17

Place the chosen card from the temporary store to position 52

Deal similarly with the ranges 1-50, 1-49 down to 1-2 so that the pack
is well shuffled

Output the result of the shuffle

6 Set up six DATA statements each containing a surname, initials and a telephone
number (dialling code and local number) Decide on a suitable structure of arrays
to store this information and READ it into the arrays

PRINT the data using a separate FOR loop and explain how the input format
(DATA), the internal format (arrays) and output format are not necessarily alt the same

12'84

CHAFER 14
PROGRAM

In this chapter we go again over the ground of program structure loops and decisions O I MUw I U Fit
or selection We have tried to present things in as simple a way as possible but
SuperBASIC is designed to cope properly with the simple and the complex and all levels
in between Some parts of this chapter are difficult and if you are new to programming
you may wish to omit parts The topics covered are

Loops
Nested loops
Binary decisions
Multiple decisions

The latter parts of the first section, Loops, get difficult as we show how SuperBASIC copes
with problems that other languages simply ignore Skip these parts if you feel so inclined
but the other sections are more straightforward

In this section we attempt to illustrate the well-known problems of handling repetition LUOrO
with simulations of some Wild West scenes The context may be contrived and trivial
but it offers a simple basis for discussion and it illustrates difficulties which arise across
the whole range of programming applications

A bandit is holed up in the Old School House The sheriff has six bullets m his gun EXAMPLE 1
Simulate the firing of the six shots

100 REMark Western FOR Program 1
110 FOR bullets = 1 TO 6
120 PRINT "Take aim"
130 PRINT "Fi re shot"
140 END FOR bullets

100 REMark Western REPeat Program 2
110 LET bullets = 6
120 REPeat bandit
130 PRINT "Take aim"
140 PRINT "Fi re shot"
150 LET bullets = bullets - 1
160 IF bullets = 0 THEN EXIT
170 END REPeat bandit

Both these programs produce the same output

Take ai ra
Fi re a shot

is printed six times

If, in each program the 6 is changed to any number down to 1 both programs still work
as you would expect But what if the gun is empty before any shots have been fired9

Suppose that someone has secretly taken all the bullets out of the sheriff's gun What EXAMPLE 2
happens if you simply change the 6 to 0 in each program?

100 REMark Western FOR Zero Case Program 1
110 FOR bullets = 1 to 0
120 PRINT "Take aim--
ISO PRINT "Fire a shot"
140 END FOR buI lets

This works correctly There is no output The 'zero case behaves properly in SuperBASiC

100 REMark Western REPeat F a i L s Program 2
110 LET bullets = 0
120 REPeat bandit
130 PRINT "Take aim"
140 PRINT "Fire shot"
150 LET bullets = bullets - 1
160 IF bullets = 0 THEN EXIT bandit
170 END REPeat bandit

12/84 79

Program Structure

The program fails in two ways

1 Take a i m
F i r e a shot

is printed though there were never any bullets

2 By the time the variable bullets, is tested in line 160 it has the value -1 and it
never becomes zero afterwards The program loops indefinitely You can cure the
infinite looping by re-writing line 160

160 IF b u l l e t s < 1 THEN EXIT b a n d i t

There is an inherent fault in the programming which does not allow for the possible
zero case This can be corrected by placing the conditional EXIT before the PRINT
statements

Program 3 100 R E M a r k W e s t e r n REPeat Zero Case
110 LET b u t lets = 0
120 REPeat B a n d i t
130 IF bullets = 0 THEN EXIT B a n d i t
140 P R I N T "Take a i m "
150 PRINT "Fire shot"
160 LET b u l l e t s = b u l l e t s -1
170 E N D REPeat B a n d i t

This program now works properly whatever the initial value of bullets as long as it is
a positive whole number or zero Method 2 corresponds to the REPEAT UNTIL loop
of some languages Method 3 corresponds to the WHILE ENDWHILE loop of some
languages However, the REPeat...END REPeat with EXIT is more flexible than either
or the combination of both

If you have used other BASlCs you may wonder what has happened to the NEXT
statement. We will re-introduce it soon but you will see that both loops have a similar
structure and both are named

FOR name = (opening keyword) REPeat name
(statements) (content) (statements)

END FOR name (closing keyword) END REPeat name

In addition the REPeat loop must normally have an EXIT amongst the statements or
it will never end

Note also that the EXIT statement causes control to go to the statement which is
immediately after the END of the loop

A NEXT statement may be placed in a loop It causes control to go to the statement I
which is just after the opening keyword FOR or REPeat It should be considered as
a kind of opposite to the EXIT statement By a curious coincidence the two words, NEXT
and EXIT both contain EXT Think of an EXTension to loops and

N means 'Now start again
I means Its ended'

EXAMPLE 3 The situation is the same as in example 1 The sheriff has a gun loaded with six bullets
and he is to fire at the bandit but two more conditions apply

1 If he hits the bandit he stops firing and returns to Dodge City

2 If he runs out of bullets before he hits the bandit, he tells his partner to watch the
bandit while he (sheriff) returns to Dodge City

Program 1 100 R E M a r k W e s t e r n FOR w i t h E p i l o g u e
110 FOR b u l l e t s = 1 TO 6
120 PRINT "Take aim"
130 PRINT "FIRE A SHOT"
140 LET h i t = RNDC9)
150 IF h i t = 7 THEN E X I T b u l l e t s
160 NEXT b u l l e t s ,
170 PRINT "Watch B a n d i t " '
180 END FOR b u l l e t s
190 PRINT "Return to Dodge C i t y '

nn 12/84

Program Structure

In this case, the content between NEXT and END FOR is a kind of epilogue which
is only executed if the FOR loop runs its full course If there is a premature EXIT the
epilogue is not executed

The same effect can be achieved with a REPeat loop though it is not necessarily the
best way to do it However, it is worth looking at (perhaps at a second reading) if you
want to understand structures which are simple enough to use in simple ways and
powerful enough to cope with awkward situations when they arise

100 REMark W e s t e r n REPeat w i t h Epi Logue Program 2
110 LET bullets = 6
120 REPeat Bandit
130 PRINT "Take aim"
140 PRINT "Fi re shot"
150 LET hit = R N O C 9)
160 IF hit = 7 THEN EXIT Bandit
170 LET bul lets = bul lets -1
180 IF bul lets 0 0 THEN NEXT Bandit
190 PRINT " W a t c h Band!t"
200 END REPeat Bandit
210 P R I N T "Return to Dodge C i t y "

The program works property as long as the sheriff has at least one bullet at the start
It fails if line 20 reads

110 LET bul lets = 0

You might think that the sheriff would be a foot to start an enterprise of this kind if he
had no bullets at all, and you would be right We are now discussing how to preserve
good structure in the most complex type of situation We have at least kept the problem
context simple, we know what we are trying to do Complex structural problems usually
arise in contexts more difficult than Wild West simulations But if you really want a solution
to the problem which caters for a possible hit, running out of bullets and an epilogue,
and also the zero case then add the following line to the above program

125 IF b u l l e t s = 0 THEN PRINT "Watch Bandit" : E X I T b a n d i t

We can conceive of no more complex type of problem than this with a single loop
SuperBASIC can easily handle it if you want it to

Consider the following FOR loop which PLOTS a row of points of various randomly Nbol tzU LUUrO
chosen colours (not black)

100 REMark Row of p i x e l s
110 PAPER 0 : CIS
120 LET up = 50
130 FOR a c r o s s = 20 TO 60
140 INK R N D C 2 TO 7)
150 POINT ac ross , up
160 END FOR a c r o s s

This program plots a row of points thus

If you want to get say 51 rows of points you must plot a row for values up from 30 to
80 But you must always observe the rule that a structure can go completely within another
or it can go properly around it It can also follow in sequence, but it cannot 'mesh' with
another structure Books about programming often show how FOR loops can be related
with a diagram like

Program Structure

In SuperBASIC the rule applies to all structures You can solve all problems using them
properly We therefore treat the FOR loop as an entity and design a new program

FOR up = 30 TO 80

FOR across = 20 TO 60
INK RND(2 To 7)

POINT across up
END FOR across

END FOR up

When we translate this into a program we are entitled not only to expect it to work but
to know what it will do It will plot a rectangle made up of rows of pixels

100 REMark Rows of p i x e l s
110 PAPER 0 : CL.S
120 FOR up = 30 TO 80
130 FOR across = 20 TO 60
140 INK RNO(2 TO 7)
150 POINT across,up
160 END FOR across
170 END FOR up

Different structures may be nested Suppose we replace the inner FOR loop of the above
program by a REPeat loop We will terminate the REPeat loop when the zero colour
code appears for a selection in the range 0 to 7

100 REMark REPeat in FOR
110 PAPER 0 : CIS
120 FOR up = 30 TO 80
130 LET across = 19
140 REPeat dots
150 LET colour = RNDC7)
160 INK colour
170 LET across = across + 1
180 POINT across, up
190 IF colour = 0 then EXIT dots
200 END REPeat dots
210 END FOR up

Much of the wisdom about program control and structure can be expressed in two rules

1 Construct your program using only the legitimate structures for loops and decision-
making

2 Each structure should be properly related in sequence or wholly within another

DllNAHY UtUolUNo The three types of binary decision can be illustrated easily in terms of what to do when
it rains

i 100 REMark Short form IF
110 LET rain = RNDCO TO 1)
120 IF rain THEN PRINT "Open brolly"

ii 100 REMark Long form IF...END IF
110 LET rain = RNDCO TO 1)
120 IF rain THEN
130 PRINT "Wear coat"
140 PRINT "Open brolly"
150 PRINT "Walk fast"
160 END IF

til 100 REMark Long form IF ... ELSE... END IF
110 LET rain = RNDCO TO 1)
120 IF rain THEN
130 PRINT "Take a bus"
140 ELSE
150 PRINT "Walk"
160 END IF

8? 12/84

Program Structure

All these are binary decisions The first two examples are simple either something
happens or it does not The third is a general binary decision with two distinct possible
courses of action both of which must be defined

You can omit THEN in the long forms if you wish In the short form you can substitute
for THEN

Consider a more complex example in which it seems natural to nest binary decisions EXAMPLE
This type oi nesting can be confusing and you should only do it if it seems the most
natural thing to do Careful attention to layout particularly indenting is especially important

Analyse a piece of text to count the number of vowels consonants and other characters
Ignore spaces For simplicity the text is all upper case

"COMPUTER HISTORY WAS MADE IN 1984" Data

Read in the data Design
FOR each character

IF letter THEN
IF vowel

increase vowel count
ELSE

increase consonant count
END IF

ELSE
IF not space THEN increase other count

END IF
END FOR
PRINT results

100 REMark Charac te r Counts Program
110 RESTORE 290
120 READ tex t$
130 LET vowe ls = 0 : cons = D : o the rs = 0
140 FOR num = 1 TO L E N C t e x t D
150 LET ch$ = tex tS(num)
160 IF ch$ >= "A" AND ch$ <= "Z"
170 IF ch$ INSTR "AEIOU"
180 LET v o w e l s = v o w e l + 1
190 ELSE
200 LET cons = cons + 1
210 END IF
220 ELSE
230 IF ch$ <> " " THEN others = others + 1
240 END IF
250 END FOR num
260 PRINT "Vowel count is" > vowels
270 PRINT "Consonent count is" i cons
280 PRINT "Other count is" < others
290 DATA "COMPUTER HISTORY WAS MADE IN 1984"

Vowel count is 9 Output
Consonant count is 15
Other count is 4

MULTIPLE
Where there are three or more possible actions and none is dependant on a previous UbUlolUINo
choice the natural structure to use is SELect which enables selection from any number CC| o«t
of possibilities " OLLeu

A magic snake grows without limit by adding a section to its front Each section may EXAMPLE
be up to twenty units long and may be a new colour or it may remain the same Each
new section must grow in one of the directions North, South East or West The snake
starts from the centre of the window

12/84 ^

Method At any time while the snake is still on the screen you choose a random length and ink
colour easily. The direction may be selected by a number 1,2,3 or 4 as shown:

Design Select PAPER
Set snake to centre of window
REPeat

Choose direction, colour, length of growth
FOR unit = 1 to growth

Make snake grow, north, south, east or west
IF snake is off window THEN EXIT

END FOR
END REpeat
PRINT end message

Program 100 REMark Mag ic Snake
110 PAPER 0 : CLS
120 LET a c r o s s = 50 : up = 50
130 REPeat snake
140 LET d i rec t ion = R N D C 1 TO 4) : colour = RND(2 TO 7)
150 LET g rowth = R N D C 2 TO 20)
160 INK colour
170 FOR unit = 1 TO g row th
180 S E L e c t ON d i rec t ion
190 ON di rec t ion = 1
200 LET up = up + 1
210 ON di rec t ion = 2
220 LET a c r o s s = a c r o s s + 1
230 ON di rec t ion = 3
240 LET up = up - 1
250 ON di rec t i on = 4
260 LET across = a c r o s s - 1
270 END S E L e c t
280 IF across<1 OR across>99 OR up<1 OR up>99 THEN EXIT snake
290 POINT across ,up
300 END FOR unit
310 END REPeat snake
320 PRINT "Snake of f edge"

The syntax of the SELect ON structure also allows for the possibility of selecting on a
list of values such as

5,6,8,10 TO 13

It is also possible to allow for an action to be executed if none of the stated values is
found. The full structure is of the form given below.

84 12/84

SELect ON num LONG FORM
ON num = list of values

statements
ON num = list of values

statements

ON num = REMAINDER
statements

END SELect

where num is any numertc variable and the REMAINDER clause is optional

There is a short form of the SELect structure For example SHORT FORM

100 INPUT num
110 SELect ON num = 0 TO 9 : PRINT "digit"

will perform as you would expect <

1 Store 10 numbers in an array and perform a'bubble-sort'This is done by comparing rnUbLClVlo UN
the first pair and exchanging if necessary, the second pair (second and third PHAPTER 14
numbers), up to the ninth pair (ninth and tenth numbers) The first run of nine v/nnr tn It
comparisons and possible exchanges guarantees that the highest number will reach
its correct position Another eight runs will guarantee eight more correct positions
leaving only the lowest number which must be in the only (correct) position [eft
The simplest form of bubble sort' of ten numbers requires nine runs of nine
comparisons

2. Consider ways of speeding up bubblesort but do not expect that it will ever be
very efficient

3 An auctioneer wishes to sell an old clock and he has instructions to invite a first
bid of £50 If no-one bids he can come down to £40, £30, £20, but no lower, in
an effort to start the bidding, if no-one bids, the clock is withdrawn from the sale
When the bidding starts, he takes only £5 increases until the final bid is made
If the final bid is £35 (the 'reserve price) or more, the clock is sold Otherwise it
is withdrawn

Simulate the auction using the equivalent of a six-sided die throw to start the bidding
A 'six' at any of the starting prices will start it off

When the bidding has started there should be a three out of four chance of a
higher bid at each invitation.

4 In a wild west shoot-out the Sheriff has no ammunition and wishes to arrest a
gunman camped in a forest He rides amongst the trees tempting the gunman
to fire He hopes that when six shots have been fired he can rush in and overpower
the gunman as he tries to re-load Simulate the encounter giving the gunman a
one-twentieth chance of hitting the Sheriff with each shot If the Sheriff has not
been hit after six shots he will arrest the gunman

5 The Sheriff's instructions to his Deputy are

"If the gun is empty then re-load it and if it ain't then keep on firing until you
hit the bandit or he surrenders If Mexico Pete turns up, get out fast"

Wrtte a program which caters properly for all these situations

Whatever happens, return to Dodge City
If Mexico Pete turns up, return immediately
If the gun is empty, reload it
If the gun is not empty, ask the bandit to surrender
If the bandit surrenders, arrest him
If he doesn't surrender, fire a shot
If the bandit is hit, arrest him and fix his wound.

Assume an unlimited supply of ammunition Use a simulated 'twenty-sided die1

and let a seven mean surrender' and a thirteen' mean the bandit is hit

12/84 85

CHAPTER 15
PROCEDURES

AND
r U N U I IUIM O In the first part of this chapter we explain the more straightforward features of SuperEASIC's

procedures and functions We do this with very simple examples so that you can
understand the working of each feature as it is described Though the examples are
simple and contrived you will appreciate that, once understood, the ideas can be applied
m more complex situations where they really matter

After the first part there is a discussion which attempts to explain Why procedures'
If you understand, more or less, up to that point you will be doing well and you should
be able to use procedures and functions with increasing effectiveness

SuperBASIC first allows you to do the simpler things in simple ways and then offers you
more if you want it Extra facilities and some technical matters are explained in the second
part of this chapter but you could omit these, certainly at a first reading and still be
in a stronger position than most users of older types of BASIC

VALUh You have seen in previous chapters how a value can be passed to a procedure Here

PARAMETERS IS another example

EXAMPLE In "Chans Chinese Take-Away" there are just six items on the menu

Rice Dishes Sweets

1 prawns 4 ice
2 chicken 5 fritter
3 special 6 iychees

Chan has a simple way of computing prices He works in pence and the prices are-

for a rice dish 300 + 10 times menu number
for a sweet 12 times menu number

Thus a customer who ate special rice and an ice would pay

300 + 1 0 * 3 + 1 2 * 4 = 378 pence

A procedure, item, accepts a menu number as a value parameter and prints the cost

Program 100 REMark Cost of Dish
110 item 3
120 item 4
130 OEFine PROCedure item(num)
140 IF num <= 3 THEN LET p r i c e = 300 + 10*num
150 IF num >= 4 THEN LET price = 12*num
160 PRINT > price i
170 END DEFine

Output 330 48

In the main program actual parameters 3 and 4 are used. The procedure definition has
a formal parameter, num, which takes the value passed to it from the main program.
Note that the formal parameters must be in brackets, but that actual parameters need
not be

EXAMPLE Now suppose the working variable, price, was also used in the mam program, meaning
something else, say the price of a glass of lager, 70p. The following program fails to
give the desired result

86 12'84

Procedures and Functions

100 REMark G l o b a l p r i c e Program
110 LET p r i c e = 70
120 i tem 3
130 item A
140 PRINT i pr ice i
150 DEFine PROCedure i t e m C n u m)
160 IF num <= 3 THEN LET p r i c e = 300 + 10*num
170 IF num >= 4 THEN LET p r i c e = 12*num
180 PRINT i pr ice '
190 END DEFine

330 48 48 Output

The price of the lager has been altered by the procedure We say that the variable, price,
is global because it can be used anywhere in the program

Make the procedure variable, price, LOCAL to the procedure This means that EXAMPLE
SuperBASIC will treat it as a special variable accessible only within the procedure The
variable, price in the main program will be a different thing even though it has the same
name

100 REMark LOCAL price Program
110 LET p r i c e = 70
120 item 3
130 item 4
140 PRINT i p r i c e i
150 D E F i n e PROCedure item(num)
160 L O C a L p r i c e
170 IF num <= 3 THEN LET p r i c e = 300 + 10*num
180 IF num >= 4 THEN LET p r i c e = 12*num
190 PRINT ' p r i c e i
200 END D E F i n e

330 48 70 Output

This time everything works properly Line 70 causes the procedure variable price to
be internally marked as belonging' only to the procedure, item The other variable, price
is not affected You can see that local variables are useful things

Local variables are so useful that we automatically make procedure formal parameters EXAMPLE
local Though we have not mentioned it before parameters such as num in the above
programs cannot interfere with main program variables To prove this we drop the LOCAL
statement from the above program and use num for the price of lager Because num
in the procedure is local everything works

100 R E M a r k LOCAL parameter Program
110 LET num = 70
120 item 3
130 item 4
140 PRINT i num i
150 D E F i n e PROCedure i t e m C n u m)
160 IF num <= 3 THEN LET p r i c e = 300 + 10*num
170 IF num >= 4 THEN LET p r i c e = 12*num
180 PRINT i price '
190 END D E F i n e

330 48 70 Output

So far we have only used procedure parameters for passing values to the procedure VAnlnDLb
But suppose the main program wants the cost of an item to be passed back so that PARAMETERS
it can compute the total bill We can do this easily by providing another parameter in rnnnivic uno
the procedure call This must be a variable because it has to receive a value from the
procedure We therefore call it a variable parameter and it must be matched by a
corresponding variable parameter in the procedure definition

12/84 8?

Procedures and Functors

EXAMPLE Use actual variable parameters, cost 1 and cost_2 to receive the values of the variable
price from the procedure Make the main program compute and print the total bill

Program 100 REMark Var iab le parameter
110 LET num = 70
120 i t em 3 ,cos t_1
130 i tem 4,cost_2
140 LET bi I I = num + cost_1 + cost_2
150 PRINT bi U
160 DEFine PROCedure i tem(num, p r i ce)
170 IF num <= 3 THEN LET p r i c e = 300 + 1Q*num
180 IF num >= 4 THEN LET p r i c e = 12*num
190 END DEFine

Output 448

The parameters num and price are both automatically local so there can be no problems
The diagrams show how information passes from main program to procedure and back

That is enough about procedures and parameters for the present

rUNOI lUIMO You already know how a system function works For example the function

S Q R T C 9)

computes the value, 3, which is the square root of 9 We say the function returns the
value 3 A function like a procedure, can have one or more parameters, but the
distinguishing feature of a function is that it returns exactly one value This means that
you can use it in expressions that you already have You can type

PRINT 2 * S Q R T (9 >

and get the output 6 Thus a function behaves like a procedure with one or more value
parameters and exactly one variable parameter holding the returned value, that variable
parameter is the function name itself

The parameters need not be numeric

LENC'stnng")

has a string argument but it returns the numeric value 6

EXAMPLE Re-write the program of the last section which used price as a variable parameter Let
price be the name of the function

The value to be returned is defined by the RETurn statement as shown

Program 100 REMark FuNction with RETurn
110 LET num = 70
120 LET bi Lt = num + price(3) + pnce(4)
130 PRINT bi Lt
140 OEFine FuNction price(num)
150 IF num <= 3 THEN RETurn 300 + 10*num
160 IF num >= 4 THEN RETurn 12*num
170 END DEFine

Output 448

Notice the simplification in the calling of functions as compared with procedure calls

88 12/84

Procedures and Functions

The ultimate concept of a procedure is that it should be a black box' which receives WHY
specific information from 'outside' and performs certain operations which may include PROPFDURF^'?
sending specific information back to the 'outside' The 'outside' may be the main program r nUOtUUntO.
or another procedure

The term 'black box1 implies that its internal workings are not important, you only think
about what goes in and what comes out If, for example, a procedure uses a variable
count, and changes its value that might affect a variable of the same name in the main
program Think of a mail order company You send them an order and cash, they send
you goods Information is sent to a procedure and it sends back action and/or new
information

You do not want the mail order company to use your name and address or other
information for other purposes That would be an unwanted side-effect Similarly you
do not want a procedure to cause unplanned changes to values of variables used in
the main program

Of course you could make sure that there are no double uses of variable names in a
program That will work up to a point but we have shown in this chapter how to avoid
trouble even if you forget what variables have been used in any particular procedure

A second aim in using procedures is to make a program modular Rather than have
one long main program you can break the job down into what Seymour Papert, the
inventor of LOGO calls 'Mind-sized bites' These are the procedures each one small
enough to understand and control easily They are linked together by the procedure
calls in a sequence or hierarchy

A third aim is to avoid writing the same code twice Write it once as a procedure and
cafl it twice if necessary Functions and procedures written for one program can often
be directly used, without change, by other programs, and one might create a library
of commonly used procedures and functions

We give below another example which shows how procedures make a program modular

An order is placed for six dishes at Chan's Take Away, where the menu is EXAMPLE

Item Number Dish Price

1 Prawns 350
2 Chicken 280
3 Special 330

Write procedures for the following tasks.

1 Set up two three-element arrays showing menu, dishes and prices Use a DATA
statement

2 Simulate an order for six randomly chosen dishes using a procedure, choose, and
make a tally of the number of times each dish is chosen

12/84 89

Procedures and Functions

3 Pass the three numbers to a procedure, waiter, which passes back the cost of
the order to the main program using a parameter cost Procedure waiter calls two
other procedures, compute and cook which compute the cost and simulate
"cooking"

4 The procedure, cook simply prints the number required and the name of each dish

The main program should call procedures as necessary, get the total cost from procedure,
waiter, add 10% for a tip and print the amount of the total bill

Design This program illustrates parameter passing in a fairly complex way and we will explain
the program step by step before putting it together

100 R E M a r k Procedures
110 R E S T O R E 490
120 DIM item$(3,7), price(3), d i s h < 3)
130 R E M a r k *+* P R O G R A M ***
140 LET tip = 0.1
150 set_up

210 D E F i n e PROCedure set_up
220 FOR k = 1 TO 3
230 READ item$(k)
240 READ p r i c e (k)
250 END FOR k
260 END D E F i n e

490 D A T A "Prawns" , 3 . 5 . " C h i c k e n " , 2 .8, "Spec ia l " , 3 .3

The names of menu items and their prices are placed in the arrays item$ and price

The next step is to choose a menu number for each of the six customers The tally of
the number of each dish required will be kept in the array dish

160 choose di sh

270 D E F i n e PROCedure choose(dish)
280 FOR p i c k = 1 TO 6
290 LET number = R N O C 1 TO 3)
300 LET d i s h (n u m b e r) = d i s h (n u m b e r) + 1
310 END FOR p i c k
320 END D E F i n e

Note that the formal parameter dish is both

local to procedure choose
an array in mam program

The three values are passed back to the global array also called dish. These values
are then passed to the procedure waiter

170 w a i t e r dish, bi I L

330 D E F i n e PROCedure w a i t e r (d i s h , cost)
340 compute d i s h , cost
350 cook d i s h
360 END D E F i n e

The waiter passes the information about the number of each dish required to the
procedure, compute, which computes the cost and returns it

90 12/84

Procedures and Functo

370 D E F i n e PROCedure c o m p u t e C d i s h , total)
380 LET t o t a l = 0
390 FOR k = 1 to 3
400 LET t o t a l = t o t a l + di sh (k) *pri ce (k)
110 END FOR k
420 END D E F i n e

The waiter also passes information to the cook who simply prints the number required
for each menu item

430 D E F i n e PROCedure cook(dish)
440 FOR c = 1 TO 3
450 P R I N T i d i s h (c) i i t e m S C c) '
460 END FOR c
470 END D E F i n e

Again, the array, dish in the procedure cook is local It receives the information which
the procedure uses in its PRINT statement

The complete program is listed below

100 REMark Procedures Program
110 RESTORE 490
120 DIM item$(3,7), price(3), d i s h < 3)
130 R E M a r k *** PROGRAM ***
140 LET tip = 0.1
150 set_up
160 choose di sh
170 w a i t e r d i s h , bi 11
180 LET bi II = b i l l + t i p * b i LI
190 PRINT "Total cost is £" ; b i l l
200 REMark *** PROCEDURE D E F I N I T I O N S ***
210 D E F i n e PROCedure set_up
220 FOR k = 1 TO 3
230 READ i t e m S C k)
240 READ p r i c e (k)
250 END FOR k
260 END D E F i n e
270 D E F i n e PROCedure choose(dish)
280 FOR p i c k = 1 TO 6
290 LET number = R N D C 1 TO 3)
300 LET di sh (number) = di sh (number) •»• 1
310 END FOR p i c k
320 END D E F i n e
330 D E F i n e PROCedure w a i t e r C d i s h , cost)
340 compute dish,cost
350 cook d i s h
360 END D E F i n e
370 D E F i n e PROCedure compute(dish, t o t a l)
380 LET t o t a l = 0
390 FOR k = 1 TO 3
400 LET t o t a l = t o t a l + di sh(k)*pri ce(k)
410 END FOR k
420 END DEFine
430 D E F i n e PROCedure cook(dish)
440 FOR c = 1 TO 3
450 PRINT i dish(c) i i t e m $ < c)
460 END FOR c
470 END D E F i n e
480 REMark *** PROGRAM DATA ***
490 DATA "Prawns", 3.5, "Chicken",2.8,"Specia I",3.3

The output depends on the random choice of dishes but the following choice illustrates Output
the pattern, and gives a sample of output

3 Prawns
1 C h i c k e n
2 Speci al
Tota l cost is £20.40

12/84 91

Procedures and Functions

COMMENT Obviously the use of procedures and parameters in such a simple program is not
necessary but imagine that each sub-task might be much more complex In such a
situation the use of procedures would aliow a modular build-up of the program with
testing at each stage The above example merely illustrates the main notations and
relationships of procedures

Similarly the next example illustrates the use of functions

Note that in the previous example the procedures waiter and compute both return exactly
one value Rewrite the procedures as functions and show any other changes necessary
as a consequence

DEFine FuNction waiter(dish)
cook dish
RETurn compute(dish)

END DEFine

DEFine FuNction compute(dish)
LET total = 0
FOR k = 1 TO 3

LET total = total + chsh(k) * pnce(k)
END FOR k

RETurn total
END DEFine

The function call to waiter also takes a different form

LET bi L L = wa i te r (d i sh)

This program works as before. Notice that there are fewer parameters though the program
structure is similar That is because the function names are also serving as parameters
retunmg information to the source of the function call

EXAMPLE All the variables used as formal parameters in procedures or functions are 'safe' because
they are automatically local Which variables used in the procedures or functions are
not locaP What additional statements would be needed to make them local7

Program Changes The variables k, pick and num are not local. The necessary changes to make them so are

LOCAL k
LOCAL pick, num

I Yr tLhSS Formal parameters do not have any type You may prefer that a variable which handles
DApAiypTppC numbers has the appearance of a numeric variable and which handles strings looks
rnnnlVIC CnO \^Q a stnng variable, but however you write your parameters they are typeless To prove

it, try the following program

Program 100 REHark Number or word
110 wai ter 2
120 w a i t e r "Ch icken"
130 DEFine PROCedure w a i t e r (i t e m)
140 PRINT i i t e m i
150 END DEFine

Output 2 C h i c k e n

The type of the parameter is determined only when the procedure is called and an actual
parameter 'arrives!

oUUrb Ur Consider the following program and try to consider what two numbers will be output.

VARIABLES 100 REMark scope
110 LET number = 1
120 test
130 DEFine PROCedure test
HO L O C a t number
150 LET number = 2
160 PRINT number
170 try

92 12/84

Procedures and Functions

180 END OEFine
190 DEFine PROCedure try
200 PRINT number
210 END DEFine

Obviously the first number to be printed will be 2 but is the variable number in line 200
global?

The answer is that the value of number in line 160 will be carried into the procedure
try A variable which is local to a procedure will be the same variable in a second
procedure called by the first

Equally if the procedure try is called by the main program, the variable number will
be the same number in both the mam program and procedure, try. The implications
may seem strange at first but they are logical

1 The variable number in line 110 is global.

2. The variable number in procedure test is definitely local to the procedure

3 The variable number in procedure try 'belongs' to the part of the program which
was the last call to it

We have covered many concepts in this chapter because SuperBASIC functions and
procedures are very powerful. However, you should not expect to use ail these features
immediately. Use procedures and functions in simple ways at first. They can be very
effective and the power is there if you need it.

1 Six employees are identified by their surnames only Each employee has a particular PROBLEMS ON
pension fund rate expressed as a percentage. The following data represent the PHAPTFR 1*5
total salaries and pension fund rates of the six employees V/nMrltn IQ

Benson 13,800 6 25
Hanson 8,700 600
Johnson 10,300 625
Robson 15,000 700
Thomson 6,200 600
Watson 5,100 5.75

Write procedures to

input the data into arrays
compute the actual pension fund contributions
output the lists of names and computed contributions

Link the procedures with a main program calling them in sequence

2 Write a function select with two arguments range and miss. The function should
return a random whole number in the given range but it should not be the value
of miss

Use the function in a program which chooses a random PAPER colour and then
draws random circles in random INK colours so that none is in the colour of PAPER

3. Re-write the solution to exercise 1 so that a function pension takes salary and
contribution rate as arguments and returns the computed pension contribution
Use two procedures, one to input the data and one to output the required
information using the function pension

4. Write the following

a procedure which sets up a 'pack of cards:
a procedure which shuffles the cards.
a function which takes a number as an argument and returns a string value
describing the card.
a procedure which 'deals' and displays four poker hands of five cards each,
a mam program which calls the above procedures,
(see chapter 16 for discussion of a similar problem}

12/84 93

CHAPTER 16
SOME

I CV/niillWUCO In this final chapter we present some applications of concepts and facilities already
discussed and we show how some further ideas may be applied

SIMULATION OF It is easy to store and manipulate "playing cards" by representing them with the numbers

PARD PI AYINP 1 to 52 This IS how you m'9ht convert sucn a number to tne equivalent card Suppose,
\jr\nU rLnl MNU for example, that the number 29 appears You may decide that

cards 1-13 are hearts
cards 14-26 are clubs
cards 27-39 are diamonds
cards 40-52 are spades

and you will know that 29 means that you have a diamond' You can program the QL
to do this with

LET sui t = (card-1) D IV 13

This will produce a value in the range 0 to 3 which you can use to cause the appropriate
suit to be printed The value can be reduced to the range 1 to 13 by writing

LET v a l u e = card MOO 13
IF value = 0 THEN LET value = 13

Program The numbers 1 to 13 can be made to print Ace, 2, 3 Jack Queen, King, or, if you
prefer it, such phrases as "two of hearts" can be printed The following program will
print the name at the card corresponding to your input number

100 REMark Cards
110 DIM suitname$(4,8),cardvaL$(13,5),
120 LET f$ = " of"
130 set_up
140 REPeat cards
150 INPUT "Enter a card number 1-52:" i card
160 IF card <1 OR card> 52 THEN EXIT cards
170 LET s u i t = Ccard-1) DIV 13
180 LET value = card HOD 13
190 IF v a l u e = 0 THEN LET v a l u e = 13
200 PRINT c a r d v a L S (v a L u e) i f$ i s u i t n a m e S (s u i t)
210 END REPeat cards
220 D E F i n e PROCedure set_up
230 FOR s = 1 TO 4 : READ suitnameSCs)
240 FOR v = 1 TO 13 : READ c a r d v a L S C v)
250 END DEFine
260 DATA "hearts","clubs","diamonds","spades"
270 DATA "Ace","Two","Three","Four","Five","Six","Seven"
280 DATA "Eight","Nine","Ten","Jack","Queen","King"

Input and Output 13
Ki rig of hearts
49
Ten of spades
27
Ace of di amends
0

COMMENT Notice the use of DATA statements to hold a permanent file of dafa which the program
always uses The other data which changes each time the program runs is entered
through an INPUT statement If the input data was known before running the program
it would be equally correct to use another READ and more DATA statements This would
give better control

94 12/84

Some Techniques

SEQUENTIAL DATA
FILES

The following program will establish a file of one hundred numbers Numeric File

100 REMark Number F i l e
110 OPEN^NEW #6,mdv1_numbers
120 FOR num = 1 TO 100
130 PRINT #6.num
140 END FOR num
150 CLOSE #6

After running the program check that the filename 'numbers is in the directory by typing

DIR mdvl numbers

You can get a view of the file without any special formatting by copying from Microdrive
to screen

COPY mdv1_numbers to scr

You can also use the following program to read the file and display its records on the
screen '

100 REMark Read File
110 OPEN_IN #6,mdv1_numbers
120 FOR num = 1 TO 100
130 INPUT #6,item
140 PRINT i item i
150 END FOR num
160 CLOSE #6

If you wish you can alter the program to get the output in a different form

In a similar fashion the following programs will set up a file of one hundred randomly Character File
selected letters and read them back

100 REMark Letter F i l e
110 OPEN_NEW #6,mdv1_chfile
120 FOR num =1 TO 100
130 LET ch$ = CHR$CRND(65 TO 90))
140 PRINT #6,ch$
150 END FOR num
160 CLOSE #6

100 REMark Get Letters
110 OP€N_IN #6,mdv1__chf i Le
120 FOR num = 1 TO 100
130 INPUT #6, i temS
140 PRINT i i tem$ '
150 END FOR num
160 CLOSE #6

Suppose that you wish to set up a simple file of names and telephone numbers SETTING UP A

RON 678462 DATA FILE
GEOFF 896487
ZOE 249386
BEN 584621
MEG 482349
CATH 438975
WENDY 982387

The following program will do it

100 REMark Phone numbers
110 OPEN_NEW #6,mdv1_phone
120 FOR record = 1 TO 7
130 INPUT name$.num$
140 PRINT #6;name$;num$
150 END FOR record
160 CLOSE #6

12/84 95

Some Techniques

Type RUN and enter a name followed by the ENTER key and a number followed by
the ENTER key Repeat this seven times

Notice that the data is 'buffered It is stored internally until the system is ready to transfer
a batch to the Microdrive The Microdrive is only accessed once, as you can tell from
looking and listening

COPY A FiLE Once a file is established, tt should be copied immediately as a back up To do this type

COPY mdv1_phone TO mdv2_phone

READ A FILE You need to be certain that the file exists in a correct form so you should read it back
from a Microdrive and display it on the screen You can do this easily using

COPY mdv2_phone TO s c r

The output to the screen will not provide spaces automatically between the name and
the number but it will provide a 'newlme' at the end of each record. The output will be

RONG78462
GEOFF896487
ZOE249386
BEN584621
MEG482349
CATH438975
WENDY982387

You can get a more controlled presentation of the data with the following program

100 R E M a r k Read Phone Numbers
110 OPEN_IN #5,mdv1_phone
120 FOR record = 1 TO 7
130 INPUT #5,rec$
140 PRINT,rec$
150 END FOR record
160 CLOSE #5

The data is printed, as before, but this time each pair of fields is held in the variable
rec$ before being printed on the screen You have the opportunity to manipulate it into
any desired form

Note that more than one string variable may be used at the file creation stage with INPUT
and PRINT but the whole record so created may be retrieved from the Microdrive file
with a single string variable (rec$ in the above example)

AN INSERTION The following colours are available in the low resolution screen mode (in code number

SORT "a*0-7*
black blue red magenta green cyan yellow white

EXAMPLE Write a program to sort the colours into alphabetical order using an insertion sort

Method We place the eight colours in an array, colour$ which we divide into two parts

We take the leftmost item of the unsorted part and compare it with each item, from right
to left, in the sorted part until we find its right place As we compare we shuffle the sorted
items to the right so that when we find the right place to insert we can do so immediately,
without further shuffling

96 12/84

5 Finally we move left again comparing green with blue This time there is no need
to move or change anything We exit from the loop and place green in position
3 We are then ready to focus on the sixth item, cyan

1 We will first store the colour$ in an array co!our$(8) and use PROBLEM ANALYSIS

compS the current colour being compared
p to point at the position where we think the colour in comp$ might go

2 A FOR loop will focus attention on positions 2 to 8 in turn (a single item is already
sorted)

3 A REPeat loop will allow comparisons until we find where the comp$ value actually
goes

REPeat compare
IF comp$ need go no further left EXIT
copy a colour into the position on its right
and decrease p

END REPeat compare

4 After EXIT from the REPeat loop the colour in comp$ is placed in position p and
the FOR loop continues

12/84 97

Suppose we have reached the point where four items are sorted and we now focus
on green, the leftmost item in the unsorted part

1 We place green in the variable, comp$ and set a variable p to 5

2 The variable, p will eventually indicate where we think green should go When
we know that green should move left, then we decrease the value of p

3 We compare green with red If green is greater than {nearer to Z) or equal to red
we exit and green stays where it is

Otherwise we copy red in to position 5 thus and decrease the value of p thus

4 We now repeat the process but this time we are comparing green with magenta
and we get

Some Techniques

Program Design 1 Declare array colours
2 Read colours into the array
3 FOR item = 2 TO 8

LET p = item
LET compS = co!our$(p)

REPEAT compare
IF compS > = colour${p-1) EXIT compare
LET colour$(p) = colour$(p-1)
LET p = p-1

END REPeat compare
LET colour$(p) = comp$

END FOR item
4 PRINT sorted array colourS
5 DATA

Further testing reveals a fault It arises very easily if we have data in which the first item
is not in its correct position at the start A simple change of initial data to

red black blue magenta green cyan yellow white

reveals the problem We compare black with red and decrease p to the value, 1 We
come round again and try to compare black with a variable coiour$(p-1) which is
coloiir$(0) which does not exist

This is a well-known problem in computing and the solution is to 'post a sentinel" on
the end of the array Just before entering the REPeat loop we need

LET colour$(0) = comp$

Fortunately SuperBASIC allows zero subscripts, otherwise the problem would have to
be solved at the expense of readability

MODIFIED 100 R E M Inse r t i on S o r t
PROGRAM 110 DIM c o l o u r $ < 8 , 7)
i nUWnniVI 12Q FQR i t e m _ 1 T0 g . R £ A D c o L o u r $ (i te rn)

130 FOR i tern = 2 TO 8
140 LET p = i tern
150 LET c o m p $ = c o l o u r $ (p)
160 LET c o t o u r S C O) = comp$
170 R E P e a t c o m p a re
180 IF c o m p $ >= c o L o u r $ (p - 1) : E X I T c o m p a r e
190 LET c o L o u r S C p) = co lour$(p-1)
200 LET p = p-1
210 END REPeat compare
220 LET colour$(p) = compS
230 END FOR i t e m
240 P R I N T "Sorted ..." i c o t o u r S
250 DATA "black","blue", "magenta", "red"
260 DATA "green", "cyan", "yellow", "white"

COMMENT 1 The program works well It has been tested with awkward data

A A A A A A A
B A B A B A B
A B A B A B A
B C D E FG H
G F E D C B A

2 An insertion sort is not particularly fast, but it can be useful for adding a few items
to an already sorted list it is sometimes convenient to allow modest amounts of
time frequently to keep items in order rather than a substantial amount of time
less frequently to do a complete re-sorting

You now have enough background knowledge to follow a development of the handling
of the file of seven names and telephone numbers

98 12/84

Some Techniques

In order to sort the file 'phone' into alphabetical order of names we must read it into oUHi INu A
an internal array, sort it, and then create a new file which will be in alphabetical order MICRODRIVE FILE
OT nQITIGS

It is never good practice to delete a file before its replacement is clearly established and
proven correct You should therefore copy the file first, as security, using a different name
The required processes are as follows

1 Copy the file 'phone' to 'phone temp'
2 Read the file 'phone' into an array
3 Sort the array.
4 Pause to check that everything is in order
5 Delete file 'phone'
6 Create new file 'phone'

This is all the program needs to do but the new file should be immediately checked using

COPY mdv1_phone TO scr

Any further necessary checks should be carried out then

DELETE mdv2_phone
COPY mdv1_phone TO mdv2_phone
COPY mdv1_phone TO scr
DELETE mdv1_phone_temp

The above operations complete the process of substituting a sorted file for the original
unsorted one in both master and back-up files

In the following program we illustrate the passing of complete arrays between main AHHAY
program and procedure. The data passes in both directions PARAMETERS

In line 40 the array, row, holding the numbers 1,2,3 is passed to the procedure, addsix.
The parameter, come, receives the incoming data and the procedure adds six to each
element. The array parameter, send, at this point holds the numbers 7,8,9

These numbers are passed back to the main program to become the values of array,
black The values are printed to prove that the data has moved as required

100 R E M a r k Pass A r r a y s Program
110 DIM row(3),back(3)
120 FOR k = 1 TO 3 : LET row(k) = k
130 a d d s i x row, back
140 FOR k = 1 TO 3 : P R I N T i b a c k C k) i
150 D E F i n e PROCedure addsix(come,send)
160 FOR k = 1 TO 3 : LET send<k)=come(k)+6
170 END D E F i n e

7 8 9 Output

The following procedure receives an array containing data to be sorted The zero element
will contain the number of items. Note that it does not matter whether the array is numeric
or string The principle of coercion will change string to numeric data if necessary

12'84 "

Some Techniques

A second point of interest is that the array element come(O) is used for two purposes

it carries the number of items to be sorted
it is used to hold the item currently being placed

100 D E F i n e P R O C e d u r e sort(come,send)
110 LET num = come(O)
120 FOR i tern = 2 TO num
130 LET p = i t e m
140 LET c o m e C O) = come(p)
150 REPeat compare
160 IF come(Q) >= c o m e C p - 1) : E X I T compare
170 LET come(p) = comeCp-1)
180 LET p = p-1
190 END R E P e a t compare
200 LET come(p) = come(O)
210 END FOR i t e m
220 FOR k=1 TO 7 : send(k) = come(k)
230 END D E F i n e

The following additional lines will test the sort procedure First type AUTO 10 to start
the line numbers from 10 onwards

10 R E M a r k Test Sort
20 DIM row$(7,3),back$(7,3>
30 LET row$<0> = 7
40 FOR k = 1 TO 7 : READ row$(k>
50 sort row$,back!
60 PRINT i back$ '
70 DATA "EEL", "DOG", "ANT", "GNU", "CAT", "BUG", "FOX"

Output ANT BUG CAT DOG E E L FOX GNU

COMMENT This program illustrates how easily you can handle arrays in SuperFJASIC All you have
to do is use the array names for passing them as parameters or for printing the whole
array Once the procedure is saved you can use MERGE mdvl sort to add it to a
program in main memory

You now have enough understanding of techniques and syntax to handle a more complex
screen layout Suppose you wish to represent the hands of four card players A hand
can be represented by something like

H A 3 7 Q
C 5 9 J
D 6 10 K
S 2 40

To help the presentation the Hearts and Diamonds will be printed in red and the Clubs
and Spades in black A suitable STRIP colour might be white The general background
could be green and a table may be a colour obtained by mixing two colours

METHOD Since a substantial amount of character printing is involved it is best to start planning
in terms of the pixel screen You can see that you need to provide for twelve lines of
characters with some space between lines and a total screen height of 256 pixels

100 12/84

Some Techniques

It is useful to recall that the possible character heights are 10 pixels or 20 pixels it is
obvious that the 10 pixel height must be used to allow space for a proper layout

The number of character positions across the screen must be estimated If we adopt
the convention of "T" for ten instead of '10" all card values can be represented as a
single character Suppose that we also allow a maximum of eight cards of the same
suit as a first approach We can reconsider the problem again if necessary That would
require a total of 10 characters for each hand The across requirement is therefore

west hand + table width + east hand

Allowing a space between characters that would be:

20 + table width + 20

The decision now depends on which screen mode you choose The 256 mode will cope
with the problem, as you will see later, but first we will work in 512 pixel mode The smallest
character width is six pixels which would give a total of 240 pixels + 'able width The
diagram will have some balance if we have a table width of about half of 240

We should therefore experiment with a table width of about 120 pixels which may be ,
adjusted. A little testing produced the layout shown

WINDOW 440 x 220 at 35,15
Green with black border of 10 units

TABLE 100 x 60 at 150,60
Chequerboard stipple of red and green

HANDS Room for at least eight card symbols
Initial cursor positions are.

north 150,10
east 260,60
south 150,130
west 30,60

CHARACTER SIZE Standard for 512 mode
NUMBER OF PIXELS between lines is 12

CHARACTER COLOUR White
CHARACTER STRIP Red for Hearts and Diamonds

Black for Clubs and Spades.

101
i7'Rd

Some Techniques

VARIABLES card(52) stores card numbers
sort(13) used to sort each hand
tok${4,2) stores tokens H C D S
kmcmh working loop variables
ran random position for card exchange
temp used in card exchange
item card to be inserted in sort
dart pointer to find position in sort
comp hold card number in sort
me ptxel increment in card rows
seat current deal1 position
ac,dn, cursor position for characters
row current row for characters
lm$ builds up row of characters
max highest card number
p points to card position
n current number of card

PROCEDURES shuffle shuffles 52 cards
split splits cards into four hands and calls sortem to sort each hand
sortem sorts 13 cards in ascending order
layout provides background colour, border and table
printem prints each line of card symbols
gethne gets one row of cards and converts numbers into the symbols

A,2,3,4,5,6,7,8,9J,J,Q,K

PROGRAM DESIGN 1 Declare arrays pick up tokens' and place 52 numbers in array card
OUTLINE 2 Shuffle cards

3 Split into 4 hands and sort each
4 OPEN screen window
5 Fix the screen layout
6. Print the four hands
7 CLOSE the screen window

100 DIM card(52),sort(13>,tok$a,2)
110 FOR k = 1 TO 4 : READ tok$(k)
120 FOR k = 1 TO 52 : LET card(k) = k
130 shuffle
140 s p l i t
150 OPEN #6,scr_44Qx220a35x15
160 layout
170 printem
180 CLOSE #6
190 D E F i n e PROCedure s h u f f l e
200 FOR c = 52 TO 3 STEP -1
210 LET ran = RNDd TO c-1)
220 LET temp = card(c)
230 LET card(c) = card(ran)
240 LET card(ran) = temp
250 END FOR c
260 END D E F i n e
270 D E F i n e PROCedure s p l i t
280 FOR h = 1 TO 4
290 FOR c = 1 TO 13
300 LET s o r t < c) = card(<h-1)*13+c>
310 END FOR c
320 sortem
330 FOR c = 1 TO 13
340 LET card«h-1>*13 + c) = sort(c)
350 END FOR c
360 END FOR h
370 END D E F i n e
380 D E F i n e PROCedure sortem
390 FOR item = 2 TO 13
400 LET dart = item

102 12/84

Some Techniques

410 LET comp = sort(dart)
420 LET sort(0) = comp
430 REPeat compare
440 IF comp >= sortCdart-1) : EXIT compare
450 LET sort(dart) = sort<dart-1)
460 LET dart = dart -1
470 END REPeat compare
480 LET sort(dart) - comp
490 END FOR item
500 END DEFine
510 DEFine PROCedure layout
520 PAPER #6,4 : CLS #6
530 BORDER #6,10,0
540 BLOCK #6,100,60,150,60,2,4
550 END DEFine
560 DEFine PROCedure printem
570 LET inc = 12 : INK #6,7
580 LET p = 0
590 FOR seat = 1 TO 4
600 READ ac,dn
610 FOR row = 1 TO 4
620 get Line
630 CURSOR #6,ac,dn
640 PRINT #6,lin$
650 LET dn = dn + inc
660 END FOR row
670 END FOR seat
680 END DEFine
690 DEFine PROCedure getLine
700 IF row MOD 2 = 0 THEN STRIP #6,0
710 IF row MOD 2 = 1 THEN STRIP #6,2
720 LET lin$ = tok$(row)
730 LET max = row*13
740 REPeat one_suit
750 LET p = p + 1
760 LET n = card(p)
770 IF n >max THEN p = p-1 : EXIT one_suit
780 LET n = n MOD 13
790 IF n = 0 THEN n = 13
800 IF n = 1 : LET ch$ = "A"
810 IF n >= 2 AND n <= 9 : LET ch$ = n
820 IF n = 10 : LET ch$ = "T"
830 IF n = 11 : LET ch$ = "J"
840 IF n = 12 : LET chS = "Q"
850 IF n = 13 : LET ch$ = "K"
860 LET Lin$ = LinS & " " & ch$
870 IF p = 52 : EXIT one=suit
880 IF cardCp)>card(p+1) : EXITone_su i t
890 END REPeat one_suit
900 END DEFine
910 D A T A "H:","C:","D:","S:"
920 DATA 150,10,260,60,150,130,30,60

The program works in the 256 mode But the various lines of card symbols may overlap COMMENT
the Table" or overflow at the edge of the window A simple change in procedure getline
from.

860 LET lin$ = L inS 8 " " & ch$

to1

860 LET L inS = L inS & ch$

will correct this. The spaces between characters disappear but the larger sized characters
enable the rows to be easily readable The program thus works well in either graphics
mode

^n^

Some Techniques

CONCrUJSlUN We have tried to show how you can use SuperBASIC to solve problems We have shown
how simple tasks can be performed in simple ways When the task is inherently complex,
like manipulating arrays or designing screen graphics, SuperBASIC enables it to be
handled efficiently with maximum possible clarity

If you were a beginner and you have worked through a fair proportion of this guide
you will have started well on the road to good programming If you were already
experienced, we hope that you will appreciate and exploit the extra features offered by
SitperBASIC

So enormous is the range of tasks which can be done with SuperBASIC that we have
only been able to touch a fraction of them in this guide We cannot guess at which of
the thousands of possibilities you will attempt, but we hope that you will find them fruitful,
stimulating and fun

12/84104

1. Use the BREAK sequence to abandon a running program because ANoWcHb lU

a) something is wrong and you do not understand it OCLr TEST ON

b) it is longer of interest CHAPTER 1

c) any other problem (three points)

2 The RESET button is on the right hand side of the computer

3 The effect of the RESET button is rather like switching the computer off and on
again

4 The SHIFT key

a) is only effective while you hold it down whereas the CAPS LOCK key stays
effective after you have pressed it (one point)

b) The SHIFT key affects all the letter, digit and symbol keys, but the CAPS
LOCK key affects only letters (one point)

5 The CTRL <J= keys delete the previous character just left of the cursor >

6 The •*" (ENTER) key causes a message or instruction to be entered for action by
the computer.

7, We use +• for the ENTER key

8. CLS *u causes part of the screen to be cleared

9 RUN -*•» causes a stored program to be executed

10 LIST «»i' causes a stored program to be displayed on the screen

11 NEW •*" clears the mam memory ready for a new program

12 Keywords of SuperBASIC are recognised in upper or lower case

13. The part of a keyword displayed in upper case is the allowed abbreviation

14 to 16 is very good Carry on reading. CHECK YOUR

12 or 13 is good, but re-read some parts of chapter one SCORE

10 or 11 is fair, but re-read some parts of chapter one and do the test again

Under 10. You should work carefully through chapter one again and repeat the test

ANSWERS TO 1 An internal number store is like a pigeon hole which you can name and put

SELF TEST ON numbers nto

PHAPTFR 9 2 A LET statement which uses a particular name for the first time will cause a pigeon
Wlnr I Cn L no|e to be createcj and named, for example

LET count = 1 *» (1 point)

A READ statement which uses a name for the first time will have the same effect,
for example

READ count *» (1 point)

3 You can find the value of a pigeon hole with a PRINT statement

4 The technical name for a pigeon hole is Variable' because its values can vary as
a program runs

5 A variable gets its first value when it is first used in a LET statement, INPUT statement
or READ statement

6 A change in the value of a variable is usually caused by the execution of a LET
statement

7 The = sign in a LET statement represents an operation

'Evaluate whatever is on the right hand side and place it in the pigeon hole
named on the left hand side; that is 'Let the left hand side become equal
to the right hand side'

8 An un-numbered statement is executed immediately

9 A numbered statement is not executed immediately It is stored

10 The quotes in a PRINT statement enclose text which is to be printed

11 When quotes are not used you are printing out the value of a variable

12 An INPUT statement makes the program pause so that you can type data at the
keyboard

13 DATA statements are never executed

14 They are used to provide values for the variables in READ statements

15 The technical word for the name of a pigeon hole is 'identifier'

16 Example answers

i day
ii day_23
in day of__week (3 points)

17 The space bar is especially important for putting spaces after or before keywords
so that they cannot be taken as identifiers (names) chosen by the user

18 Freely chosen identifiers are important because they help you to make programs
easier to understand Such programs are less prone to errors and more adaptable

CHECK YOUR 18 to 21 is very good Carry on reading

SCORE 16 or 17 good but re-read some parts of chapter two

14 or 15 fair, but re-read some parts of chapter two and do the test again

Under 14 you should work carefuly through chapter two again and repeat the test

""• 1 '̂p/i

1 A pixel is the smallest area of light that can be displayed on the screen ANSWERS TO

2 There are 256 pixel positions across the low resolution mode SELF TEST ON

3 There are 256 pixel positions from top to bottom in the iow resolution mode CHAPTER 3

4 An address is determined by
the up value 0 to 100
the across value, 0 to a number computed by the system

5 There are eight colours available in the low resolution mode including black and
white

6 i LINE draws a line eg LINE a,b TO x,y
ii INK selects a colour for drawing, eg INK 5
MI PAPER selects a background colour, eg PAPER 7
iv BORDER draws a border, eg BORDER 1,5

7 REPeat name END REPeat name

8 A REPeat loop terminates when an 'EXIT name statement is executed

9 Loops m SuperBASIC have names so that it is possible to EXIT from them in a
straightforward way It is not necessary to work out line numbers in advance

11 to 13 is very good Carry on reading CHtt/K YUUH
8 to 10 is good but re-read some parts of chapter three * SCORE
6 or 7 is fair but re-read some parts of chapter three and do the test again
Under 6 You should work carefully through chapter three again and repeat the test

1 A character string is a sequence of characters such as letters, digits or other ANSWEnb lU
symbols SELp TESJ ON

2 The term 'character string is often abbreviated to 'string' PHAPTFR i

3 A string variable name always ends with $

4 Names such as word$ are sometimes pronounced "worddollar

5 The keyword LEN will find the length or number of characters in a string For
example, if the variable meat$ has the value 'steak' then the statement

PRINT LEN(meatS)

will output 5

6 The symbol for joining two strings is &

7 The limits of a string may be defined by quotes or apostrophes

8 The quotes are not part of the actual string and are not stored

9 The function is CHR$ You must use it with brackets as in CHR$(66) or with brackets
as in CHRS(RND(65 TO 67))

10 You generate random letters with statements like

le t ter -code = R N D C 6 5 TO 90)
PRINT C H R S U e t t e r c o d e)

9 or 10 is very good Carry on reading CHECK YUUn

7 or 8 is good but re-read some parts of chapter four SCORE

5 or 6 is fair but re-read some parts of chapter four and do the test again

Under 5 You should work carefully through chapter four again and repeat the test

107
12/84

ANoWtnO IU 1 Lower case letters for variable names or loop names contrast with the keywords
Cpl P TPCT QM which are at least partly displayed in upper case

PHADTPR R 2 Indenting reveals clearly what is the extent and content of loops (and other
UIHriCnO structures)

3 Identifiers (names) should normally be chosen so that they mean something for
example count or word$ rather than C or W$

4 You can edit a stored program by

replacing a line
inserting a line
deleting a line (three points)

5 The ENTER key must be used to enter a command or program line

6 The word NEW will wipe out the previous SuperBASIC program in the QL and
will ensure that a new program which you enter will not be merged with an old one

7 If you wish a line to be stored as part of a program then you must use a line number

8 The word RUN followed by •*"< will cause a program to execute '

9 The word REMark enables you to put into a program information which is ignored
at execution time

10 The keywords SAVE and LOAD enable programs to be stored on and retrieved
from cartridges (two points)

CHECK YOUR 12 to 14 is very good Carry on reading

SCORE 10 or 11 IS good but re-read some parts of chapter five

8 or 9 is fair but re-read some parts of chapter five and do the test again

Under 8 You should re read chapter five carefully and do the test again

103 12/84

1 It is not easy to think of many different variable names for storing the data If you ANSWERS TO
can think of enough names every one has to be written in a LET statement or OCI C TC^T ON
a READ statement if you do not use arrays OCLr I CO I un

2 A number called the subscript, is part of an array variable name All the variables wnAr I Cn 0
m an array share one name but each has a different subscript

3 You must 'declare' an array giving its size (dimension) in a DIM statement usually
placed near the beginning of a program before the declared array is used

4 The distinguishing number of an array variable is called the subscript

5 Houses in a street share the same street name but each has its own number

Beds in a hospital ward may share the name of the ward but each bed may be
numbered

Cells in a prison block may have a common block name but a different number

Holes on a golf course, eg the fifth hole at Royal Birkdale

6 A FOR loop terminates when the process corresponding to the last value of the
loop variable has been completed

7 A FOR loop's name is also the name of the variable which controls the loop

8 The two phrases for this variable are loop variable' or 'control variable

9 The values of a loop variable may be used as subscripts for array variable names
Thus, as the loop proceeds each array variable is Visited' once

10 Both FOR loops and REPeat loops

a have an opening keyword

REPeat , FOR

b have a closing statement

END REPeat name, END FOR name

c have a loop name

Only the FOR loop has

d a loop variable or control variable {four points)

This test is more searching than the previous ones CHECK YOUR

15 or 16 is excellent Carry on reading SCORE

13 or 14 is very good but think a bit more about some of the ideas Look at programs
to see how they work

11 or 12 is good but re read some parts of chapter six

8 to 10 is fair but re-read some parts of chapter six and do the test again

Under 8 You should re read chapter six carefully and do the test again

12/84 109

ANbWtnb IU 1 We normaiiy break down large or complex jobs into smaller tasks until they are

SELF TEST ON sma"enou9h to be c°mp|eted

CHAPTFR 7 ^ ^"s PnnciPle can be applied in programming by breaking the total job down and
V/nrtr I tn / writing a procedure for each task

3 A simple procedure is

a separate block of code
properly named (two points)

4 A procedure call ensures that

the procedure is activated
control returns to just after the calling point {two points)

5 Procedure names can be used in a main program before the procedures have
been written This enables you to think about the whole job and get an overview
without worrying about the detail

6 If you write a procedure definition before using its name you can test it and then
when it works properly forget the details You need only remember its name and
roughly what it does

7 A programmer who can write up to thirty line programs can break down a complex
task into procedures in such a way that none is more than thirty lines and most
are much less In this way he need only worry about one bit of the job at a time

8 The use of a procedure would save memory space if it is necessary to call it more
than once from different parts of a program The definition of a procedure only
occurs once but it can be called as often as necessary

9 A main program can place information in pigeon-holes' by means of LET or READ
statements These 'pigeon-holes can be accessed by the procedure Thus the
procedure uses information originally set up by the main program

A second method is to use parameters in the procedure call These values are
passed to variables in the procedure definition which then uses them as necessary

10 An actual parameter is the actual value passed from a procedure call in a main
program to a procedure

11 A formal parameter is a variable in a procedure definition which receives the value
passed to the procedure by the main program

CHECK YOUR This is a searching test You may need more experience of using procedures before
QpADC the ideas can be fully appreciated But they are very powerful and, when understood
OvUnC extremely helpful ideas They are worth whatever effort is necessary

12 to 14 excellent Read on with confidence

10 or 11 very good Just check again on certain points

8 or 9 good but re-read some parts of chapter seven

6 or 7 fair but re-read some parts of chapter seven Work carefully through the programs
writing down all changes in variable values Then do the test again

Under 6 read chapter seven again Take it slowly working all the programs These ideas
may not be easy but they are worth the effort When you are ready take the test again

110 12/84

QLKeywords

The Keyword Reference Guide lists all SuperBASIC keywords in alphabetical order A
brief explanation of the keywords function is given followed by loose definition of the
syntax and examples of usage An explanation of the syntax definition s given in the
Concept Reference Guide under the entry syntax

Each keyword entry indicates to which, if any, group of operations it relates, i e DRAW
is a graphics operation and further information can be obtained from the graphics section
of the Concept Reference Guide

Sometimes it is necessary to deal with more than one keyword at a time, ie IF, ELSE,
THEN, END, IF, these are all listed under IF

An index is provided which attempts to cover all possible ways you might describe a
SuperBASIC keyword For example the clear screen command, CLS, is also listed under
clear screen and screen dear

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

ACOS, ASIN
ACOT, ATAN

ACOS and ASIN will compute the arc cosine and the arc sine respectively. ACOT will maths functions
calculate the arc cotangent and ATAN will calculate the arc tangent. There is no effective
limit to the size of the parameter.

syntax: angle.- numeric expression [in radians]

ACOS (angle) ASIN (angle)
ACOT (angle) ATAN(angfe)

example. i. PRINT ATAN (angle)
ii. PRINT A S I N C 1)
ill PRINT ACOTC3.6574)
iv PRINT ATAN(a-b)

ABS
ABS returns the absolute value of the parameter It will return the value of the parameter maths functions
if the parameter is positive and will return zero minus the value of the parameter if the
parameter is negative

syntax. f\BS(numenc express/on)

example- i. PRINT A B S C 0 . 5)
ii PRINT A B S C a - b)

ADATE
Clock ADATE allows the dock to be adjusted

syntax seconds = numeric expression
ADATE seconds

example i ADATE 3600 [will advance the clock 1 hour)
H ADATE -60 [will move the clock back 1 minute]

ARC
ARC_R

graphics ARC will draw an arc of a circle between two specified points in the window attached
to the default or specfied channel The end points of the arc are specified using the
graphics co ordtnate system

Multiple arcs can be drawn with a single ARC command

The end points of the arc can be specified in absolute coordinates (relative to the graphics
origin or in relative coordinates (relative to the graphics cursor) If the first point is omitted
then the arc is drawn from the graphics cursor to the specified point through the specified
angle

ARC will always draw with absolute coordinates while ARC R will always draw relative
to the graphics cursor

syntax x = numeric expression
y = numer/c_expression
angle = numenc^expression {in radians)
point = x,y

parameter 2 = \ TO point, angle 1
| ,point TO point.angle 2

parameter_l = \ point TO point.angle 1
] TO point.angle 2

ARC [channel,] parameter / * [parameter 2]*
ARC R [channel,] parameter_1 * [parameter 2\ *

where 1 wii! draw from the specified point to the next specified
point turning through the specified angle

2 will draw from the the last point plotted to the specified
point turning through the specified angle

example t A R C 15,10 TO 40,40, PI 12
[draw an arc from 1510 to 4040 turning through ir/2 radians)

ti ARC TO 50,50,PI/2
[draw an arc from the last point plotted to 5050 turning through
7T/2 radians]

ill ARC_R 10,10 TO 5 5 , 4 5 , 0 , 5
[draw an arc starting 1010 from the last point plotted to 55,45
from the start of the arc turning through 05 radians]

2 12/84

AUTO allows line numbers to be generated automatically when entering programs directly MU I w
into the computer. AUTO will generate the next number in sequence and will then enter
the SuperBASIC line editor while the line is typed in If the line already exists then a
copy of the tine is presented along with the line number. Pressing ENTER at any point
in the line will check the syntax of the whole line and will enter it into the program

AUTO is terminated by pressing

syntax first !ine~= line number
gap = numeric expression

AUTO [firsLJine] [,gap\

example i AUTO [start at line 100 with intervals of 10)
ii AUTO 10,5 [start at line 10 with intervals of 5]
in AUTO ,7 (start at line 100 with intervals of 7)

12/84 3

AT
AT allows the print position to be modified on an imaginary row/column grid based on windows
the current character size AT uses a modified form of the pixel coordinate system where
(row 0, column 0) is in the top left hand corner of the window AT affects the print position
in the window attached to the specified or default channel

syntax line = numeric expression
column = numeric expression

AT [channel,] line , column

example AT 10,20 : PRINT "Th is is at L ine 10 column 20"

BAUD
communications BAUD sets the baud rate for communication via both serial channels The speed of the

channels cannot be set independently

syntax rate = numeric expression

BAUD rate

The value of the numeric expression must be one of the supported baud
rates on the QL

75
300
600

1200
2400
4800
9600

19200 (transmit only)

If the selected baud rate is not supported, then an error will be generated

example i BAUD 9600
n BAUD pri nt_speed

BEEP
sound BEEP activates the inbuilt sound functions on the QL BEEP can accept a variable

number of parameters to give various levels of control over the sound produced The
minimum specification requires only a duration and pitch to be specified BEEP used
with no parameters will kill any sound being generated

syntax duration- = numeric expression (range -32768 32767]
pitch = numeric expression [range 0 255]
grad_x = numeric expression (range -32768 32767J
grad_y = numeric expression [range -8 7]
wrap = numenc_expression (range 0 15J
fuzzy = numeric expression [range 0 15}
random = numeric expression [range 0 15]

BEEP [duration, pitch
[, pitch_2 , grad x, grad_y
[, wrap
{, fuzzy
[, random j] j]]

duration specifies the duration of the sound in units of 72
microseconds A duration of zero will run the sound until
terminated by another BEEP command

pitch specifies the pitch of the sound A pitch of 1 is high and
255 is low

pitch_2 specifies an second pitch level between which the sound
will 'bounce'

grad x defines the time interval between pitch steps

grad y defines the size of each step grad_x and grad y
control the rate at which the pitch bounces between
levels

wrap will force the sound to wrap around the specified number
of times If wrap is equal to 15 the sound will wrap
around forever

fuzzy defines the amount of fuzzmess to be added to the
sound

random defines the amount of randomness to be added to the
sound

12/84

BEEPING
BEEPING is a function which will return zero (false) if the QL is currently not beeping sound
and a value of one (true) if it is beeping

syntax BEEPING

example 100 DEFine PROCedure be_quiet
110 BEEP
120 END DEFine
130 IF BEEPING THEN be_quiet

BLOCK will fill a block of the specified size and shape, at the specified position relative DL\/wl\
to the origin of the window attached to the specified, or default channel windows

BLOCK uses the pixel coordinate system

syntax width - numeric express/on
height = numer/c_expression
x = numeric expression
y = numeric expression

BLOCK [channel] width, height, x, y , colour

example i BLOCK 10, 10, 5, 5, 7 [a 10x10 pixel white block at 55]

ii 100 REMark "bar chart"
110 CSIZE 3,1
1ZO PRINT "bar chart"
130 LET bottom = 100 : size = 20 : left = 10
140 FOR bar = 1 to 10
150 LET colour = RND(0 TO 255)
160 LET height = RNOC2 TO 20)
170 BLOCK size, height, Left+bar*size,

bottom-height ,0
180 BLOCK size-2, height-2, Left+bar*size+1 ,

bottom-height+1.colour
190 END FOR bar

[use LET colour = RND<0 TO 7) for televisions]

12/84 5

BORDER
windows BORDER will add a border to the window attached to the specified channel or default

channel

For all subsequent operations except BORDER the window size is reduced to allow
space for the BORDER If another BORDER command is used then the full size of
the original window is restored prior to the border being added, thus multiple BORDER
commands have the effect of changing the size and colour of a single border Multiple
borders are not created unless specific action is taken

If BORDER is used without specifying a colour then a transparent border of the specified
width is created

syntax width = numeric expression

BORDER [channel,] size [, colour]

example i BORDER 10,0,7 [black and white sttpple border)
ii 100 REMark Lurid Borders

110 FOR t h i c k n e s s = 50 to 2 STEP -2
120 B O R D E R t h i c k n e s s , R N D C O TO 2 5 5)
130 END FOR t h i c k n e s s
140 BORDER 50

{use RND(0 TO 7) for televisions)

CALL
QdOS Machine code can be accessed directly from SuperBASIC by using the CALL command

CALL can accept up to 13 long word parameters which will be placed into the 68008
data and address registers {D1 to D7, AO to A5) in sequence

No data is returned from CALL

syntax address = numeric expression
data = numeric expression

CALL address, *[data]* (13 data parameters maximum]

example i C A L L 262144,0,0,0
n C A L L 262500,12,3 ,4 ,1212,6

warning Address register A6 should not be used in routines called using this command To return
to SuperBASIC use the instructions

MOVEQ #0,00
RTS

6 12/84

CHRS
CHR$ is a function which will return the character whose value is specified as a parameter BASIC

CHRS is the inverse of CODE

syntax CHRS (numeric expression)

example i PRINT CHR$(27) (print ASCII escape character]
ll PRINT C H R S C 6 5) (print A]

CIRCLE
CIRCLE_R

CIRCLE will draw a circle (or an ellipse at a specified angle) on the screen at a specified graphics
position and size The circle will be drawn in the window attached to the specified or
default channel

CIRCLE uses the graphics coordinate system and can use absolute coordinates (le
relative to the graphics origin) and refative coordinates (i e relative to the graphics cursor)
For relative coordinates use CIRCLE R

Multiple circles or ellipses can be plotted with a single call to CIRCLE Each set of
parameters must be separated from each other with a semi colon ()

The word ELLIPSE can be substituted tor CIRCLE if required

syntax x = numeric express/on
y = rwme/vc_ express/on
radius = numeric expression
eccentricity = numeric expression
angle = numenc_express/on (range 0 2n]

parameters = \ x y, 1
| radius eccentricity angfe 2

where 1 will draw a circle
2 will draw an ellipse of specified eccentricity and angle

CIRCLE [channel\ parameters *[, parameters}*

x horizontal offset from the graphics origin or graphics cursor

y vertical offset from the graphics origin or graphics cursor

radius radius of the circle

eccentricity the ratio between the major and minor axes of an ellipse

angle the orientation of the major axis of the ellipse relative to
the screen vertical The angle must be specified in radians

example i CIRCLE 50,50,20 ja circle at 5050 radius 20J
ll C I R C L E 50,50,20,0.5,0 [an ellipse at 5050 major axis 20

eccentricity 05 and aligned with the
vertical axisj

12/84 7

V/LuAn CLEAR will clear out the SuperBASIC variable area for the current program and will
release the space for Qdos

syntax CLEAR

example C L E A R

Comment CLEAR can be used to restore to a known state the SuperBASIC system For example,
if a program is broken into (or stops due to an error) while it is in a procedure then
SuperBASIC is still in the procedure even after the program has stopped CLEAR will
reset the SuperBASIC (See CONTINUE, RETRY)

CLOSE
devices CLOSE will close the specified channel Any window associated with the channel wtl!

be deactivated

syntax channel = # numeric expression

CLOSE channel

example i C L O S E #4
II CLOSE #1 nput_crianne I

3 12/64

CIS
Will clear the window attached to the specified or default channel to current PAPER windows
colour, excluding the border if one has been specified CLS will accept an optional
parameter which specifies if only a part of the window must be cleared

syntax. pan = numeric expression

CLS [channel,] [part]

where par! = 0 - whole screen {default if no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor line
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor position

example: i C L S [the whole wmdowj
n CLS 3 [clear the cursor line]
MI CLS # 2 , 2 {clear the bottom of the window on channel 2j

CODE is a function which returns the internal code used to represent the specified wWL/C
character If a string is specified then CODE will return the internal representation of the
first character of the string

CODE is the inverse of CHR$

syntax CODE (stnng_expression)

example i. PRINT CODEO'A") [prints 65)
n PRINT C O D E C ' S u p e r B A S I C ") [prints 83j

12/84 9

CONTINUE
RETRY

error handling CONTINUE allows a program which has been halted to be continued RETRY allows
a program statement which has reported an error to be re-executed

syntax CONTINUE
RETRY

example CONTINUE
R E T R Y

warning A program can only continue if

1 No new lines have been added to the program
2 No new variables have been added to the program
3 No lines have been changed

The value of variables may be set or changed

COPY
COPY_N

devices COPY will copy a file from an input device to an output device until an end of file marker
is detected COPY N will not copy the header (if it exists) associated with a file and
will allow Microdrive files to be correctly copied to another type of device

Headers are associated with directory-type devices and should be removed using
COPY N when copying to non-directory devices eg mdvl is a directory device, serl
is a non directory device

syntax COPY device JO device
COPY N device TO device

It must be possible to input from the source device and it must be possible
to output to the destination device

example i COPY mdv1_data_f i Le TO con_ [copy to default window]
n COPY neti_3 TO mdv1_data [copy data from network

station to mdv data j
in COPY__N mdv1_test_data TO serl [copy mdv1_test data to

serial port 1 removing
header information}

10 12/84

COS
COS will compute the cosine of the specified argument maths functions

syntax: ang/e-= numenc_expresston {range -10000 10000 in radians}

COS (angle)

example. i PRINT c o s c t h e t a)
II PRINT COSC3.141592654/2)

COT
COT will compute the cotangent of the specified argument maths functions

syntax angle- = numeric expression (range -30000 30000 in radians)

COT (angle)

example: i PRINT COT(3)
ii PRINT COTC3.141592654/2)

12/84 H

CSIZE
windows Sets a new character size for the window attached to the specified or default channel,

The standard size is 0,0 in 512 mode and 2,0 in 256 mode

Width defines the horizontal size of the character space Height defines the vertical size
of the character space The character size is adjusted to fill the space available

width size height size

0 6 pixels 0 10 pixels
1 8 pixels 1 20 pixels
2 12 pixels
3 16 pixels

syntax: width = numeric expression [range 0..3J
height = numeric expression {range 0 1)

CSIZE [channel,] width, height

example i CSIZE 3,0
II CS IZE 3,1

CURSOR
windows CURSOR allows the screen cursor to be positioned anywhere in the window attached

to the specified or default channel

CURSOR uses the pixel coordinate system relative to the window origin and defines
the position for the top left hand corner of the cursor The size of the cursor is dependent
on the character size in use.

If CURSOR is used with four parameters then the first pair is interpreted as graphics
coordinates (using the graphics coordinate system) and the second pair as the position
of the cursor (in the pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily

syntax x = numeric expression
y = numeric expression

CURSOR [channel,] x, y [,x, y]

example. i CURSOR 0,0
ii CURSOR 20,30
in. CURSOR 50,50,10,10

,2 12/84

DATA
READ
RESTORE

READ, DATA and RESTORE allow embedded data, contained in a SuperBASIC BASIC
program, to be assigned to variables at run time

DATA is used to mark and define the data, READ accesses the data and assigns it
to variables and RESTORE allows specific data to be selected

DATA allows data to be defined within a program The data can be read by
a READ statement and the data assigned to variables A DATA statement
is ignored by SuperBASIC when it is encountered during normal
processing

syntax DATA * {expression,] *

READ reads data contained in DATA statements and assigns it to a list of variables
Initially the data pointer is set to the first DATA statement in the program
and is incremented after each READ Re running the program will not
reset the data pointer and so in general a program should contain an
explicit RESTORE

An error is reported if a READ is attempted for which there is no DATA

syntax READ * [identifier,] *

RESTORE restores the data pointer, i e the position from which subsequent READs
will read their data If RESTORE is followed by a line number then the
data pointer is set to that Itne If no parameter is specified then the data
pointer is reset to the start of the program

syntax RESTORE [line_number]

example i 100 R E M a r k Data s ta tement e x a m p l e
110 DIM w e e k d a y s $ (7 , 4)
120 RESTORE
130 FOR count= 1 TO 7 :

R E A D w e e k d a y s $ (c o u n t)
140 PRINT w e e k d a y s
150 DATA "MON","TUE","UED","THIJR","FRI"
160 DATA "SAT'V'SUN"

ii 100 DIM month$ (12 ,9)
110 R E S T O R E
120 REMark Data s ta tement e x a m p l e
130 FOR count= 1 TO 12 :

READ month$(coLtnt)
140 PRINT months
150 DATA "January" , "February" , "March"
160 D A T A "Apr i I " , "May" ,"June"
170 DATA "Ju ly" , "August" , "September"
180 DATA "October" , "November" , "December"

An implicit RESTORE is not performed before running a program This allows a single warning
program to run with different sets of data Either include a RESTORE in the program
or perform an explicit RESTORE or CLEAR before running the program

12/84 13

DATES
DATE

Clock DATE$ is a function which will return the date and time contained in the QLs clock

The format of the string returned by DATES is

"yyyy mmm dd hh mm ss"

where yyyy is the year 1984 1985, etc
mmm is the month Jan, Feb etc
dd is the day 01 to 28 29, 30, 31
hh is the hour 00 to 23
mm are the minutes 00 to 59
ss are the seconds 00 to 59

DATE will return the date as a floating point number which can be used to store dates
and times in a compact form

If DATES is used with a numeric parameter then the parameter will be interpreted as
a date in floating point form and will be converted to a date string

syntax DATE$ [get the time from the clock)
DATE$(nu/77enc_express;on) (get time from supplied parameter}

example i PRINT DATES (output the date and time]
n PRINT DATES(234567) (convert 234567 to a date)

DAYS
Clock DAYS is a function which will return the current day of the week If a parameter is specified

then DAY$ wi!! interpret the parameter as a date and will return the corresponding day
of the week

syntax DAY$ [get day from clock]
DAYS (numeric expression) (get day from supplied parameter]

example i PRINT DAYS [output the day]
n PRINT D A Y S C 2 3 4 5 6 7) (output the day represented by 234567

(seconds)]

14 12/84

DEFine
FuNction
END DEFine
functions and

DEFine FuNction defines a SuperBASIC function. The sequence of statements between procedures
the DEFine function and the END DEFine constitute the function. The function definition
may also include a list of forma! parameters which will supply data for the function. Both
the formal and actual parameters must be enclosed in brackets. If the function requires
no parameters then there is no need to specify an empty set of brackets.

Formal parameters take their type and characteristics from the corresponding actual
parameters. The type of data returned by trie function is indicated by the type appended
to the function identifier. The type of the data returned in the RETURN statement must
match,

An answer is returned from a function by appending an expression to a RETurn statement
The type of the returned data is the same as type of this expression.

A function is activated by including its name in a SuperBASIC expression.

Function calls in SuperBASIC can be recursive; that is, a function may call itself directly
or indirectly via a sequence of other calis,

syntax: formal parameters^ (express/on *[, expression}*)
actual parameters:= (expression *[, expression]*)

type: = \ $
%

I

DEF FuNction identifier type [forma/ parameters]
[LOCal identifier *[, identifier]*]
statements
RETurn expression

END DEFine

RETurn can be at any position within the procedure body. LOCal
statements must preceed the first executable statement in the function.

example: 10 OEFine FuNction mean(a , b, c)
20 LOCal answer
30 LET answer = (a + b + c > / 3
40 RETurn answer
50 END DEFine
60 PRINT rneanCI ,2 ,3)

To improve legibility of programs the name of the function can be appended to the END comment
DEFine statement. However, the name will not be checked by SuperBASIC.

DEFine
PROCedure

END DEFine
functions and

procedures DEFine PROCedure defines a SuperBASIC procedure The sequence of statements
between the DEFine PROCedure statement and the END DEFine statement constitutes
the procedure The procedure definition may also include a list of formal parameters
which will supply data for the procedure The formal parameters must be enclosed in
brackets for the procedure definition, but the brackets are not necessary when the
procedure is called If the procedure requires no parameters then there is no need to
include an empty set of brackets in the procedure definition

Formal parameters take their type and characteristics from the corresponding actual
parameters

Variables may be defined to be LOCal to a procedure Local variables have no effect
on similarly named variables outside the procedure If required local arrays should be
dimensioned within the LOCal statement

The procedure is called by entering its name as the first item in a SuperBASIC statement
together with a list of actual parameters Procedure calls in SuperBASIC are recursive
that is, a procedure may call itself directly or indirectly via a sequence of other calls

It is possible to regard a procedure definition as a command definition in SuperBASIC,
many of the system commands are themselves defined as procedures

syntax forma! parameters = (expression *[, expression]*)
actual parameters = expression * [, expression}*

DEFine PROCedure identifier [formal parameters]
[LOCal identifier *[, identifier] *]
statements
[RETurn]

END DEFine

RETURN can appear at any position within the procedure body if present
the LOCal statement must be before the first executable statement in the
procedure The END DEFine statement will act as an automatic return

example i 100 DEFine PROCedure s ta r t_sc reen
110 WINDOW 100,100,10,10
120 PAPER 7 : INK 0 : C L S
130 BORDER A , 2 5 5
140 PRINT "Hel lo Everybody"
150 END DEFine
160 s ta r t_screen

n 100 DEFine PROCedure s l o w _ s c r o t I (s c r o l L _ L i m i t)
110 L O C a L count ~
120 FOR count = 1 TO s c r o I L _ L i m i t
130 S C R O L L 2
140 END FOR count
150 END DEFine
160 s L o w _ s c r o L I 20

comment To improve legibility of programs the name of the procedure can be appended to the
END DEFine statement However, the name will not be checked by SuperBASIC

16 12/34

DEG
DEG is a function which will convert an angle expressed in radians to an angle expressed maths functions
in degrees

syntax DEG (numeric—expression)

example PRINT DEG(P I /2) (will print 90j

DELETE will remove a file from the directory of the cartridge in the specified Microdrive U tLt I t

syntax DELETE device Microdrives

The device specification must be a Microdrive device

example i DELETE mdv1_old_data
ii DELETE mdv1_letter_fi le

12/84 17

DIM
or ra wo

y Defines an array to SuperBASIC String, integer and floating point arrays can be defined
String arrays handle fixed length strings and the final index is taken to be the string length

Array indices run from 0 up to the maximum index specified in the DIM statement, thus
DIM will generate an array with one more element in each dimension than is actually
specified

When an array is specified it is initialised to zero for a numeric array and zero length
strings for a string array

syntax index = numeric expression
array = indenttfier{index * { , index}*)

DIM array * { , array] *

example i DIM s t r ing_ar ray$C10,10 ,50)
ii DIM mat r ix (100,100)

DIMN
arrays DIMN is a function which will return the maximum size of a specified dimension of a

specified array If a dimension is not specified then the first dimension is assumed If
the specified dimension does not exist or the identifier is not an array then zero is returned

syntax array = identifier
index = numeric expression (1 for dimension 1, etc]

DIMN(array [.dimension])

example consider the array defined by D l M a < 2 , 3 , 4)

i PRINT DIMN (A, 1) [will print 2)
ll PRINT O I M M (A , 2) [will print 3]
ill PRINT D I M N C A , 3) (will print 4]
IV PRINT DIMN (A) (will print 2]
v PRINT D I M N C A . 4) [will print 0]

18 12/84

DIR
DfR will obtain and display in the window attached to the specified or default channel Microdrives
the directory of the cartridge in the specified Microdrive

syntax DIR device

The device specification must be a valid Microdrive device

The directory format output by DIR is as follows

free sectors = the number of free sectors
available sectors = the maximum number of sectors on this cartridge
file name = a SuperBASIC file name

screen format Volume name
free sectors i available sectors sectors
file name

fi/e_name

example i DIR mdv1_
n DIR "mdv2_"
in DIR "mdv" & mi croctn ve_number$ & "_"

screen format B A SI c_
183 / 221 sectors
demo_1
demo_1_old
demo_2

DIV is an operator which will perform an integer divide 1̂ 1 •

syntax, numeric expression DIV numeric expression "

example i PRINT 5 DIV 2 (will output 2]
ii PRINT -5 DIV 2 {will output -3]

12/84 19

DLINE
BASIC DLINE will delete a single line or a range of lines from a SuperBASIC program

syntax range - line number TO line number 1
line number TO 2

j TO line number 3
| line number 4

DLINE range * .range] *
where 1 will delete a range of lines

2 will delete from the specified line to the end
3 will delete from the start to the specified line
4 will delete the specified line

example i DLINE 10 TO 70, 80, 200 TO 400
{will delete lines 10 to 70 inclusive, fine 80 and lines 200 to 400
inclusive]

II DLINE
(will delete nothing)

\

tZL/H The EDIT command enters the SuperBASIC line editor

The EDIT command is closely related to the AUTO command, the only difference being
in their defaults. EDIT defaults to a line increment of zero and thus will edit a single
Isne unless a second parameter is specified to define a line increment.

If the specified line already exists then the line is displayed and editing can be started
If the line does not exist then the line number is displayed and the line can be entered

The cursor can be manipulated within the edit line using the standard QL keystrokes

same as ENTER but automatically gives previous
existing line to edit next

same as ENTER but automatically gives next
existing line to edit next

delete character right

delete character left

When the line is correct pressing ENTER will enter the line into the program.

If an increment was specified then the next line in the sequence will be edited otherwise
edit will terminate

syntax1 increment' = numeric expression
EDIT line number [.increment]

example i EDIT 10 (edit line 10 only}
ii. EDIT 20,10 (edit lines 20, 30 etc]

EOF
EOF is a function which will determine if an end of file condition has been reached devices
on a specified channel If EOF is used without a channel specification then EOF will
determine if the end of a program's embedded data statements has been reached

syntax EOF [(channel)]

example i IF EOF (#6) THEN STOP
ii IF EOF THEN PRINT "Out of data"

EXEC
EXEC_W

EXEC and EXEC W will ioad a sequence of programs and execute them in parallel Qdos

EXEC wtll return to the command processor after all processes have started execution,
EXEC Wwill wait until all the processes have terminated before returning

syntax. program =device [used to specify a Microdrive fife containing the
program)

EXEC program

example i EXEC mdv1_communcat ions
ii - EXEC_W mdv1_pn nter_process

12/84 21

EX|T
repetition EXIT will continue processing after the END of the named FOR or REPeat structure

syntax EXIT identifier

example i 100 REM s tar t looping
110 LET count = 0
120 REPeat Loop
130 LET count = count + 1
140 PRINT count
150 IF count = 20 THEN EXIT Loop
160 END REPeat Loop

(the loop will be exited when count becomes
equal to 20)

it 100 FOR n = 1 TO 1000
110 REM program statements
120 REM program statements
130 IF RND >.5 THEN EXIT n
140 END FOR n

{the loop will be exited when a random
number greater than 05 is generated}

EXP
maths functions EXP will return the value of e raised to the power of the specified parameter

syntax EXP (numeric—expression) [range -500 500J

example i PRINT E X P (3)
n PRINT EXP(3.141592654)

22 12/84

FILL
FILL will turn graphics fill on or off FILL will fill any non-re-entrant shape drawn with graphics
the graphics or furtfe graphics procedures as the shape is being drawn Re-entrant shapes
must be sptit into smaller non-re-entrant shapes

When you have finished filling, FILL 0 should be called

syntax switch. = numeric expression (range 0 1]

FILL [channel,] switch

example i FILL 1 : LINE 10,10 TO 50,50 TO 30,90 TO 10,10:FILL 0
[will draw a filled triangle]

n. FILL 1 : C I R C L E 50 ,50 ,20 :F ILL 0
[will draw a filled circle]

FILL$
FILLS is a function which will return a string of a specified length filled with a repetition string arrays
of one or two characters.

syntax: FILLS (string expression,numeric expression)

The string expression supplied to FILLS must be either one or two
characters long.

example: i PRINT FI LL$("a",5) [will print aaaaa]
n PRINT FILL$("oO",7) [will print oOoOoOoj
in LET a$ = a$ 8 FILLSC" ", 10)

12/84 23

FLASH
windows FLASH turns the flash state on and off FLASH is only effective in low resolution mode

FLASH will be effective m the window attached to the specified or default channel

syntax switch = numeric expression (range 0 1)

FLASH [channel,] switch

where switch = 0 will turn the flash off
switch = 1 will turn the flash on

example 100 PRINT "A ";
110 FLASH 1
120 PRINT "flashing ";
130 FLASH 0
140 PRINT "word"

warning Writing over part of a flashing character can produce spurious results and should be
avoided

FORI V/n The FOR statement allows a group of SuperBASIC statements to be repeated a controlled
CM ft CT^D number of times The FOR statement can be used in both a long and a short form

tT NEXT and END FOR can be used together within the same FOR loop to provide a
repetition /Q0p ep,/0guei ,e a group of SuperBASIC statements which will not be executed if a

loop is exited via an EXIT statement but which will be executed if the FOR loop terminated
normally

define for item = \ numeric express/on
| numeric exp TO numeric exp
I numeric exp TO numeric exp STEP numenc_exp

for list = for item *[, for__item*

short The FOR statement is followed on the same logical line by a sequence of SuperBASIC
statements The sequence of statements is then repeatedly executed under the control
of the FOR statement When the FOR statement is exhausted processing continues
on the next line The FOR statement does not require its terminating NEXT or END
FOR Single line FOR loops must not be nested

syntax FOR variable = forest . statement *[: statement}*

example I FOR i = 1, 2, 3, 4 TO 7 STEP 2 : PRINT i
n FOR element = f i rs t TO Las t : LET buf fe r (e lement) =0

long The FOR statement is the last statement on the line Subsequent lines contain a series
of SuperBASIC statements terminated by an END FOR statement The statements
enclosed between the FOR statement and the END FOR are processed under the control
of the FOR statement

syntax FOR variable = for_/ist
statements

END FOR variable

example 100 INPUT "data please" i- x
110 LET factorial = 1
120 FOR value = x TO 1 STEP -1
130 LET factorial = factorial. * value
140 PRINT x i i i i factorial
150 IF factorial>1E20 THEN
160 PRINT "Very large number"
170 EXIT value
180 END IF
190 END FOR value

warning A floating point variable must be used to control a FOR loop

24 12/84

FORMAT
FORMAT will format and make ready for use the cartridge contained in the specified Microdrives
Microdrive

syntax FORMAT [channel,] device

Device specifies the Microdrive to be used for formatting and the identifier part of the
specification is used as the medium or volume name for that cartridge FORMAT will
write the number of good sectors and the total number of sectors available on the cartridge
on the default or on the specified channel

It is helpful to format a new cartridge several times before use This conditions the surface
of the tape and gives greater capacity

example i FORMAT mdv1_data_cartndge
ii FORMAT mdv2_wp_let ters

FORMAT can be used to reinitialise a used cartridge However, all data contained on warning
that cartridge will be lost

For compatibility with other BASICs SuperBASIC supports the GOSUB statement. VjUOUD
GOSUB transfers processing to the specified line number, a RETurn statement will transfer
processing back to the statement following GOSUB

The line number specification can be an expression

syntax GOSUB line number

example i GOSUB 100
ii GOSUB 4 *se lec t_va r iabLe

The control structures available in SuperBASIC make the GOSUB statement redundant comment

12/84 25

\3\) I V For compatibility with other BASICs SuperBASIC supports the GOTO statement GOTO
will unconditionally transfer processing to the statement number specified The statement
number specification can be an expression

syntax GOTO line number

example i GOTO program_start
II GOTO 9999

comment The control structures available in SuperBASIC make the GOTO statement redundant

IF
THEN
P| QC The IF statement allows conditions to be tested and the outcome of that test to control
CLwt subsequent program flow

FMD IF ~*"ne '^ statement can De useQl in both a long and a short form

Short The THEN keyword is followed on the same logical line by a sequence of SuperBASIC
keyword This sequence of SuperBASiC statements may contain an ELSE keyword If
the expression in the fF statement is true (evaluates to be non-zero), then the statements
between the THEN and the ELSE keywords are processed If the condition is false
(evaluates to be zero) then the statements between the ELSE and the end of the line
are processed

If the sequence of SuperBASIC statements does not contain an ELSE keyword and if
the expression in the IF statement s true then the statements between the THEN keyword
and the end of the line are processed If the expression is false then processing continues
at the next line

syntax statements = statement * [, statement] *

IF expression THEN statements [:ELSE statements]

example I IF a=32 THEN PRINT "Limit" : ELSE PRINT "OK"
ii IF test >maximum THEN LET maximum = test
in IF "1"+1=2 THEN PRINT "coercion OK"

long 1 The THEN keyword is the last entry on the logical line A sequence of SuperBASIC
statements is written following the IF statements The sequence is terminated by the END
IF statement The sequence of SuperBASIC statements is executed if the expression
contained in the IF statement evaluates to be non zero The ELSE keyword and second
sequence of SuperBASIC statements are optional

long 2 The THEN keyword is the last entry on the logical line A sequence of SuperBASIC
statements follows on subsequent lines, terminated by the ELSE keyword IF the
expression contained in the IF statement evaluates to be non zero then this first sequence
of SuperBASIC statements is processed After the ELSE keyword a second sequence
of SuperBASIC statements is entered, terminated by the END IF keyword If the expression
evaluated by the IF statement is zero then this second sequence of SuperBASIC
statements is processed

26 12/84

syntax IF express/on THEN
statements

[ELSE
statements]

END IF

example 100 LET L i m i t = 10
110 INPUT "Type in a number" i number
120 IF number > L i m i t THEN
130 PRINT "Range error"
140 ELSE
150 PRINT "Inside l i m i t "
160 END IF

In all three forms of the IF statement the THEN is optional In the short form it must comment
be replaced by a colon to distinguish the end of the IF and the start of the next statement
In the long form it can be removed completely

IF statements may be nested as deeply as the user requires (subject to available memory) nesting
However, confusion may arise as to which ELSE, END IF etc matches which IF
SuperBASfC will match nested ELSE statements etc to the closest IF statement, for
example-

100 IF a = b THEN
110 IF c = d THEN
120 PRINT "error"
130 ELSE
140 PRINT "no error"
150 END IF
160 ELSE
170 PRINT "not checked"
180 END IF

The ELSE at line 130 is matched to the second IF. The ELSE at line 160 is matched
with the first IF (at line 100)

INK
This sets the current ink colour, i e the colour in which the output is written INK will windows
be effective for the window attached to the specified or default channel

syntax. INK [channel,] colour

example i INK 5
ii INK 6,2
lii. INK #2 ,255

12/84 &

Hll\[Z Yy INKEY$ is a function which returns a single character input from either the specified
or default channel

An optional timeout can be specified which can wait for a specified time before returning,
can return immediately or can wait for ever If no parameter is specified then INKEY$
will return immediately

syntax INKEYS [\(channel)
\(cnannel, time)
\(time)\

where time = 1 32767 (wait for specified number of frames]
time = -1 [wait forever}
time = 0 [return immediately]

example i PRINT INKEYI [input from the default channel]
ii PRINT ! N K E Y $ (# 4) [input from channel 4j
MI PRINT IN KEYS (50) {wait for 50 frames then return anyway]
iv PRINT INKEY$(0) (return immediatly (poll the keyboard)]
v PRINT INKEY!(#3,100) [wait for 100 frames for an input from

channel 3 then return anyway]

I INK U I INPUT allows data to be entered into a SuperBASIC program directly from the QL
keyboard by the user SuperBASIC halts the program until the specified amount of data
has been input, the program will then continue Each item of data must be terminated
by the ENTER key

INPUT will input data from either the specified or the default channel

If input is required from a particular console channel the cursor for the window connected
to that channel will appear and start to flash

syntax separator = \ I
I ,
l \
I ;
I TO

prompt = [channel,] expression separator
INPUT [prompt] (channel\ variable *\,variable}*

example i INPUT ("Last guess "& guess & "New guess'") <
guess

n INPUT "What is your guess7"; guess

ill 100 INPUT "array size7" ' L i m i t
110 DIM arrayUimt-1)
120 FOR element = 0 to Limit-1
130 INPUT ("data for element" & element) '

array(e Lement)
140 END FOR element
150 PRINT array

28 12/84

INSTR
INSTR is an operator which will determine if a given substring is contained within a operator
specified string If the string is found then the substring's position is returned If the string
is not found then INSTR returns zero

Zero can be interpreted as false i e the substring was not contained in the given string
A non zero value the substrings position can be intepreted as true i e the substring
was contained in the specified string

syntax strings-expression INSTR string express/on

example i PRINT "a" INSTR "cat" [will print 2)
i PRINT "CAT" INSTR "conca tena te" [will print 4j
in PRINT "x" INSTR "eggs" [will print 0]

INT
INT will return the integer part of the specified floating point expression maths functions

syntax INT (numeric expression)

example i PRINT INT(X)
II PRINT INTC3.U1592654/2)

12/84 29

KEYROW
KEYROW is a function which looks at the instantaneous state of a row of keys (the table
below shows how the keys are mapped onto a matrix of 8 rows by 8 columns) KEYROW
takes one parameter which must be an integer in the range 0 to 7 this number selects
which row is to be looked at The value returned by KEYROW is an integer between
0 and 255 which gives a binary representation indicating which keys have been
depressed m the selected row

Since KEYROW is used as an alternative to the normal keyboard input mechanism using
IIMKEY$ or INPUT any character in the keyboard type ahead buffer are cleared by
KEYROW thus key depressions which have been made before a call to KEYROW
will not be read by a subsequent INKEY$ or INPUT

Note that multiple key depressions can cause surprising results In particular if three
keys at the corner of a rectangle in the matrix are depressed simultaneously, it will appear
as if the key at the fourth corner has also been depressed The three special keys CTRL,
SHIFT and ALT are an except on to this rule and do not interact with other keys in this way

syntax row = numeric expression jrange 0 7j

KEYROW (row)

example 100 REMark run this program and press a few keys
110 REPeat loop
120 CURSOR 0,0
130 FOR row = 0 to 7
140 PRINT row MI KEYROW(row) ; " "
150 END FOR row
160 END REPeat Loop

KEYBOARD MATRIX

30 12/84

LBYTES
devices

LBYTES will load a data tile into memory at the specified start address MicrodriveS

syntax start_address-~ numeric expression

LBYTES device ,start_address

example i LBYTES mdv1_screen, 131072
[load a screen image]

n LBYTES mdv1_progratn, start_address
(load a program at a specified address)

LEN
LEN is a function which will return the length of the specified string expression String arrays

syntax LEN (string expression)

example i PRINT LEN< "LEN w i l l find the Length of this
string")

n PRINT LEN(output_string$)

12/84 31

L.C I LET starts a SuperBASIC assignment statement The use of the LET keyword is optional
The assignment may be used for both string and numeric assignments SuperBASIC
will automatically convert unsuitable data types to a suitable form wherever possible

syntax [LET] variable = express/on

example i LET a = 1 + 2
n LET aS - "12345"
in LET aS = 6789
iv b$ = test_data

LI I lIC LINE allows a straight line to be drawn between two points in the window attached to
I IMP D f^e Default or specified channel The ends of the line are specified using the graphics
LI IMC fl coordinate system

=* " Multiple lines can be drawn with a single LINE command

The normal specification requires specifying the two end points for a line These end
points can be specified either in absolute coordinates (relative to the graphics origin)
or in relative coordinates (relative to the graphics cursor) If the first point is omitted then
a line is drawn from the graphics cursor to the specified point If the second potnt is
omitted then the graphics cursor is moved but no line is drawn

LINE will always draw with absolute coordinates, i e. relative to the graphics origin while
LINE R will always draw relative to the graphics cursor

syntax. x = numeric expression
Y = numeric express/on
point = x , y

parameter^ = | TO point 1
| ,point TO point 2

parameterj = | TO point, angle 1
| TO point 2
I point 3

LINE {channel,} parameter^ *[, parameter_2\ *

LINE R [channel] parameter^ * [,parameter_2] *

where 1 will draw from the specified point to the next specified point
2 will draw from the the last point plotted to the specified point
3 will move to the specified point - no line will be drawn

example i LINE 0,0 TO 0, 50 TO 50,0 TO 50,0 TO 0,0 (a square}
n. LINE TO 0 .75 , 0.5 [a line]
in LINE 2 5 , 2 5 (move the graphics cursorj

32 12/84

LIST allows a SuperBASIC line or group of lines to be listed on a specific or default Llw I
channel

LIST is terminated by

syntax line = line number TO line number 1
line__number TO 2

| TO line number 3
| line number 4
1 5

LIST [channel,] line *[,tine*

where 1 will list from the specified line to the specified line
2 will list from the specified line to the end
3 will list from the start to the specified line
4 will list the specified line
5 will list the whole program

example i L IST [list all lines]
ii LIST 10 to 300 (list lines 10 to 300J
in LIST 12,20,50 [list lines 1220 and 50 only]

If LIST output is directed to a channel opened as a printer channel then LIST will provide comment
hard copy

LOAD
devices

LOAD will load a SuperBASIC program from any QL device LOAD automatically performs Microdnves
a NEW before loading another program, and so any previously loaded program will
be cleared by LOAD

If a line input during a load has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line Upon execution, a line of
this sort will generate an error

syntax LOAD device

example i LOAD "mdv1_test_program"
is LOAD mdv1_games
HI LOAD neti_3
iv LOAD ser1_e

12/84 33

LN
LOG10

maths functions LN will return the natural logarithm of the specified argument LOG10 will return the
common logarithm There is no upper limit on the parameter other than the maximum
number the computer can store

syntax LOGlO(numenc_expression) (range greater than zero]
LN (numeric expression) [range greater than zero)

example i PRINT LOG10C2Q)
ii PRINT LNC3.U1592654)

LOCal
functions and

procedures LOCal allows identifiers to be defined to be LOCal to a function or procedure. Local
identifiers only exist within the function or procedure in which they are defined, or in
procedures and functions called from the function or procedure in which they are defined
They are lost when the function or procedure terminates. Local identifiers are independent
of similarly named identifiers outside the defining function or procedure Arrays can be
defined to be local by dimensioning them within the LOCal statement.

The LOCal statement must precede the first executable statement in the function or
procedure in which ft is used

syntax. LOCal identifier * [, identifier] *

example i. LOCal a, b, c<10,10)
ii LOCal temp_data

comment Defining variables to be LOCal allows variable names to be used within functions and
procedures without corrupting meaningful variables of the same name outside the function
or procedure

MERGE
devices

MERGE will load a file from the specified device and interpret it as a SuperBASfC Microdrives
program If the new file contains a line number which doesnt appear in the program
already in the QL then the line will be added If the new file contains a replacement
line for one that already exists then the line will be replaced All other old program lines
are left undisturbed

If a line input during a MERGE has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax MERGE device

example i MERGE mdv1_overLay_program
n MERGE mdv1_new_data

LRUN
devices

LRUN will load and run a SuperBASIC program from a specified device LRUN will Microdrives
perform NEW before loading another program and so any previously stored SuperBASIC
program will be cleared by LRUN

if a line input during a loading has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax LRUN device

example i LRUN mdv2_TEST
ii LRUN mdv1_game

12/84 35

MOD
operators MOD is an operator which gives the modulus, or remainder, when one integer is divided

by another

syntax numeric expression MOD numeric—expression

example i PRINT 5 MOD 2 (will print 1]
ii PRINT 5 MOD 3 [will print 2]

MODE
screen MODE sets the resolution of the screen and the number of solid colours which it can

display MODE will clear all windows currently on the screen, but will preserve their
position and shape Changing to low resolution mode (8 colour) will set the minimum
character size to 2,0

syntax MODE numeric expression

where 8 or 256 will select low resolution mode
4 or 512 will select high resolution mode

example i MODE 256
ii MODE 4

36 12/84

MOVE
MOVE will move the graphics turtle in the window attached to the default or specified turtle graphics
channel a specified distance in the current direction The direction can be specified using
the TURN and TURNTO commands The graphics scale factor is used in determining
how far the turtle actually moves Specifying a negative distance will move the turtle
backwards

The turtle is moved in the window attached to the specified or default channel

syntax distance - numeric expression

MOVE [channel,] distance

example i MOVE #2 ,20 [move the turtle in channel 2 20 units
forwards]

n MOVE -50 (move the turtle in the default channel 50
units backwards]

MRUN
devices

MRUN will interpret a file as a SuperBASIC program and merge it with the currently Microdrives
loaded program

If used as direct command MRUN will run the new program from the start If used as
a program statement MRUN will continue processing on the line following MRUN

If a line input during a merge has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax MRUN device

example i MRUN mdv1_chai n_program
n MRUN mdv1_new_data

13/84 37

NET
network NET allows the network station number to be set. If a station number is not explicitly

set then the QL assumes station number 1

syntax station = numenc_expression [range 1 127J

NET station

example i NET 63
ii NET 1

comment Confusion may arise if more than one station on the network has the same station number

lit W NEW will clear out the old program, variables and channels other than 0,1 and 2

syntax NEW

example NEW

38 12/84

NEXT
NEXT is used to terminate, or create a loop epilogue in, REPeat and FOR loops repetition

syntax: NEXT identifier

The identifier must match that of the loop which the NEXT is to control

example i 10 REMark th is toop must repeat f o r e v e r
11 REPeat in f in i te_Loop
12 PRINT "sti L L looping"
13 NEXT i n f i n i t e_Loop

n 10 REMark t h i s Loop w i l l repeat 20 times
11 LET L i m i t = 20
12 FOR index=1 TO L i m i t
13 PRINT index
14 NEXT index

i l l 10 REMark th is L o o p w i L L t e L L y o u w h e n a 3 0 i s f o u n d
11 REPeat toop
12 LET number = RND<1 TO 100)
13 IF number <> 30 THEN NEXT Loop
14 PRINT number; " is 30"
15 EXIT LOOP
16 END REPeat Loop

If NEXT is used inside a REPeat - END REPeat construct it will force processing to in REPeat
continue at the statement following the matching REPeat statement

The NEXT statement can be used to repeat the FOR loop with the control variable set in FOR
at its next value, If the FOR loop is exhausted then processing will continue at the
statement following the NEXT, otherwise processing will continue at the statement after
the FOR

ON...GOTO
To provide compatibility with other BASICS, SuperBASIC supports the ON GOTO and vIMmVjtJDUu
ON GOSUB statements These statements allow a variable to select from a list of possible
line numbers a line to process in a GOTO or GOSUB statement If too few line numbers
are specified in the list then an error is generated

syntax. ON variable GOTO expression *[, expression}*
ON variable GOSUB expression *{, expression}*

example. i ON x GOTO 10, 20, 30, 40
II. ON se lec t_va r iabLe GOSUB 1000, 2000, 3000, 4000

SELect can be used to replace these two BASIC commands comment

12/64 39

Of==N
OPEN_IN

OPEN_NEW
csvices

/iicrcrrmves OhEN allows the user to link a logical channel to a physical QL device for I/O purposes.

II Ihe channel is to a Microdrive then the Microdrive file can be an existing file or a new
lil" In which case OPEN_IN will open an already existing Microdrive file for input and
°I'EN_NEW will create a new Microdrive file for output.
;;Vntax: channel:= # numeric expression

OPEN channel, device

"Mmple: i. OPEN #5, f_name$
li. OPEN_IN #9, "mdv1_f i Le_name"

[open file mdvl file name)
in. OPEN_NEW m, mdv1_data_fHe

(open file mdv1_data_file]
iv. OPEN #6, con_10x20a20x20_32

[Open channel 6 to the console device creating a window size
10x20 pixels at position 20,20 with a 32 byte keyboard type ahead
buffer.}

v. OPEN #8, mdv1_read_wri te_fHe.

OVER
windows OVER selects the type of over printing required in the window attached to the specified

°r default channel. The selected type remains in effect until the next use of OVER.

syi'iax: switch. = numeric express/on [range -1..1)

OVER [channel,] switch

where switch - 0 - print ink on strip
switch = 1 - print in ink on transparent strip
switch =-1 - XORs the data on the screen

example: i. OVER 1 (set "overprinting"]
li. 10 REMark Shadow Writing

11 PAPER 7 : INK 0 : OVER 1 : CLS
12 CSIZE 3,1
13 FOR i = 0 TO 10
14 CURSOR i , i
15 IF i=10 THEN INK 2
16 PRINT "Shadow"
17 END FOR i

12/84

PAN
PAN the entire current window the specified number of pixels to the left or the right windows
PAPER is scrolled in to fill the clear area

An optional second parameter can be specified which will allow only part of the screen
to be panned

syntax distance = numeric expression
part = numeric expression

PAN [channel,] distance [, part[

where part = 0 - whole screen {or no parameter)
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor

position
If the expression evaluates to a positive value then the contents of the
screen will be shifted to the right

example i PAN #2 ,50 {pan left 50 pixelsj
ii PAN -100 {pan right 100 pixels!
in PAN 50,3 [pan the whole of the current cursor line 50 pixels

to the right!

If stipples are being used or the screen is in low resolution mode then to maintain the warning
stipple pattern the screen must be panned in multiples of two pixels

PAPER
PAPER sets a new paper colour (ie the colour which will be used by CIS, PAN, windows
SCROLL, etc) The selected paper colour remains in effect until the next use of PAPER
PAPER will also set the STRIP colour

PAPER will change the paper colour in the window attached to the specified or default
channel

syntax PAPER [channel,] colour

example i PAPER #3,7 [White paper on channel 3|
n PAPER 7,2 (White and red stipple)
in PAPER 255 (Black and white stipple)

iv 10 REMark Show co lou rs and s t ipp les
11 FOR co lour = 0 TO 7
12 FOR con t ras t = 0 TO 7
13 FOR s t ipp le = 0 TO 3
14 P A P E R colour, con t ras t , s t ipp le
15 S C R O L L 6
16 END FOR stipple
17 END FOR contrast
18 END FOR colour

(not suitable for televisions)

12/84 41

iMUOt PAUSE wilt cause a program to wait a specified period of time Delays are specified
in units of 20ms in the UK only, otherwise 1667ms If no delay is specified then the
program will pause indefinitely Keyboard input will terminate the PAUSE and restart
program execution

syntax- delay = numeric expression

PAUSE [delay]

example " i. PAUSE 50 [wait 1 second!
n PAUSE 500 [wait 10 seconds]

PEEK
PEEK_W
PEEK_L

BASIC PEEK is a function which returns the contents of the specified memory location

PEEK has three forms which will access a byte (8 bits), a word (16 bits), or a long word
(32 bits).

syntax address:= numeric expression

PEEK(adcfress) [byte access)
PEEK_W(add/-ess) (word accessj
PEEK [.(address) [long word access]

example i. PRINT PEEKC12245) [byte contents of location 12245J
n. PRINT PEEK_W<12) [word contents of locations 12 and 13]
iti. PRINT PEEK_L(1000) [long word contents of location 1000}

warning For word and long word access the specified address must be an even address.

42 12/84

PENUP
Operates the pen in turtle graphics If the pen is up then nothing will be drawn If the i CFMUwVVIM
pen is down then lines will be drawn as the turtle moves across the screen turtle graphics

The line will be drawn in the window attached to the specified or default channel The
line will be drawn in the current ink colour for the channel to which the output is directed

syntax PENUP [channel]
PENDOWN [channel]

example i PENUP (will raise the pen in the default channel]
ii PENDOWN #2 [will lower the pen in the window attached to

channel 2)

PI
PI is a function which returns the value of TT maths functions

syntax PI

example PRINT PI

12/84 43

POINT
POINT_R

graphics POINT plots a point at the specified position in the window attached to the specified
or default channel. The point is plotted using the graphics coordinates system relative
to the graphics origin. If POINT_R is used then all points are specified relative to the
graphics cursor and are plotted relative to each other

Multiple points can be plotted with a single call to POINT.

syntax: x:= numeric expression
y:= numenc__express:on

parameters: = x , y

POINT {channel,} parameters *[.parameters]*

example: i. POINT 256,128 [plot a point at (256,128)!
ii POINT x, x *x [plot a point at (x,x*x)j
i i i . 1 0 REPeat e x a m p l e

20 I N K R N D C 2 5 5)
30 POINT RND<100),RND(100)
40 END REPeat example

POKE
POKE_W
POKE_L

BASIC POKE allows a memory location to be changed. For word and long word accesses
the specified address must be an even address.

POKE has three forms which will access a byte (8 bits), a word (16 bits), a long word
(32 bits).

syntax: address:= numeric expression
data: = numeric_expression

POKE address, data (byte access)
POKE W address, data (word access)
POKE L address, data (long word access)

example: i. POKE 12235,0 (set byte at 12235 to 0)
ii. POKE_L 131072, 12345 (set long word at 131072 to

12345]

warning Poking data into areas of memory used by Qdos can cause the system to crash and
data to be lost. Poking into such areas is'not recommended.

44 12/84

Allows output to be sent to the specified or default channel The normal use of PRINT r KIN I
is to send data to the QL screen devices

syntax separator =] ' Microdrives

l \

| TO numeric expression

item = expression
channel
separator

PRINT *[item]*

Multiple print separators are allowed At least one separator must
separate channel specifications and expressions

example i PRINT "HeL lo Wor ld"
(will output Hello World on the default output device (channel 1)J

n PRINT #5, "data", 1,2,3,4
(will output the supplied data to channel 5 (which must have been
previously opened)}

lit PRINT TO 20 ; "This is in column 20"

i Normal action is to insert a space between items output on the screen If the item
will not fit on the current line a line feed will be generated If the current print position
is at the start of a line then a space will not be output ! affects the next item to separators
be printed and therefore must be placed in front of the print item being printed
Also a ; or a! must be placed at the end of a print list if the spacing is to be continued
over a series of PRINT statements

Normal separator, SuperBASIC will tabulate output every 8 columns

\ Will force a new line

; Will leave the print position immediately after the last item to be printed Output will
be printed in one continuous stream

TO Will perform a tabbing operation TO followed by a numeric—expression will advance
the print position to the column specified by the numeric expression If the
requested column is meaningless or the current print position is beyond the specified
position then no action will be taken

RAD
RAD is a function which will convert an angle specified in degrees to an angle specified maths functions
in radians

syntax RAD (numeric express/on)

example PRINT R A O C 1 8 0) [will print 3141593}

12/84 45

RANDOMISE
maths functions RANDOMISE allows the random number generator to be reseeded If a parameter is

specified the parameter is taken to be the new seed If no parameter is specified then
the generator is reseeded from internal information

syntax RANDOMISE [numeric expression]

example i RANDOMISE [set seed to internal data)
ii RANDOMISE 3.2235 [set seed to 32235)

RECOL
windows RECOL will recolour individual pixels in the window attached to the specified or default

channel according to some preset pattern Each parameter is assumed to specify, in
order, the colour in which each pixel is recoloured, i e She first parameter specifies the
colour with which to recolour all black pixels, the second parameter blue pixels, etc

The colour specification must be a solid colour, ie it must be in the range 0 to 7

syntax cO = new colour for black
d = new colour for blue
c2 = new colour for red
c3 = new colour for magenta
c4 = new colour for green
c5 = new colour for cyan
c6 = new colour for yellow
c7 = new colour for white

RECOL (channel ,] cO, d, c2, c3, c4, c5, c6, c7

example RE COL 2,3,4,5,6,7,1,0 (recolour blue to magenta red to
green, magenta to cyan etc}

46 12/84

REMark allows explanatory text to be inserted into a program The remainder of the nCIVldl I\
line is ignored by SuperBASIC

syntax REMark text

example REMark Th is is a comment in a program

REMark is used to add comments to a program to aid clarity comment

RENUM allows a group or a series of groups of SuperBASIC line numbers to be FiCIMUIVI
changed If no parameters are specified then RENUM will renumber the entire program
The new listing will begin at line 100 and proceed in steps of 10

If a start line is specified then line numbers prior to the start line will be unchanged
If an end line is specified then line numbers following the end line will be unchanged

If a start number and stop are specified then the lines to be renumbered will be numbered
from the start number and proceed in steps of the specified size

If a GOTO or GOSUB statement contains an expression starting with a number then
this number is treated as a line number and is renumbered

syntax starL^ltne = numeric expression {start renumberj
end line = numeric expression [stop renumber]
stan number= numeric—expression (base line number]
step = numeric .expression (step)

RENUM [start_lme [TO end_line],} [start_number] [,step]

example i RENUM {renumber whole program from 100 by 10]
n RENUM 100 TO 200[renumber from 100 to 200 by 10)

No attempt must be made to use RENUM to renumber program lines out of sequence warning
le to move lines about the program RENUM should not be used in a program

12/84 47

REPeat
END REPeat

repetition REPeat allows general repeat loops to be constructed REPeat should be used with
EXIT for maximum effect REPeat can be used in both long and short forms

short The REPEAT keyword and loop identifer are followed on the same logical line by a colon
and a sequence of SuperBASiC statements EXIT will resume normal processing at the
next logical line

syntax REPeat identifier : statements

example REPeat w a i t : IF INKEYS <> "" THEN EXIT w a i t

long The REPEAT keyword and the loop identifier are the only statements on the logical line
Subsequent lines contain a series of SuperBASiC statements terminated by an END
REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly processed
by SuperBASiC

syntax REPeat identifier
statements

END REPeat identifier

example 10 LET number = R N D C 1 TO 50)
11 REPeat guess
12 INPUT "What is your guess''", guess
13 IF guess = n u m b e r THEN
14 PRINT "You have guessed c o r r e c t l y "
15 EXIT guess
16 ELSE
17 PRINT "You have guessed i n c o r r e c t l y "
18 END IF
19 END REPeat guess

comment Normally at least one statement in a REPeat loop will be an EXIT statement

RESPR
Qdos RESPR is a function which will reserve some of the resident procedure space (For

example to expand the SuperBASiC procedure list)

syntax space = numeric expression

RESPR (space)

example. PRINT RESPR(1024)
[will print the base address of a 1024 byte block]

48 12/84

RETurn is used to force a function or procedure to terminate and resume processing nC lUill
at the statement after the procedure or function call When used within a function definition functions and
theRETurn statement ts used to return the function's value procedures

syntax RETurn [expression]

example i 100 PRINT ack (3 ,3)
110 DEF ine F u N c t i o n a c k (m , n)
120 IF (T=0 THEN RETurn n+1
130 IF n=0 THEN RETurn ack (m-1,1)
140 RETurn a c k (m - 1 , a c k (m , n - 1))
150 END D E F i n e

ii 10 LET warmng_f lag = 1
11 LET error_number = R N D C O TO 10)
12 warn ing error_number
13 DEFine PROCedure warmng(n)
14 IF warning_fLag THEN
15 PRINT "WARNING: " ;
16 SELect ON n
17 ON n = 1
18 PRINT "M ic rod r i ve full"
19 ON n = 2
20 PRINT "Data space full"
21 ON n = REMAINDER
22 PRINT "Program error"
23 END SELect
24 ELSE
25 RETurn
26 END IF
27 END DEFine

It is not compulsory to have a RETurn in a procedure If processing reaches the END comment
DEFine of a procedure then the procedure will return automatically

RETurn by itself is used to return from a GOSUB

RND
RND generates a random number Up to two parameters may be specified for RND maths functions
If no parameters are specified then RND returns a pseudo random floating point number
in the exclusive range 0 to 1 If a single parameter is specified then RND returns an
integer in the inclusive range 0 to the specified parameter If two parameters are specified
then RND returns an integer in the inclusive range specified by the two parameters

syntax RND ([numeric expression] [TO numeric expression])

example i PRINT RND (floating point number between
0 and 1]

n PRINT R N D C 1 0 TO 20) [integer between 10 and 20]
m PRINT RNDC1 TO 6) (integer between 1 and 6)
iv PRINT RNDC10) (integer between 0 and 10)

12/84 49

RUN
program RUN allows a SuperBASIC program to be started If a line number is specified in the

RUN command then the program will be started at that point, otherwise the program
will start at the lowest line number

syntax RUN [numeric expression]

example i RUN [run from start]
ii RUN 10 [run from line 10!
tn RUN 2*20 [run from line 40]

comment Although RUN can be used within a program its normal use is to start program execution
by typing it in as a direct command

SAVE
devices

Microdrives SAVE will save a SuperBASIC program onto any QL device

syntax line = numenc_expression TO numenc_expression 1
numeric expression TO 2
TO numeric expression 3
numeric expression 4

1 5

SAVE device *[,line]*

where 1 will save from the specified line to the specified line
2 will save from the specified line to the end
3 wtll save from the start to the specified line
4 will save the specified line
5 w:ll save the whole program

example i S A V E mdv1_program, 20 TO 70
[save lines 20 to 70 on mdvl program]

ii SAVE mdv2_test_program, 10,20,40
[save lines 1020,40 on mdvl test program]

in SAVE net3
[save the entire program on the network]

IV SAVE serl
[save the entire program on serial channel 1]

50 12/84

SBYTES
devices

SBYTES allows areas of the QL memory to be saved on a QL device Microdrives

syntax start—address = numeric expression
length = numeric expression

SBYTES device, starL_address, length

example i SBYTES mdv1_screen_data, 131072,32768
(save memory 50000 length 10000 bytes on mdv1 test program]

ii S B Y T E S mdv1_test_program, 50000,10000
[save memory 50000 length 1000 bytes on mdvl test_programj

in S B Y T E S neto_3, 32768,32678
{save memory 32768 length 32768 bytes on the network]

iv S S Y T E S serl , 0,32768
[save memory 0 length 32768 bytes on serial channel 1 j

SCALE
SCALE allows the scale factor used by the graphics procedures to be altered A scale graphics
of 'x' implies that a vertical line of length x' will fill the vertical axis of the window in which
the figure is drawn A scale of 100 is the default SCALE also allows the origin of the
coordinate system to be specified This effectively allows the window being used for the
graphics to be moved around a much larger graphics space

syntax x = numeric expression
y = numeric expression

origin = x,y
scale = numeric expression

SCALE [channel,] scale, origin

example i S C A L E 0.5,0.1,0.1 [setscale to 05 with the origin at 01,01]
n S C A L E 10,0,0 [set scale to 10 with the origin at 0,0j
in CALE 100,50,50 [set scale to 100 with the origin at 50,50]

12/84 51

SCROLL
Windows SCROLL scrolls the window attached to the specified or default channel up or down

by the given number of pixels Paper is scrolled in at the top or the bottom to fill the
clear space

An optional third parameter can be specified to obtain a part screen scroll

syntax part = numeric expression
distance = numeric expression

where part = 0 - whole screen (default is no parameter)
part = 1 top excluding the cursor line
part = 2 - bottom excluding the cursor line

SCROLL [channel,] distance [, part]

If the distance is positive then the contents of the screen will be shifted
down

example i SCROLL 10 {scroll down 10 pixels]
n S C R O L L -70 (scroll up 70 pixels]
in S C R O L L - 1 0 , 2 [scroll the lower part of the window up 10

pixels]

SDATE
clock The SDATE command allows the QLs clock to be reset

syntax year = numeric expression
month = numeric expression
day = numeric express/on
hours = numeric expression
minutes = numeric—expression
seconds - numeric express/on

SDATE year, month, day, hours, minutes, seconds

example i SOATE 1984,4,2,0,0,0
I I S D A T E 1984,1 ,12 ,9 ,30 ,0
in SDATE 1984,3,21 ,0,0,0

52 • 12/84

SELect
END SELect

SELect allows various courses of action to be taken depending on the value of a variable conditions

define select_vanable = numeric variable

select^item = \ expression
I express/on TO expression

se!ect_list = \ select_item *[, se/ecL__item]*

Allows multiple actions to be selected depending on the value of a select__vanable long
The select variable is the last item on the logical line A series of SuperBASIC statements
follows which is terminated by the next ON statement or by the END SELect statement
If the select item is an expression then a check is made within approximately 1 part
in 10 ', otherwise for expression TO expression the range is tested exactly and is
inclusive The ON REMAINDER statement allows a, 'catch-all' which will respond if no
other select conditions are satisfied

syntax SELect ON selecl^vartable
*[[ON select_vanable] = setecL-list

statements] *
[ON se!ect_vanable] = REMAINDER

statements
END SELect

example 100 LET error_number = R N D C 1 TO 10)
110 S E L e c t ON error_number
120 ON error^number = 1
130 PRINT " D i v i d e by zero"
140 LET error_number = 0
150 ON error_number = 2
160 PRINT " F i L e not found"
170 LET error_number = 0
180 ON error_number = 3 TO 5
190 PRINT " M i c r o d r i v e f i l e not found"
200 LET error_number = 0
210 ON error_number = R E M A I N D E R
220 PRINT "Unknown error"
230 END S E L e c t

If the select variable ;s used in the body of the SELect statement then
tt must match the select variable given in the select header

The short form of the SELect statement allows simple single line selections to be made short
A sequence of SuperBASIC statements follows on the same logical line as the SELect
statement If the condition defined in the select statement is satisfied then the sequence
of SuperBASIC statements is processed

syntax SELect ON select_vanable = select_list. statement *[: statement] *

example i SELect ON test_data = 1 TO 10 :
PRINT "Answer w i t h i n range"

n SELect ON answer = 0.00001 TO 0.00005 :
PRINT "Accuracy OK"

in SELect ON a = 1 TO 10 : PRINT a ' "in range"

The short form of the SELect statement allows ranges to be tested more easily than comment
with an IF statement Compare example n above with the corresponding IF statement

12/84 53

SEXEC
QdOS Wiil save an area of memory in a form which is suitable for loading and executing with

the EXEC command.

The data saved should constitute a machine code program.

syntax: start address' = numeric expression [start of area]
length = numeric expression [length of area]
data space = numeric expression (length of data area which will

be required by the program]

SEXEC device, start_address, length, data_space

example S E X E C mdv1_program, 262144,3000,500

Comment The Qdos system documentation should be read before attempting to use this command

SIN
maths functions SIN will compute the sine of the specified parameter.

syntax angle:= numeric_expression [range -10000 .10000 in radiansj

SIN(angte)

example i. PRINT SIN(3)
li. PRINT S INC3.141592654/2)

54 12/84

SORT
will compute the square root of the specified argument The argument must be greater maths functions
than or equal to zero

syntax: SORT (rtumer/c_express/on) (range >= Oj

example- t PRINT SQRK3) (print square root of 3]
ii. LET C = S Q R T (a A 2 + bA2) (let c become equal to the

square root of a" 2 + b"2]

STOP
STOP will terminate execution of a program and will return SuperBASIC to the command BASIC
interpreter

syntax: STOP

example i. STOP
li. IF n = 100 THEN STOP

You may CONTINUE after STOP.

The last executable line of a program will act as an automatic stop. comment

12/84 55

STRIP
windows STRIP will set the current strip colour in the window attached to the specified or default

channel The strip colour is the background colour which is used when OVER 1 is
selected Setting PAPER will automatically set the strip colour to the new PAPER colour

syntax STRIP [channel,] colour

example i STRIP 7 (set a white strip)
n STRIP 0,4,2 [set a bfack and green stipple strip}

comment The effect of STRIP is rather like using a highlighting pen

TAN
maths functions TAN will compute the tangent of the specified argument The argument must be in the

range -30000 to 30000 and must be specified in radians

syntax TAN (numeric—expression) [range -30000 30000)

example i TAN(3) (print tan 3)
n TANC3.U1592654/2) [print tan 7T/2]

56 12/84

TURN
TURNTO

TURN allows the heading of the turtle' to be turned through a specified angle while turtle graphics
TURNTO allows the turtle to be turned to a specific heading

The turtle is turned in the window attached to the specified or default channel

The angle is specified in degrees A positive number of degrees will turn the turtle anti-
clockwise and a negative number will turn it clockwise

Initially the turtle is point at 0° that is to the right hand side of the window

syntax angle = numeric expression fangle in degrees}

TURN [channel,] angle
TURNTO [channel,] angle

example i TURN 90 [turn through 90°]
ii TURNTO 0 (turn to heading 0°)

UNDER
Turns underline either on or off for subsequent output lines Underlining is in the current windows
INK colour in the window attached to the specified or default channel

syntax switch = numeric expression [range 0 1)

UNDER [channel,] switch

example i UNDER 1 [underlining on]
n UNDER 0 (underlining off]

12/84 57

WIDTH
devices WIDTH allows the default width for non-console based devices to be specified, for

example printers

syntax line width = numeric expression
WIDTH [channel,] lme_width

example i WIDTH 80 (set the device width to 80]
ii WIDTH #6, 72 [set the width of the device attached to

channel 6 to 72]

WINDOW
windows Allows the user to change the position and size of the window attached to the specified

or default channel Any borders are removed when the window is redefined

Coordinates are specified using the pixel system relative to the screen origin

syntax width = numeric—expression
depth = numeric—expression
x - numenc_expressiQn
y = numeric expression

WINDOW [channel,] width, depth, x, y

example WINDOW 30, 40, 10, 10 (window 30x40 pixels at 10,10]

;>8 12/84

A Conditions
IP 2fi

ABS 1 SELect 53
Absolute values 1 CONTINUE 10
ACOT 1 PDPY 10
ADATE 2 COPY N]°
ARC COS 11

cotangent 2 CQS|ne „
tangent 2 COT „

•? — n cotangent 11
Arctangent 2 CSI2E 12

Arguments 14 15 CURSOR 12
Arrays

DIM 17
DIMN 17 D

£f'9nment 3" DATA 13
ATAN 1 structures 18

3 ££!s , «
DEFme 15, 16

B DAYS 14
DEFme

BAUD 4 FuNction 15
Baudrates 4 PROCedure 16
BEEP 4 DEG 17
BEEPING 5 Degrees 17
BLOCK 5 Delay 42
BORDER 6 DELETE 17

files 17
/-> lines 20
^ Devices
CALL 6 CLOSE 8
Channel directory 19

CLOSE 8 LBYTES 31
Character LOAD 33

CODE 9 '̂ d and run 35

repetition 28 LRUN 35

size 12 MERGE 35
CHR$ 7 merge and run 37
CIRCLE 7 MRUN 37
CIRCLE_R 7 NET 38

CLEAR 8 network station 38
BASIC 8 OPEN 40
screen 9 OPEN_JN 40
window 9 °Pen f°r inPut 40

Clock OPEN_NEW 40
ADATE 2 0Pen new 40
DATE 14 RUN 50
DATES 14 SAVE 50
DAY$ 14 SBYTES 51
SDATE 52 DIM 18

CLOSE 8 Dimension arrays 18
Closing DIMN 18

channels 8 DIR 20

CLS 9 Directory 19
QODE 9 Display directory 19
Colour DIV 19

INK 27 DLINE 20
MODE 36 Documentation 47
PAPER 41 Dots 44

RECOL 46
recolour 46 £

Comments 47
Communications EDIT 20

baud rates 4 ELLIPSE 7
networks 38 ELLIPSE_R 7

12/84

END fill shape 23
DEFINE 15 16 LINE 32
FOR 24 LlNE_R 32
IF 26 POINT 44
REPeat 48 POiNT_R 44
SELect 53 SCALE 51

EOF 21 Turtle
Equals 32 FILL 23
Errors MOVE 37

CONTINUE 10 TURN 57
RETRY 10 TURNTO 57

EXEC 21 SCALE 51
EXEC_W 21 PENDOWN 43
EXIT 22 PENUP 43

with FOR 24
with REPeat 48 LJ

EXP 22
Exponentiation 22 Highlighting 56

F I
IT I I/O

rnPY m INKEY$ 28

COPY N 0 keyboard input 30
XcMzTE 12 KEYROW 30

WETE m .pP—o £
directory 19 nestina 27I RVTPc; TI nebiiiiy <->
LBYIbb J1 |NK 27
LOAD 33 |NKEY$ 28
load and run 33 ,MP, ,T 28

MRFRGE 35 MV£ 29MERGE 35 |NT 29

MRU9NandrUn 37 integer d,v,de 18

OPEN 40 .
open for input 40 J
OPEN-IN ^ Jump 26open new 40 H

OPEN NEW 40
PRINT 45 K
RUN 50 ,s ^ ^ > QQ -30

SAVE 50 SSS '̂ SpjLL 23 KEYROW 30

FILLS 23
FLASH 24 L

FOR 24 LBYTES 31
with EXIT 24 LEN ?\
with NEXT 24 Len9th of Stm9s Jl

FuNction 15 LET Xo
DEFine 15 LINE 32
RETurn 49 delete 20

editor 20
Q numbering 3

renumbering 47
GOSUB 25 RENUM 47
GOTO 26 LINE_R 32
Graphics LIST 33

ARC 2 LN 34
ARC_R 2 LOAD 33
CIRCLE 7 load and run 35
CIRCLE_R 7 LRUN 35
ELLIPSE 7 Local variables 34
ELLIPSE_R 7 in functions 15
FILL 23 in procedures 16

Keywords Index

Logarithm 34 N
LOG10 34 NET 38

Loop epilogue 24 Netwofks 38

Loop repetition NEW 38

FOR 24 NEXT 39

NFXT 39 wlthFOR 24

BCD 4ft Wlth REPSat 48

HtHeat 4H Restarting SuperBASIC 38

ON GOSUB 39
Machine code 6 ON GOTO 39

CALL 6 OPEN 40
SEXEC 54 channel 40
saving 54 serial port 40
EXEC 21 window 40
EXEC_W 21 OPEN_IN 40
loading 21 open existing file 40
respr 48 OPEN_NEW 40

Maths functions open new file 40
ABS 1 Operators
absolute value 1 INSTR 29
ACOT 1 MOD 36
arc cotangent 1 OVER 40
ATAN 1 overprinting 40
arc tangent 1
common logarithm 34 Q
COS 11
cosine 11 PAN 40
COT 11 PAPER 40
EXP 22 Parameters 15 16
exponentiation 22 PAUSE 42
INT 29 PEEK 42
integer part 29 PEEK_L 42
LOG 34 PEEK_W 42
LN 34 PENDOWN 43
natural logarithm 34 PENUP 43
RAD 45 PI 43
radians conversion 45 Plotting points 44
SIN 54 POINT 44
Sine 54 POINT R 44
SQR 55 POKE 44
square root 55 POKE_L 44
TAN 56 POKE_W 44
tangent 56 PRINT 45

Merge and run 37 OVER 40
Microdnves UNDER 57

COPY 10 Printout 45
copying 10 Procedures
DELETE 17 DEFine 15 16
deleting files 17 LOCal 34
FORMAT 25 RETurn 49
formatting cartridges 25 Programs
LOAD 33 CONTINUE 10
loading SuperBASIC programs 33 RETRY 10
SAVE 50 RUN 50
saving SuperBASIC programs 50 SAVE 50

MOD 36
MODE 36 p

modulus 36
MOVE 37 RAD 45

MRUN 37 Random numbers 49
Multitasking RANDOMISE 46

PAUSE 42 READ 13

SEXEC 54 RECOL 47

12/84

Keywords Index

REM .. 47 Size of characters 12
REMark 47 Sound
RENUM . 47 BEEP. 4
Renumber lines 47 BEEPING 5
REPeat 48 SORT 55

EXIT 22 Square root . 55
NEXT 3 9 Starting programs 35, 50

Repetition Station number . . . 38
FOR 24 STOP 55
NEXT 39 Strings

Reset clock 2, 52 CHR$ 7
Resolution 36 FILLS - . 2 3
RESPR 48 INSTR 2 9
RESTORE 13 LEN . . . 3 1
RETRY 10 length. 31
RETurn . . 49 STRIP . 5 6

with FuNction . . 1 5 subroutines 15, 1 6
with PROCedures 16

RND 49 T
Routines . , 16
RS-232-C 4 TAN 56
RUN . 5 0 Tangent.... . . 56

LRUN 35 THEN . 26
Joad and run 35 Time

clock adjust.. , . . 2
S clock reset 52

date 14
SAVE 50 PAUSE 42
OMVt . . . OU £-y

machine code 51 IMDMT^ %
programs 50 TURNTO 57

SBYTES 51 T^rt'6 9raPhlcs

cpAi c c-i FILL 23

S^en MOVE 37

Snr* s PENUP 43BORDER:.: :::.:::::.:.::;: :::• : 6 PENDOWN 43
crctersize-.-.. 1 TU^TO.- : , . : : . : :r:: '-£
FLASH 24
INK 27 (J
MODE 36
output 45 Unconditional jump 26
OVER 40 UNDER 57
overprinting 40 Underlining 57
PAN 41
PAPER 41 \/
PRINT 45
RECOL 46 Value absolutes 1
recolounng 46
SCROLL 52 \A/
STRIP 56
UNDER 57 Windows
underlining 57 AT 3
WINDOW 58 BLOCK 5

SCROLL 52 BORDER 6
SDATE 52 CSIZE 12
SELect 53 Character size 12
Setting clock 52 clear 9
Setting station number 38 cursor control 3,12
Shapes FILL 23

ARC 2 FLASH 24
CIRCLE 7 INK 27
ELLIPSE 7 MODE 36
FILL 23 OVER 40
LINE 34 overprinting 40

SIN 54 PAN 41
sine 54 PAPER 41

12/84

print position 3
SCROLL 52
STRIP 56
UNDER 57
underlining 57
WINDOW 58

QL
Concepts

The Concept Reference Guide describes concepts relating to SuperBASIC and the QL
hardware It is best to think of the Concept Guide as a source of information If there
are any questions about SuperBASIC or the QL itself which arise out of using the
computer or other sections of the manual then the Concept Guide may have the answer
Concepts are listed in alphabetical order using the most likely term for that concept
If the subject cannot be found then consult the index which should be able to tell you
which page to turn to

Where an example is listed with line numbers, then it is a complete program and can
be entered and run Examples listed without numbers are usually simple commands
and it may not always be sensible to enter them into the computer in isolation. Examples
which demonstrate stippies will not work properly on a television set.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sine/air Research Limited)

arrays
Arrays must be DIMensioned before they are used When an array is dimensioned the
value of each of its elements is set to zero or a zero length string if it is a string array
An array dimension runs from zero up to the specified value There is no limit on the
number of dimensions which can be defined other than the total memory capacity of
the computer. An array of data is stored such that the last index defined cycles round
most rapidly

the array defined by example

DIM a r r a y (2 , A)

will be stored as

0,0 low address
0,1
02
0,3
0,4
1,0
1,1
1,2
1,3
1,4
2,0
2,1
22
2,3
2,4 high address

The element referred to by array(a,b,c) is equivalent to the element referred to by
array(a)(b)(c).

Command Function

DIM dimension an array
DIMN find out about the dimensions of

an array

12/84 1

BASIC
SuperBASIC includes most of the functions, procedures and constructs found in other
dialects of BASIC Many of these functions are superfluous in SuperBASIC but are
included for compatibility reasons

GOTO use IF, REPeat, etc
GOSUB use DEFine PROCedure
ON GOTO use SELect
ON GOSUB use SELect

Some commands appear not to be present They can always be obtained by using
a more general function For example there are no LPRINT or LLIST statements in
SuperBASIC but output can be directed to a printer by opening the relevant channel
and using PRINT or LIST

LPRINT use PRINT*
LLIST use LIST*
VAL not required in SuperBASIC
STR$ not required in SuperBASIC ,
IN not applicable to 68008
OUT not applicable to 68008

comment Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be
able to convert the internal codified form of the'value of a string expression to or from
the internal codified form of the value of a numeric expression

These functions are redundant in SuperBASIC because of the provision of a unique
facility referred to as 'coercion' The VAL and STR$ functions are therefore not provided

If at any time the computer fails to respond or you wish to stop a SuperBASIC program DiCOR
or command then

hold down

and then press

A program broken into in this way can be restarted by using the CONTINUE command

CDcinnvIo A channel is a means by which data can be output to or input from a QL device Before
a channel can be used it must first be activated (or opened) with the OPEN command
Certain channels should always be kept open these are the default channels and allow
simple communication with the QL via the keyboard and screen. When a channel is
no longer in use it can be deactivated (closed) with the CLOSE command

A channel is identified by a channel number A channel number is a numeric expression
preceded by a # When the channel is opened a device is linked to a channel number
and the channel is initialised Thereafter the channel is identified only by its channel
number For example

OPEN # 5 , S E R 1

Will link serial port 1 to the channel number 5 When a channel is closed only the channel
number need be specified For example

CLOSE ffS

Opening a channel requires that the device driver for that channel be activated Usually
there is more than one way in which the device driver can be activacted for example
the network requires a station number This extra information is appended to the device
name and passed to the OPEN command as a parameter, see concept device and
peripheral expansion

Data can be output to a channel by PRINTmg to that channel, this is the same
mechanism by which output appears on the QL screen PRINT without a parameter
outputs to the default channel # 1 For example

10 OPEN #5, mdv1_test_f i te
20 PRINT #5, "this text is in f i l e test_fi Le"
30 CLOSE #5

will output the text this text is in file tesLJile1 to the file test file tt is important to close
the file after all the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT Data can be input
from a channel a character at a time using INKEY$

A channel can be opened as a console channel, output is directed to a specified window
on the QL screen and input is taken from the QL keyboard When a console channel
is opened the size and shape of the initial window is specified If more than one console
channel is active then it is possible tor more than one channel to be requesting input
at the same time. In this case, the required channel can be selected by pressing CTRL
C to cycle round the waiting channels The cursor in the window of the selected channel
will flash.

The QL has three default channels which are opened automatically Each of these
channels is linked to a window on the QL screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

Monitor Television

Command Function

OPEN open a channel for I/O
CLOSE close a previously opened channel
PRINT output to a channel
INPUT input from a channel
INKEY$ input a character from a channel

character set
The cursor controls are not built in to the operating system, however, if these functions ulIQ KCyS
are to be provided by applications software, they should use the keys specified, also
the specified keys should not normally be used for any other purpose

Decimal Hex Keying Display/Function

0 00 CTRL £ NULL
1 01 CTRL A
2 02 CTRL B
3 03 CTRL C change input channel (see note)
4 04 CTRL D
5 05 CTRL E
6 06 CTRL F
7 07 CTRL G
8 08 CTRL H
9 09 TAB (CTRL I) Next field

10 OA ENTER (CTRL J) New line/Command entry
11 OB CTRL K
12 OC CTRL L
13 OO CTRL M Enter
14 OE CTRL N
15 OF CTRL 0

16 10 CTRL P
17 11 CTRL 0
18 12 CTRL R
19 13 CTRL S
20 14 CTRL T
21 15 CTRL U
22 16 CTRL V
23 17 CTRL W
24 18 CTRL X
25 19 CTRL Y
26 1A CTRL Z
27 1B ESC (CTRL SHIFT |) Abort current level of command
28 1C CTRL SHIFT \
29 10 CTRL SHIFT]
30 1E CTRL SHIFT £
31 1F CTRL SHIFT ESC

32 20 Space Space
33 21 SHIFT 1
34 22 SHIFT '
35 23 SHIFT 3 #
36 24 SHIFT 4 $
37 25 SHIFT 5 °/o
38 26 SHIFT 7 &
39 27
40 28 SHIFT 9 (
41 29 SHIFT 0)
42 2A SHIFT 8 *
43 2B SHIFT = +
44 2C .
45 2D -
46 2E
47 2F / /

12/84 5

Decimal Hex Keying Display/Function

48 30 0 0
49 31 1 1
50 ' 32 2 2
51 33 3 3
52 34 A 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT
59 3B
60 3C SHIFT <
61 3D
62 3E SHIFT >
63 3F SHIFT / ?

64 40 SHIFT 2 @
65 41 SHIFT A A
66 42 SHIFT B B
67 43 SHIFT C C
68 44 SHIFT D D
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT I I
74 4A SHIFT J J
75 46 SHIFT K K
76 4C SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT 0 0

80 50 SHIFT P P
81 51 SHIFT Q Q
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V V
87 57 SHIFT W W
88 58 SHIFT X X
89 59 SHIFT Y Y
90 5A SHIFT Z 2
91 5B [[
92 5C \ \
93 50 | |
94 5E SHIFT 6 A

95 5F SHIFT _

96 60 £ £
97 61 A a
98 62 B b
99 63 C C
100 64 D d
101 65 E 6
102 66 F f
103 67 G 9
104 68 H h
105 69 I
106 6A J]
107 68 K k
108 6C L I
109 6D M m

110 6E N n
111 6F 0 o

Decimal Hex Keying Display/Function

112 70 P p
113 71 0 q
114 72 R r
115 73 S s
116 74 T t
117 75 U u
118 76 V v
119 77 W w
120 78 X x
121 79 Y y
122 7A Z z
123 7B SHIFT |]
124 7C SHIFT \
125 7D SHIFT |]
126 7E SHIFT £
127 7F SHIFT ESC ©

128 80 CTRL ESC a
129 81 CTRL SHIFT 1 a
130 82 CTRL SHIFT a
131 83 CTRL SHIFT 3 e
132 84 CTRL SHIFT 4 o
133 85 CTRL SHIFT 5 6
134 86 CTRL SHIFT 7 c
135 87 CTRL ' u
136 88 CTRL SHIFT 9 I
137 89 CTRL SHIFT 0 n
138 8A CTRL SHIFT 8 ce
139 68 CTRL SHIFT = 6

140 8C CTRL , a
141 BD CTRL - a
142 8E CTRL a
143 8F CTRL / e

144 90 CTRL 0 e
145 91 CTRL 1 e
146 92 CTRL 2 i
147 93 CTRL 3 i
148 94 CTRL 4 i
149 95 CTRL 5 t
150 96 CTRL 6 o
151 97 CTRL 7 0
152 98 CTRL 8 6
153 99 CTRL 9 u
154 9A CTRL SHIFT , u
155 9B CTRL , 0
156 9C CTRL SHIFT , (5
157 9D CTRL = i
158 9E CTRL SHIFT . *
159 9F CTRL SHIFT /

160 AO CTRL SHIFT 2 A
161 A1 CTRL SHIFT A A
162 A2 CTRL SHIFT B A
163 A3 CTRL SHIFT C E
164 A4 CTRL SHIFT D 0
165 AS CTRL SHIFT E 0
166 A6 CTRL SHIFT F C
167 A7 CTRL SHIFT G U
168 AS CTRL SHIFT H A
169 A9 CTRL SHIFT I N
170 AA CTRL SHIFT J CE
171 A6 CTRL SHIFT K ,
172 AC CTRL SHIFT L alpha
173 AD CTRL SHIFT M delta
174 AE CTRL SHIFT N Iheta
175 AF CTRL SHIFT 0 lambda

12/84 7

Decimal Hex Keying Display/Function

176 80 CTRL SHIFT P mu
177 B1 CTRL SHIFT Q pi
178 82 CTRL SHIFT R phi
179 B3 CTRL SHIFT S ,
180 84 CTRL SHIFT T i
181 85 CTRL SHIFT U
182 86 CTRL SHIFT V §
183 87 CTRL SHIFT W °
184 88 CTRL SHIFT X «
185 B9 CTRL SHIFT Y »
186 BA CTRL SHIFT Z. °
187 BB CTRL (
188 BC CTRL \
189 BD CTRL |
190 BE CTRL SHIFT 6 T
191 BF CTRL SHIFT -

192 CO Left Cursor left one character
193 C1 ALT Left Cursor to start of line
194 C2 CTRL Left Delete left one character
195 C3 CTRL ALT Left Delete line
196 C4 SHIFT Left Cursor left one word
197 C5 SHIFT ALT Left Pan left
198 C6 SHIFT CTRL Left Delete left one word
199 C7 SHIFT CTRL ALT Left
200 C8 Right Cursor right one character
201 C9 ALT Right Cursor to end of line
202 CA CTRL Right Delete character under Cursor
203 CB CTRL ALT flight Delete to end of line
204 CC SHIFT Right Cursor right one word
205 CD SHIFT ALT Right Pan right
206 CE SHIFT CTRL Right Delete word under & right of cursor
207 CF SHIFT CTRL ALT Right

208 DO Up Cursor up
209 D1 ALT Up Scroll up
210 D2 CTRL Up Search backwards
211 03 ALT CTRL UP
212 D4 SHIFT Up Top of screen
213 05 SHIFT ALT Up
214 D6 SHIFT CTRL Up
215 07 SHIFT CTRL ALT Up
216 D8 Down Cursor down
217 09 ALT Down Scroll down
218 DA CTRL Down Search forwards
219 DB ALT CTRL Down
220 DC SHIFT Down Bottom of screen
221 DO SHIFT ALT Down
222 DE SHIFT CTRL Down
223 DF SHIFT CTRL ALT Down

224 EO CAPSLOCK Toggle CAPSLOCK function
225 E1 ALT CAPSLOCK
226 E2 CTRL CAPSLOCK
227 E3 ALT CTRL CAPSLOCK
228 E4 SHIFT CAPSLOCK
229 E5 SHIFT ALT CAPSLOCK
230 E6 SHIFT CTRL CAPSLOCK
231 E7 SHIFT CTRL ALT CAPSLOCK
232 E8 F1
233 E9 CTRL Fl
234 EA SHIFT F1
235 EB CTRL SHIFT F1
236 EC F2
237 ED CTRL F2
238 EE SHIFT F2
239 EF CTRL SHIFT F2

12/94

Decimal Hex Keying Display/Function

240 FO F3
241 F1 CTRL F3
242 F2 SHIFT F3
243 F3 CTRL SHIFT F3
244 F4 F4
245 F5 CTRL F4
246 F6 SHIFT F4
247 F7 CTRL SHIFT F4
248 F8 F5
249 F9 CTRL F5
250 FA SHIFT F5
251 FB CTRL SHIFT F5
252 FC SHIFT space 'Special space
253 FD SHIFT TAB Back tab (CTRL ignored)
254 FE SHIFT ENTER Special newline (CTRL ignored)
255 FF See below

Codes up to 20 hex are either control characters or non-printing characters Alternative
keyings are shown in brackets after the main keying

Note that CTRL-C is trapped by Qdos and cannot be detected without changes to the
system variables

Note that codes CO-DF are cursor control commands

The ALT key depressed with any key combination other than cursor keys or CAPSLOCK
generates the code FF, followed by a byte indicating what the keycode would have been
if ALT had not been depressed

Note that CAPSLOCK and CTRL-F5 are trapped by Qdos and cannot be detected without
special software

12/84 9

clock
The QL contains a real time clock which runs when the computer is switched on

The format used for the date and time is standard ISO format

1983 J A N 01 12:09:10

Individual year month, day and time can all be obtained by assigning the string returned
by DATE to a string variable and slicing it The clock will run from 1961 JAN 01 00 00 00

comment For a description of the format see BS5249 PART 1 1976 and as modified in Appendix
D 2 1 Table 5 Serial 5 and Appendix E 2 Table 6 Serials 1 and 2

Command Function

SDATE set the clock
ADATE adjust the clock
DATE return the date as a number
DATES return the date as a string
DAYS return day of the week

12/8410

coercion
If necessary SuperBASIC will convert the type of unsuitable data to a type which will
allow the specified operation to proceed

The operators used determine the conversion required For example if an operation
requires a string parameter and a numeric parameter is supplied then SuperBAStC will
first convert the parameter to type string It is not always possible to convert data to the
required form and if the data cannot be converted an error is reported

The type of a function or procedure parameter can also be converted to the correct
type For example the SuperBASIC LOAD command requires a parameter of type name
but can accept a parameter of type string and which will be converted to the correct
type by the procedure itself Coercion of this form is always dependent on the way the
function or procedure was implemented

There is a a natural ordering of data types on the QL see figure String is the most
general type since it can represent names, floating point and integer numbers Floating
point is not as general as string but it is more general than integer since floating point
data can represent integer data (almost exactly) The figure below shows the ordering
diagramatically Data can always be converted moving up the diagram but it is not always
possible moving down

a = b + c (no conversion is necessary before performing the example
addition Conversion is not necessary before assigning
the result to a)

a% = b + c (no conversion is necessary before performing the
addition but the result is converted to integer before
assigning)

a$ = b$ + c$ (b$ and c$ are converted to floating point, if possible,
before being added together The result is converted to
string before assigning)

LOAD "mdv1_data" (the string "md\rt__clata" is converted to type name by
the load procedure before it is used)

Statements can be written m SuperBASIC which would generate errors in most other comment
computer languages In general it is possible to mix data types in a very flexible manner

l PRINT "1" + 2 + "3"
ii LET a$ = 1 + 2 + a$ + "4"

12'84 "

colour
Colours on the QL can be either a solid colour or a stipple - a mixture of two colours
to some predefined pattern' Colour specification on the QL can be up to three items,
a colour, a contrast colour and a stipple pattern.

Single colour.^ composite_colour

The single argument specifies the three parts of the colour specification The mam colour
is contained in the bottom three bits of the colour byte. The next three bits contain the
exclusive or (XOR) of the main colour and the contrast colour. The top two bits indicate
the stipple pattern.

By specifying only the bottom three bits (i.e. the required colour) no stipple will be
requested and a single solid colour will be used for display.

<Joubl8 colour.= background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple
is assumed (stipple 3).

triple colour = background, contrast, stipple

Background and contrast colours and stipple are each defined separately.

colours The codes for colour selection depend on the screen mode in use:

code bit pattern composition colour

8 colour 4 colour

0 0 0 0 black black
1 0 0 1 blue blue black
2 010 red red red
3 0 1 1 red + blue magenta red
4 1 0 0 green green green
5 1 0 1 green + blue cyan green
6 1 1 0 green + red yellow white
7 1 1 1 green + red + blue white white

Colour Composition and Coctes

Stipples Stipples mix a backgound and a contrast colour in a fine stipple pattern. Stipples can
be used on the QL in the same manner as ordinary solid colours although stipptes may
not be reproduced correctly on an ordinary domestic television. There are four stipple
patterns

Stipple 3 is the default.

example i. PAPER 255 : CLS
ii. PAPER 2,4 : CLS
iii. PAPER 0,2,0 : CLS

warning Stipples may not reproduce correctly on a domestic television set which is fed via the
UHF socket.

communications
The QL has two serial ports {called SER1 and SER2) for connecting it to equipment __ MAM /\
which uses serial communications obeying EIA standard RS-232 C or a compatible nO"*IOfc*W
standard

The RS-232-C 'standard' was originally designed to enable computers to send and receive
data via telephone lines using a modem However, it is now frequently used to connect
computers directly with each other and to various items of peripheral equipment, eg
printers, plotters, etc

As the RS-232-C 'standard1 manifests itself in many different forms on different pieces
of equipment, it can be an extremely difficult job, even for an expert, to connect together
for the first time two pieces of supposedly standard RS-232-C equipment This section
will attempt to cover most of the basic problems that you may encounter

The RS-232-C 'standard refers to two types of equipment

1 Data Terminal Equipment (DTE)
2 Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the DTE) and the modern (usually
the DCE) would both have the same type of connector

The diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE must
receive data on its pin 2 (which is still called transmit data1) Likewise, the DTE receives
data on pin 3 whilst the DCE must transmit data on its pin 3 (which is still called receive
data1) Although this is confusing in itself, it can lead to far greater problems when there
is disagreement as to whether a certain device should be configured as DCE or DTE

Unfortunately, some people decide that their computers should be configured as DCE
devices whilst others configure equivalent computers as DTE devices This obviously
leads to difficulties in the configuration of the serial ports on each piece of equipment

SER1 on the QL is configured as DCE, while SER2 is configured as DTE Therefore
it should be possible to connect at least one of the serial ports to a given device simply
by using whichever port is wired the 'correct' way The pin-out for the serial ports is given
below A cable for connecting the QL to a standard 25-way 'D' type connector is available
from Sinclair Research Limited

SER1 SER2

pin name function pin name function

1 GND signal ground 1 GND signal ground
2 TxD input 2 TxD output
3 RxD output 3 RxD input
4 DTR ready input 4 DTR ready output
5 CTS ready output 5 CTS ready input
6 - +12V 6 - +12V

TxD Transmit Data DTR Data Terminal Ready
RxD Receive Data CTS Clear To Send

12/84 13

Once the equipment has been connected to the 'correct1 port, the baud rate, (the speed
of transmission of data) must be set so that the baud rates for both the QL and the
connected equipment are the same The QL can be set to operate at

75
300
600

1200
2400
4800
9600
19200 (transmit only) baud

The QL baud rate is set by the BAUD command and is set for both channels The baud
rates cannot be set independently

The parity to be used by the QL must also be set to match that expected by the peripheral
equipment Parity is usually used to detect simple transmission errors and may be set
to be even odd, mark, space or no parity IB all 8 bits of the byte are used for data

Stop bits mark the end of transmission of a byte or character. The QL will receive data
with one, one and a half, or two stop bits, and will always transmit data with at least
two stop bits Note that if the QL is set up to 9600 baud it will not receive data with
oniy one stop bit at least 11/2 stop bits are required

It may be necessary to connect the handshake lines between the QL and a piece of
equipment connected to it This allows the QL and its peripheral to monitor and control
their rate of communication They may need to do this if one of them cannot cope with
the speed at which data is being transmitted The QL uses two handshaking lines

CTS Clear to Send
DTR Data Terminal Ready

If the DTE cannot cope with the rate of transmission of data then it can negate the DTR
line which tells the DCE to stop sending data Obviously when the DTE has caught up
it tells the DCE, via the DTR line, to start transmitting again. In the same way, the DCE
can stop the DTE sending data by negating the CTS line If additional control signals
are required they can be wired up using the 12V supply available on both serial ports

Although transmission from the QL is often possible without any handshaking at all,
the QL will not receive correctly under any circumstances without the use of CTS
on SER1 and DTR on SER2.

Communications on the QL are lull duplex; that is both receive and transmit can operate
concurrently

The parity and handshaking are selected when the serial channel is opened

command function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept device for a full specification

14 12/84

data types
variables

Integers are whole numbers in the range -32768 to +32767 Variables are assumed integer
to be integer if the variable identifier is suffixed with a percent % There are no integer
constants in SuperBASIC so all constants are stored as floating point numbers

syntax- identified/a

example. i count er%
ii size_li imt%
in thn s_i s_an_i nteger_van a b L e %

Floating point numbers are in the range +(10-6l5to 10+6IS) with 8 significant digits floating point
Floatmg point is the default data type in SuperBASIC All constants are held in floating
point form and can be entered using exponent notation

syntax- identifier \ constant

example: i cur rent_accumu La t ion
n 76.2356
in 354E25

A string is a sequence of characters up to 32766 characters long Variables are assumed string
to be type string if the variable name is suffixed by a $ String data is represented by
enclosing the required characters in either single or double quotation marks

syntax: identifiers \ "text"

example: i s t r i ng_var iables$
II "thi s i s st ri ng data"
in " th is is another str ing"

Type name has the same form as a standard SuperBASIC identifier and is used by the name
system to name Microdrive files etc

syntax: identifier

example: i mdv1_data_f i Le
ii ser le

15
12/84

UvVlV/UO A device is a piece of equipment on the QL to which data can be sent (input) and from
which data can be output

Since the system makes PO assumptions about the ultimate I/O (input /output) device
which wtll be used, the I/O device can be easily changed and the data diverted between
devices. For example, a program may have to output to a printer at some point during
its run if the printer is not available then the output can be diverted to a Microdrive
file and stored The file can then be printed at a later date I/O on the QL can be thought
of as being written to and read from a logical file which is in a standard device-
independent form.

All device specific operations are performed by individual device drivers specially written
for each device on the QL The system can automatically find and include drivers for
peripheral devices which are fitted These should be written in the standard QL device
driver format, see the concept peripheral expansion

When a device is activated a channel is opened and linked to the device. To correctly
open a channel device basic information must sometimes be supplied This extra
information is appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though it is
also possible to build up the file name (device name) as a SuperBASIC string expression

In summary the genera! form of a file name is:

identifier [information]

where the complete file name (including the extra information) conforms to the rules for
a SuperBASIC identifier.

Each logical device on the system requires its own particular 'extra information1 although
default parameters will be assumed in each case where possible

define device = name

where the form of the device name is outlined below

example for console device

CON wXhaxXy_/c Console I/O

[wXh] - window width, height
[AxXy] - window X,Y coordinate of upper left-hand corner
[k] - keyboard type ahead buffer length (bytes)

default: C0n_448x180a32x16_128

example: OPEN #4, con_20x50aOxO_32
OPEN #8,con_20x50
OPEN #7,con_20x50a1ux10

16 12/8d

Screen Output SCR_u/XftaxXy

[wX/?] - window width, height
[A x X y] - window X.Y coordinate

default: scr 448x180a32x16

example: OPEN #4, scr_10x1ua20x50
OPEN #5, scr_10x10

Serial (RS-232-C) SERnphZ
n port number (1 or 2)
\p\ parity [h\ handshaking [z] protocol

e - even i - ignore r - raw data no EOF
o - odd n - handshake z - control Z is EOF
rn - mark c - as z but converts
s - space ASCII 10 (Qdos

newline character)
to ASCII 13
<CR>)

default: serlrh (8 bit no parity with handshake)

example: OPEN #3, seMe
OPEN #4, se re
COPY mdv1_test_f i Le TO se r l c

Serial Network I/O NETd S
[d] indicates direction s station number

i - input 0 - for broadcast
o - output own station - for general listen

(input oniy)

default: no default

example: OPEN #7, neti_32
OPEN #4, neto_0
COPY serl TO neto_21

Microdrive File Access MDVn name
n Microdrive number
name Microdrive file name

default: no default

example: OPEN #9, mdv1_data_fHe
OPEN #9, mdv1_test program
COPY mdv1_test_f i fe TO scr_

Keyword Function

OPEN initialise a device and activate it for
use

CLOSE deactivate a device

COPY copy data between devices
COPY N copy data between devices, but do

not copy a file's header information

EOF test for end of file

WIDTH set width

12/84 17

direct
GUI I if I idl IU SuperEASIC makes a distinction between a statement typed in preceded by a line number

and a statement typed in without a line number Without a line number the statement
is a direct command and is processed immediately by the SuperBASIC command
interpreter For example, RUN is typed in on the command line and is processed, the
effect being that the program starts to run. If a statement is typed in with a line number
then the syntax of the line is checked and any detectable syntax errors reported A correct
line is entered into the SuperBASIC program and stored These statements constitute
a SuperBASIC program and will only be executed when the program is started with
the RUN or GOTO command

Not all SuperBASIC statements make sense when entered as a direct command, for
example, END FOR, END DEFine, etc.

error
Errors are reported by SuperBASIC in a standard form MQIIUNI iy

At line line number error text

Where the line number is the number of the line where the error was detected and the
error text is listed below

(1) Not complete
An operation has been prematurely terminated (or break has been pressed)

(2) Invalid job
An error return from Qdos relating to system calls controlling multitasking or I/O

(3) Out of memory
Qdos and/or SuperBASIC has insufficient free memory

(4) Out of range
Usually results from attempts to write outside a window or an incorrect array
index

(5) Buffer full
An I/O operation to fetch a buffer full of characters filled the buffer before a record
terminator was found

(6) Channel not open
Attempt to read, write or close a channel which has not been opened
Can also occur if an attempt to open a channel fails.

(7) Not found
File system, device, medium or file cannot be found
SuperBASIC cannot find an identifier. This can result from incorrectly nested
structures

(8) Already exists
The file system has found an already existing file with the same name as a new
file to be opened for writing

(9) In use
The file system has found that a file or device is already exclusively used

(10) End of file
End of file detected during input

(11) Drive full
A device has been filled (usually Microdrive)

(12) Bad name
The file system has recognised the name but there is a syntax or parameter value
error.

In SuperBASIC it means a name has been used out of context For example, a
variable has been used as a procedure

(13) Xmit error
RS-232-C parity error.

(14) Format failed
Attempted format operation has failed, the medium is possibly faulty (usually a
Microdrive cartridge).

(15) Bad parameter
There is an error in the parameter list of a system or SuperBASIC procedure or
function call
An attempt was made to read data from a write only device,

(16) Bad or changed medium
The medium (usually a Microdrive cartridge) is possibly faulty

(17) Error in expression
An error was detected while evaluating an expression

(18) Overflow
Arithmetic overflow, division by zero, square root of a negative number; etc.

(19) Not Implemented

12/34 19

(20) Read only
There has been an attempt to write data to a shared file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared
This is a message which is for information only and is not reporting an error It
is reporting that the program has been stopped and subsequently changed forcing
SuperBASIC to reset its internal state to the outer program level and so losing any
procedure environment which may have been in effect.

error recovery After an error has occurred the program can be restarted at the next statement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program
can be restarted at the statement which triggered the error. Type

RETRY

expressions
SuperBASIC expressions can be string numeric, logical or a mixture, unsuitable data
types are automatically converted to a suitable form by the system wherever this is
possible

monop= |+ define

INOT
expresston:= \ [monop] expression operator expression

\ (expression)
atom

atom = | variable
constant
function {(expression *\, expression] *) }

| array_e!ement

variable = [identifier
identifier %
identifier $

function = | identifier
| identifier %

identifier $

constant = digit * [digit] *
*(dtgtt\ * . * [digit] *
* [digit]* [.] * [digit]* E * [digit]*

The final value returned by the evaluation of the expression can be integer giving an
integer expression, string giving a string expression or floating point giving a
floating expression Often floating point and integer expressions are equivalent and
the term numeric expression is then used

Logical operators can be included in an expression If the specified operation is true
then a one is returned as the value of the operation If the operation is false then a zero
is returned Though logical operators can be used in any expression they are usually
used in the expression part of an IF statement

example: i test_data + 23.3 + 5
I I "abcdefghi jk Imnopqrs tuvwxyz" (2 TO 4)
in 32 .1 * (cotour=1)
iv count = - L i m i t

12/84 21

file types
IIICO All I/O on the QL is to or from a logical die. Various file types exist

data SuperBASIC programs, text files Created using PRINT, SAVE, accessed using INPUT,
INKEYS, LOAD etc

exec An executable transient program. Saved using SEXEC, loaded using EXEC, EXEC W
etc.

code Raw memory data, screen images, etc Saved using SBYTES, loaded using LBYTES

22 12/84

functions and
SuperBASIC functions and procedures are defined with the DEFine FuNction and .

| DEFine PROCedure statements A function is activated (or called) by typing its name QrOCGQUrGS
" at the appropriate point in a SuperBASIC expression The function must be included r

in an expression because it is returning a value and the value must be used A procedure
is activated (or called) by typing its name as the first item tn a SuperBASIC statement

Data can be passed into a function or procedure by appending a list of actual parameters
after the function or procedure name This list is compared to a similar list appended
after the name of the function or procedure when it was defined This second list is
called the formal parameters of the function or procedure The formal parameters must
be SuperBASIC variables The actual parameters must be an array, an array slice or
a SuperBASIC expression of which a single variable or constant is the simplest form

Since the actual parameters are actual expressions, they must have an actual type
associated with them The formal parameters are merely used to indicate how the actual
parameters must be processed and so have no type associated with them The items
in each list of parameters are paired off in order when the function or procedure is called
and the formal parameters become equivalent to the actual parameters There are three
distinct ways of using parameters

if the actual parameter is a single variable and if data is assigned to the formal parameter
in the function or procedure then the data is also assigned to the corresponding actual
parameter

) If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure Note that a variable can be turned
into an expression by enclosing it within brackets

If the actual parameter is a variable but has not previously been set then assigning data
to the corresponding formal parameter will set the variable specified as the actual
parameter

Variables can be defined to be local to a function or procedure with the LOCal statement
Local variables have no effect on similarly named variables outside the function or
procedure in which they are defined and so allow greater freedom in choosing sensible
variable names without the risk of corrupting external variables A local variable is available
to any inside function or procedure called from the procedure function in which it is
declared to be local unless the function or procedure called contains a further iocal
declaration of the same variable name

Functions and procedures in SuperBASIC can be used recursively That is a function
or procedure can call itself either directly or indirectly

Command Function

i DEFme FuNction define a function
' DEFine PROCedure define a procedure

RFT leave a function or procedure
Htlurn (return data from a function)
.„ . define local data in a function or

procedure

12/84 23

** * It is important to realise that the QL screen has non square pixels and that changing
mode will change the shape of the pixels Thus if the graphics procedures were simply
pixel based they would draw different shapes in the two modes For example in one
mode we would have a circle while the same figure in the other mode would be an ellipse

The graphics procedures ensure that whatever screen mode is in use, consistent figures
are produced It is not possible to use a simple pixel count to indicate sizes of figures

' so instead the graphics procedures use an arbitrary scale and coordinate system to
specify sizes and positions of figures

The graphics procedures use the graphics co-ordinate system i e draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window
Note that this is not the same as the pixel origin used to define the position of windows
and blocks etc The graphics origin allows a standard Cartesian coordinate system to
be used A graphics cursor is updated after each graphics operation subsequent
operations can either be relative to this cursor or can be absolute, IB relative to the
graphics origin

The scaling factor is such that the full distance in the vertical direction in the specified
or default window has length 100 by default and can be changed with the SCALE
command The scale in the x direction is equal to the scale in the y direction However
the length of line which can be drawn in the x direction is dependent on the shape
of the window increasing the scale factor increases the maximum size of the figure which
can be drawn before the window size is exceeded If the graphics output is switched
to a different size of window then the subsequent size of the output is adjusted to fit
the new window if a figure exceeds its output window then the figure is clipped

It is useful to consider the window to be a window onto a larger graphics space in which
the figures are drawn The SCALE command allows the graphics origin to be set so
allowing the window to be moved around the graphics space

The graphics procedures are output to the window attached to the specified or default
channel and the output is drawn in the INK colour for that channel

Command Function

CIRCLE draw an ellipse or a circle
LINE draw a line
ARC draw an arc of a circle absolute
POINT plot a point

CIRCLE R draw an ellipse or a circle \
LINE_R draw a line /
ARC_R draw an arc of a circle { relative

POINT_R plot a point ;

SCALE set scale and move origin
FILL fill in a shape
CURSOR position text

graphics fill Figures drawn with the graphics and turtle graphics procedures can be optionally Tilled'
with a specified stipple or colour If FILL is selected then the figure is filled as it is drawn

The FILL algorithm stores a list of points to plot rather than actually plotting them When
the figure closes there are two points on the same horizontal line These two points are

24 12/84

connected by a line in the current ink colour and the process repeats. Fill must always
be reselected before drawing a new figure to ensure that the buffer used to store the
list of points is reset.

The following diagram illustrates F!LL:

There is an implementation restriction on FILL FILL must not be used for re-entrant warning
shapes (i.e a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

12/84 25

identifer
A SuperBASIC identifier is a sequence of letters numbers and underscores

define- letter = a Z
A Z

number = | 1 | 2 | 3 4 | 5 6 7 8 9 | 0 |

identifier = letter * \ \ letter \ number _ |] *

example. i a
n l imit_1
in current_guess
iv counter

An identifier must begin with a letter followed by a sequence of letters, numbers and
underscores and can be up to 255 characters long Upper and lower case characters
are equivalent

Identifiers are used in the SuperBASIC system to identify variables, procedures functions
repetition loops etc

warning NO meaning can be attributed to an identifier other than its ability to 'identify' constructs
to SuperBASIC SuperBASIC cannot infer the intended use of an identifier from the
identifier's name'

26 12/84

joystick
The joystick ports, marked CTL1 and CTL2, allow two joysticks to be attached to the QL ' *

' The joysticks are arranged to generate specific key depressions when moved in a specific
way and any program which uses a joystick must be able to adapt to these keys The
QL keyboard can be read directly using the KEYROW function

CTL1 CTL2

mode key key

up cursor up F4
down cursor down F2
left cursor left F1
right cursor right F3
fire space F5

The joystick ports can be used for adding other more general purpose control devices comment
to the QL

Joysticks for other computers using a 9-way D' connector require an adaptor to be used
with the QL Such an adaptor is available from Sinclair Research

12/84 27

kevword
/ SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword

Reference Guide Keywords have the same form as a SuperBASIC standard identifier
The case of the keyword is not significant. Keywords are echoed as a mixture of upper
and lower case letters and are always reproduced in full The upper case portion indicates
the minimum required to be typed in for SuperBASIC to recognise the keyword

The set of SuperBASIC keywords may be extended by adding procedures to the QL,
It is a good idea to define these with their names in upper case, procedure names defined
this way will always be reproduced by SuperBASIC in upper case, and this will indicate
their special function in the SuperBASIC system. Conversely, ordinary procedures should
be defined with their names in lower case

warning Existing keywords cannot be used as ordinary identifiers within a SuperBASIC program
SuperBASIC keywords are

List of Keywords

ABS DEFine PROCedure LEN RANDOMISE
ACOS, ASIN END DERne LET RND
ACOT, ATAN DEG LIST RECOL,
ADATE DELETE LOAD REMark
ARC, ARC_R DIM LOCal RENUM
AT DIMN LN, LOG10 REPeat,
AUTO DIR LRUN END REPeat
BAUD DIV MERGE RESPR
BEEP DLINE MOD RETurn
BEEPING EDIT MODE RETRY
BLOCK ELLIPSE, MOVE RUN
BORDER ELLIPSE_R MRUN SAVE
CALL EOF NET SIN
CHR$ EXEC, EXEC_W NEW SCALE
CIRCLE EXIT NEXT SCROLL
CIRCLE_R EXP ON GO TO SDATE
CLEAR FILL ON GO SUB SELect
CLOSE FILLS OPEN, OPEN_IN END SELect
CLS FLASH OPEN_NEW SEXEC
CODE FOR OVER SORT
CONTINUE END FOR PAN STOP
RETRY FORMAT PAPER STRIP
COPY, COPY_N GO SUB PAUSE TAN
COS GO TO PEEK, PEEK_W TO
COT IF, THEN, ELSE PEEK_L TURN
CS/ZE END IF PENUP TURN TO
CURSOR INK PENDOWN UNDER
DATA, READ, INKEY$ PI VER$
RESTORE INPUT POINT, POINT_R WIDTH
DATE$, DATE INSTR POKE, POKE_W WINDOW
DAY$ INT POKE_L
DEFine FuNction, KEYROW PRINT
END DEFine LBYTES RAD

maths
SuperBASIC has the standard trigonometrical and mathematical functions m

functions
Function Name

COS cosine
SIN sin
TAN tangent

ATAN arctangent
ACCT arcotangent

ACOS arcosine
ASIN arcsine

COT cotangent
EXP exponential
LN natural logarithm
LOG10 common logarithm

INT integer
ABS absolute value

RAD convert to radians
DEG convert to degrees

PI return the value of n

RND generate a random number
RANDOMISE reseed the random number, generator

12/84 ^

memory map
The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyte
of memory, IB. from 00000 to FFFFF Hex. The use of addresses within this range are
defined by Sinclair Research to be as follows-

The screen RAM is organised as a series of sixteen bit words starting at address Hex
20000 and progressing in the order of the raster scan, i.e from left to right with each
display line and then from the top to the bottom of the picture. The bits within each
word are organised so that a pixel to the left is always more significant than a pixel to
the right (i.e. the pixel pattern on the screen looks the same as the binary pattern). However,
the organisation of the colour information in the two screen modes is different.

Setting the Flash bit toggles the flash state and freezes the backgound colour for the
flash to the value given by R, G, and B for that pixel. Flashing is always reset at the
beginning of each display line.

In high resolution mode, red and green specified together is interpreted by the hardware
as white.

warning Use of reserved areas in the memory map may cause incompatibility with future Sinclair
products. Spurious output to addresses defined to be peripheral I/O addresses can cause
unpredictable behaviour. It is recommended that these areas are NOT written to and
not used for any other purpose. Poking areas in use as Microdrive buffers can corrupt
Microdrive data and can result in a loss of information. Poking areas in use such as
system tables can cause the system to crash and can result in the loss of data and
programs,

All I/O should be performed using either the relevant SuperBASlC commands or the
Qdos operating system traps.

30 12/84

Microdrives
Microd rives provide the main permanent storage on the QL Each Microdrive cartridge
has a capacity of at least 100 Kbytes Available free memory space is allocated by Qdos
as Microdrive buffers when necessary to improve performance

Each blank cartridge must be formatted before use and can hold up to 255 sectors
of 512 bytes per sector Qdos keeps a directory of files stored on the cartridge Each
Microdrive file is identified using a standard SuperBASIC file or device name

A cartridge can be write-protected by removing the small lug on the right hand side

On receiving new blank QL Microdrive cartridges format them a few times to condition
the tape

Physically each Microdrive cartridge contains a 200 inch loop of high quality video tape general care
which is moved at 28 inches per second The tape completes one circuit every 7'/2
seconds

NEVER touch the tape with your fingers or insert anything into the cartridge

NEVER turn the computer on or off with cartridges in place

ALWAYS store cartridges in their sleeves when not in use

ALWAYS insert or remove cartridges from the Microdrive slowly and carefully

ALWAYS ensure the cartridge is firmly installed before starting the Microdrive

NEVER move the QL with cartridges installed - even if not in operation

NEVER touch the cartridge while the Microdrive is in operation

DO NOT repeatedly insert and remove the cartridge without running the Microdrive

If a tape loop appears at either of the two places shown in figure 1 then gently ease tape loops
it back into the cartridge Use a non-fibrous instrument for this, eg the side of a pen
or pencil. NEVER touch the tape with your fingers for this or any other reason

CONTINUED

12/84 31

Command Function

FORMAT prepare a new cartridge for use

DELETE delete a file from a cartridge

DIR lists the files on a cartridge

SAVE
SBYTES saves data from a cartridge
SEXEC

LOAD
i DVTPQ
.-,,.-,-, loads data from a cartridge
tAtO

MERGE

OPEN_IN
OPEN NEW opens and closes files
OPEN
CLOSE

PRINT
INPUT SuperBASIC file I/O
INKEY$

warning If you attempt to write to a cartridge which is write protected then the QL wii! repeatedly
attempt to write the data but will eventually give up and give a "bad medium" error.

32 12/84

monitor
A monitor may be connected to the QL via the RGB socket on the back of the computer
Connection is via an Sway DIN plug plus cable for colour monitors or a 3-way DIN
plug plus cable for monochrome The RGB socket connections are as in the following
table, and the column indicating wire colour refers to the colour coding used on the
Sway cable and connector available from Sinclair Research Limited Pin designation
is as shown in the diagram below

sleeve colour
pin function signal on QL RGB

colour lead

1 PAL composite PAL (4) orange
2 GND ground green
3 VIDEO composite monocrhome video (3) brown
4 CSYNC composite sync (2) yellow
5 VSYNC vertical sync (1) blue
6 GREEN green (1) red
7 RED red (1) white
8 BLUE blue (1) purple

A monochrome monitor can be connected using a screened lead with a 3-way or as
8-way DIN plug at the QL end Only pins 2 (ground) and 3 (composite video) need
to be connected via the cable to the monitor The connection at the monitor end will
vary according to the monitor but is usually a phono plug The monitor must have a
75 ohm 1V pk pk composite video non-inverting input (which is the industry standard)
Both 3-way DIN plugs and phono plugs are commonly available from audio shops

Diagram of Monitor Connector as Viewed from rear of QL Showing pin numbers and functons

An RGB (colour) monitor can be connected using a lead with an 8-way DIN Plug at
the QL end The connection at the monitor end will vary according to the monitor (there
is no industry standard) and will often be supplied with it A suitable cable with an 8 way
DIN plug at one end and bare wires at the other end is available from Sinclair Research
Limited

A composite PAL monitor, or the composite video input on some VCR's, may work with
the QL Only pins 2 (ground) and 1 (composite PAL) need to be connected via a cable
to the monitor or VCR

12 84 33

network
The QL can be connected with up to 63 other QLs If there are more than two computers
on the network then each computer (or station) must be assigned a unique station number
On the QL this can be done using the NET command

Information is transmitted over the network in blocks For normal communication between
two stations the receiving station must acknowledge correct reception of the block If
a block is corrupted then the receiving station will request retransmission

Using a network station number of zero has a special meaning Sending to neto—0
is called broadcasting any message sent in this way can be read by any station which
is listening to neti 0 Note that the normal verification that a message has been received
is disabled for broadcasts, so that broadcasting messages of length more than one block
(255 bytes) is unreliable

A network station which listens to its own station number (eg NET3 LOAD neti—3) can
receive data from any station sending to it

Command Function

NET assign a network station number >

OPEN open a network channel
CLOSE close a network channel

PRINT
INPUT network I/O
IN KEYS

LOAD
SAVE
LBYTES
SBYTES
EXEC load and save via network
SEXEC
LRUN
MRUN
MERGE

comment If you are planning to connect several QLs on the network, or use a long piece of cable,
then you should wire it up with low-capacitance twin core cable, such as 3 amp light-flex
or bell-wire Take care to connect the centres of each jack to each other, and the outsides
to each other You will find that although the software can handle 63 stations, the hardware
will not drive more than about 100m of cable, depending on what type it is

If you are only connecting a few machines with the leads supplied, you need not worry

operators
Operator Type Function

floating string logical type 2 comparison
= = numeric string almost equal** (type 3 comparison)
+ numeric addition
- numeric subtraction

/ numeric division
- numeric multiplication
< numeric string less than (type 2 comparison)
> numeric string greater than (type 2 comparison)
< = numeric string less than or equal to (type 2 comparison)
>= numeric string greater than or equal (type 2 comparison)
<> numeric string not equal to (type 3 comparison)
& string concatenation
&& bitwise AND
i | bitwise OR
AA bitwise XOR

bitwise NOT
OR logical OR
AND logical AND
XOR logical XOR
NOT logical NOT
MOD integer modulus
DIV integer divide
INSTR string type 1 string comparison
» floating raise to the power
- floating unary minus
+ floating unary plus

"almost equal - equal to 1 part in 1(y

If the specified logical operation is true then a value not equal to zero will be returned.
If the operation is false then a value of zero will be returned

The precedence of SuperBASIC operators is defined in the table above. If the order precedence
of evaluation in an expression cannot be deduced from this table then the relevant
operations are performed from left to right. The inbuilt precedence of SuperBASIC
operators can be overriden by enclosing the relevant sections of the expression in
parentheses

highest unary plus and minus
string concatenation
INSTR
exponentiation
multiply, divide, modulus and integer divide
add and subtract
logical comparison
NOT (bitwise or logical)
AND (bitwise or logical)

lowest OR and XOR (bitwise or logical)

12 84 35

peripheral
PXDdnSIOn The expansion connector allows extra peripherals to be plugged into the QL The
wvpui i«7iwi Connecti0ns available at the connector are

The connector on the QL is a 64-way (male) DIN-41612 indirect edge connector

An U appdended to a signal name indicates that the signal is active low,

Signal Function

AO..A19 68008 address lines
RDWL Read / Write
ASL Address Strobe
DSL Data Strobe
BGL Bus Grant
DSMCL Data Strobe - Master Chip
CLKCPU CPU Clock
E 6800 peripherals clock
RED Red
BLUE Blue
GREEN Green
CSYNCL Composite Sync
VSYNCH Vertical Sync
ROMOEH ROM Output Enable
FCO Processor Status
FC1 Processor Status
FC2 Processor Status
RESETCPUL Reset CPU

QL Peripheral Output Signals

36 12/84

Signal Function

DTACKL Data acknowledge
BRL Bus request
VPAL Valid Peripheral Address
IPLOL Interrupt Priority Level 5
IPL1L Interrupt Priority Level 2
BERRL Bus Error
EXTINTL External Interrupt
DBGL Data bus grab

QL Peripheral Input Signals

Signal Function

DO D7 Data Lines

QL Peripheral Bi-directional Signals

Signal Function

SPO SP3 Select peripheral 0 to 3
VIN 9V DC (nominal) 500mA

maximum
VM12 -12V
VP12 +12V
GND ground

Miscellaneous

It is not intended that the following description of the QL peripheral expansion mechanism
be sufficient to implement an actual expansion device, but rather be read to gain a basic
understanding of the expansion mechanism

Single or multiple peripherals may be added to the QL up to a maximum of 16 devices
A single peripheral can be plugged directly into the QL Expansion Slot while multiple
peripherals must be plugged into the QL Expansion Module, which in turn is plugged
into the QL Expansion Slot via a buffer card

In this context the term device also includes expansion memory Although the areas
of the QL memory map allocated to expansion memory are different from those allocated
to expansion devices, the basic mechanism is the same Only one expansion memory
peripheral can be plugged into the QL at any one time The address space allocated
for peripheral expansion in the QL Physical memory map allows 16 Kbytes per peripheral
This area must contain the memory mapped I/O required for the driver and the code
for the driver itself

Qdos includes facilities for queue management and simple serial I/O which may be of
use when writing device drivers

The position of each peripheral device in the overall memory map of the QL is determined
by the select peripheral lines SPO, SP1, SP2 and SP3 These select lines generate a
signal corresponding to the slot position in the QL expansion module, thus for a device
to be selected the address input from address lines A14, A15, A16 and A17 must be
the same as the signals from SPO SP1, SP2 and SP3 respectively

12,84 37

pixel
POni*/"! jnatp The P'xel coordinate system is used to define the positions and sizes of windows, blocks
wlA/I \JII ICllv ancj cursor positions on the QL screen. The coordinate system has its origin in the top

CX/otpm 'e^ lianc' corner °ftne default window (or screen) and always assumes that positions
OydlCI 11 are specified as though the screen were in 512 mode (high resolution mode). The system

will use the nearest pixel available for the particular mode set making the coordinate
system independent of the screen mode in use,

Some commands are always relative to the default window origin, e.g. WINDOW, while
some are always relative to the current window origin, eg BLOCK.

38 • 12/84

program
A SuperBASIC program consists of a sequence of SuperBASIC statements, where each
statement is preceded by a line number Line numbers are in the range of 1 to 32767

Command Function

RUN start a loaded program

LRUN load a program from a device and
start it

force a program to stop

syntax: line_number = *[digit* (range 1 32767J

* [line number statement * {.statement} * \ *

example: i 100 PRINT " T h i s is a v a l i d L i n e number"
RUN

n. 1QO REM a sma l l p rogram
110 FOR foreground = 0 TO 7
120 FOR c o n t r a s t = 0 TO 7
130 FOR s t ipp le = 0 TO 3
140 PAPER foreground, c o n t r a s t , s t i p p l e
150 CURSOR 0,70
160 FOR n = 0 TO 2
170 S C R O L L 2 ,1
180 S C R O L L -2, 2
190 END FOR n
200 END FOR s t i p p l e
210 END FOR cont ras t
220 END FOR foreground
RUN

\2 84 39

Qdos
Qdos is the QL Operating System and supervises

Task Scheduling and resource allocation
Screen I/O (including windowing)
Microdrive I/O
Network and serial channel communication
Keyboard input
Memory management

memory map A full description of Qdos is beyond the scope of this guide but a brief description is
included

The system RAM has an organisation imposed by the Qdos operating system and is
defined as follows

The terms SV_RAMI SV_RESPR, SV_TRNSR SV_BASIC, SV_FREE, SV_HEAP
are used to represent addresses inside the QL These terms are not recognised by
SuperBASiC or trie Qdos operating system Furthermore the addresses represented are
liable to change as the system is running

sv ramt RAM Top
This will vary according to the memory expansion boards attached to
the system

SV respr Resident Procedures
Resident procedures are loaded into the top of RAM Space can be
allocated in the resident procedure area using the RESPR function,
but thts space cannot be released except by resetting the QL Resident
procedures written in machine code can be added to the SuperBASiC
name list and so become extensions to the SuperBASiC system

40 12»»

Sv trnsp Transient Programs
Transient programs are loaded immediately below the resident
procedures Each program must be self contained, le it must contain
space for its own data and its own stack It must be position
independent or must be loaded by a specially written linking loader
A transient program is executed from BASIC by using the EXEC
command or from Qdos by activating it as a job

The transient program area may be used for storing data only but this
data will still be treated by Qdos as a job and therefore must not be
activated

SV basic SuperBASIC Area
This area contains all loaded SuperBASIC programs and related data
This area expands and contracts using up the free space as required

SV free Free Space
Free space is used by the Qdos file subsystem to create Microdrive
Slave Blocks, le copies of Microdrive blocks which can be held in RAM

SV heap System Heap
This is used by the system to store data channel definitions etc and
also provides working storage for the I/O subsystem Transient programs
may allocate working space for themselves on the heap via Qdos
system calls

System Tables / System Variables
This area is directly above the screen memory The System Tables and
supervisor stack are resident above the system variables

System calls are processed by Qdos in supervisor mode When in supervisor mode system calls
Qdos will not allow any other job to take over the processor System calls processed
in this way are said to be atomic, i e the system call will process to completion before
relinquishing the processor Some system calls are only partially atomic, le once they
have completed their primary function they will relinquish the processor if necessary
Unless specifically requested all the I/O system calls are partially atomic

The standard mechanism for making a system call is by making a trap to one of the
Qdos system vectors with appropriate parameters in the processor registers The action
taken by Qdos following a system call is dependent on the particular call and the overall
state of the system at the time the call was made

Qdos supports a multitasking environment and therefore a file can be accessed by more input/output
than one process at ? time The Qdos filing sub-system can handle files which have
been opened as exclusive files or as shared files A shared file can not be written to
QL devices are processed by the serial I/O sub-system The filing sub-system and the
serial I/O sub-system together make up the redirectable I/O system As its name suggests
any data output via this system can be redirected to any other device also supported
by the redirectable I/O system

The device names required by Qdos are the same as the device names required by
SuperBASIC and are discussed in the concept section devices The collection of standard
devices supplied with the QL can be expanded

The standard devices included in the system are discussed in this guide in the section devices
devices Further devices may be added to the system, given a name (eg SER1, NET)
and then accessed in the same way as any other QL device

Jobs will be allowed a share of the CPU in line with their priority and competition with multitasking
other jobs in the system Jobs running under the control of Qdos can be in one of three
states

active Capable of running and sharing system resources A job in this state may
not be running continuously but will obtain a share of the CPU in line
with its priority

suspended The job is capable of running but is waiting for another job or I/O A job
may be suspended indefinitely or for a specific period of time

inactive The job is incapable of running, its priority is 0 and so it can never obtain
a share of the CPU

12'84 41

Qdos wilt reschedule the system automatically at a rate related to the 50 Hz frame rate.
The system will also be rescheduled after certain system calls,

example: This program generates an on-screen readout of the real-time clock,
running as an independent job.

First RUN this program with a formatted cartridge in microdnve 2. This
generates a machine code title called "clock" Wait for the Microdrive to
stop. Next, set the clock using the SDATE command

Then type:

E X E C mdv2_c L o c k

and a continuous time display will appear at the top right of the command
window.

100 c=RESPR(100)
110 FOR i=0 TO 68 STEP 2
120 R E A D x:POKE_U i + c , x
130 END FOR i
140 SEXEC mdv2_clock,c,1QO,256
1000 D A T A 29439,29697,28683,20033,17402
1010 DATA 48,13944,200,20115,12040
1020 DATA 28691 ,20033,17402,74,-27698
1030 DATA 13944,236,20115,8279,-11314
1040 DATA 13944,208,20115,16961,16962
1050 DATA 30463,28688,20035,24794
1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data items
are, in order:

border colour/width, paper/ink colour, window width, height, x-origtn, y-ongin

These are pairs of bytes, entered by POKE W as words.

The x-ongin and the y-origin (the last data ttem) should be 272 and 202 in monitor mode,
or 240 and 216 in TV mode.

Generate the paper and ink word, for example, as 256 * paper + ink. Thus white paper,
red ink is 256 * 7 +- 2 = 1794.

repetition
Repetition in SuperBASIC is controlled by two basic program constructs Each construct
must be identified to SuperBASIC

REPEAT identifier FOR identifier = range
statements statements

END REPEAT identifier END FOR identifier

These two constructs are used in conjunction with two other SuperBASIC statements

NEXT identifier EXIT identifier

Processing a NEXT statement will either pass control to the statement following the
appropriate FOR or REPeat statement or if a FOR range has been exhausted to the
statement following the NEXT

Processing an EXIT will pass control to the statement after the END FOR or END REPeat
selected by the EXIT statement EXIT can be used to exit through many levels of nested
repeat structures EXIT should always be used in REPeat loops to terminate the loop
on some condition

A combination of NEXT, EXIT and END statements allows FOR and REPeat loops to
have a loop epilogue added A loop epilogue is a series of SuperBASIC statements
which are executed on some special condition arising within the loop

The loop epilogue is only processed if the FOR loop terminates normally If the loop
terminates via an EXIT statement then processing will continue at the END FOR and
the epilogue will not be processed

It is possible to have a similar construction in a REPeat loop

REPeat identifier •* 1
statements

IF condition THEN NEXT identifier —I
epilogue

END REPeat identifier

This time entry into the loop epilogue is controlled by the IF statement The epilogue
will or will not be processed depending on the condition in the IF statement A SELect
statement can also be used to control entry into the epilogue

ROM
CSrtridQG SlOt Allows software to be used in the QL system from a Sinclair QL ROM cartridge The
vui 11 iwyw w w» RQM cartndge can contain software to directly change the behaviour of the SuperBASIC

system The cartridge can contain

i Software to be used instead of or with the SuperBASIC system For example

assemblers
compilers
debuggers
application software
etc

u Software to expand the SuperBASIC system For example

special procedures
etc

It is not possible to use ZX ROM cartridges on the QL

Side b is the upper side of the connector, side a is the lower

Signal Function

AO A15 Address lines
DO D8 Data lines
ROMOEH ROM Output Enable
VDD 5V
GND Ground

warning Never plug or unplug a ROM cartndge while the QL power is on

screen
The screen is 512 pixels across and 256 pixels deep Only the solid colours 512 mode

black
red
green
white

can be displayed in this mode.

Low resolution mode also has a hardware flash

The screen is 256 pixels across and 256 pixeis deep. The full set of solid colours is 256 mode
available in this mode:

blue
red
magenta
green
cyan
yellow
white

A domestic television is not capable of displaying the complete QL screen Portions of warning
the screen at the top and the sides will not be reproduced The default initial window
will take account of this and will reduce the effective picture size. Trie full size can be
restored with the WINDOW command

Command Function

MODE set screen mode

12/84 45

slicing
Under certain circumstances it is possible to refer to more than one element in an array
i e slice the array The array slice can be thought of as defining a subarray or a series
of subarrays to SuperBASIC Each slice can define a continuous sequence of elements
belonging to a particular dimension of the original array The term array in this context
can include a numeric array a string array or a simple string

It is not necessary to specify an index for the full number of dimensions of an array
If a dimension is omitted then slices are added which will select the full range of elements
for that particular dimension le the slice (0 TO) SuperBASIC can only add slices to
the end of a list of array indices

syntax index = numeric exp (single element)
numeric exp TO numeric exp \ range of elements]

| numenc_exp TO {range to endj
I TO numeric expression [range from beginning)

array_reference = | variable
I variable ([index *[,mdex*l)

An array slice can be used to specify a source or a destination subarray for an assignment
statement

example' i PRINT data_ar ray
II PRINT l e t t e r sSd TO 15)
ill PRINT two_d_array (3) (2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays

Thus
a$(n) will select the nth character
a$(n TO m) will select all characters from the nth to the mth

inclusively
a$(n TO) will select from a character n to the end inclusively
a${! TO m) will select from the beginning to the nth character,

inclusively
a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MtD$, RIGHTS These are not
necessary in SuperBASIC Their equivalents are specified below

SuperBASiC Other BASIC

a$(n) MIDS (a$,n,1)
a$(n TO m) MID£ (a$,n,m+1-n)
a$(1 TO n) LEFTS (a$,n)
a$(g TO) RIGHT$ (a$,LEN(a$)+1-n)

warning Assigning data to a sliced string array or string variable may not have the desired effect
Assignments made in this way will not update the length of the string The length of
a string array or string variable is only updated when an assignment is made to the
whole string

46 12 84

start up
Immediately after switch on (or reset) the QL will perform a RAM test which will give
a spurious pattern on the display If the RAM test is passed then the screen will be cleared
and the copyright screen displayed

After start up the QL displays the copyright message and asks whether it is being used
on a television or a monitor The QL will set different initial screen modes and window
sizes depending on the answer

Press F1 if you are using a monitor and F2 if you are using a television set

The QL has the ability to boot1 itself up from programs contained in either the ROM
cartridge slot or in Microdrive 2 If the ROM cartridge slot contains a self starting program
then start up will continue under the control of the program in the ROM cartridge If
nothing suitable is found then the QL will check Microdrive 1 for a cartridge If a cartridge
is found and if it contains a file called BOOT it is loaded and run

The QL has three default channels which are linked to three default windows default screen

Channel 0 is used for listing commands and error messages, channel 1 for program warning
and graphics output and channel 2 for program listings The default channel can be
modified using the optional channel specifier in the relevant command

It is important NOT to switch on the QL with a Microdrive cartridge in position If booting
from a Microdrive cartridge is required then the cartridge must be inserted between
switching on and pressing either F1 or F2

V/84 47

sound
Sound on the QL is generated by the QLs second processor (an 8049) and is controlled
by specifying

up to two pitches
the rate at which the sound must move between the pitches the ramp
how the sound is to behave after it has reached one of the specified pitches, the wrap
if any randomness should be built into the sound, le deviations from the ramp
if any fuzziness should be built into the sound i e deviations on every cycle of the sound

Fuzzmess tends to result in buzzy sounds while randomness depending on the other
parameters, will result in melodic1 sounds or noise

The complexity of the sound can be built up stage by stage gradually building more
complex sounds This is, in fact, the best way to master sound on the QL

Specify a duration and a single pitch The specified pitch will be beeped for the specified
time

LEVEL 1

This is the simplest sound command other than the command to stop the sound on
the QL

LEVEL 2 A second pitch and a gradient can be added to the command The sound will then
'bounce' between the two pitches at the rate specified by the gradient

The sounds produced at this level can vary between semi musical beeps, growls, zaps
and moans It is best to experiment

time

LEVEL 3 A parameter can be added which controls how the sound behaves when it becomes
equal to one of the specified pitches The sound can be made to 'bounce' or 'wrap'
The number of wraps can be specified, including wrap forever It is even more important
to experiment

48 12W

Randomness can be added to the sound This is a deviation from the specified step LEVEL 4
or gradient

Depending on the amount of randomness added in relation to the pitches and the
gradient, it will generate a very wide and unexpected range of sounds

More variation can be added by specifying fuzziness' Fuzziness adds a random factor LEVEL 5
to the pitch continuously Fuzzfness tends to make the sound buzz

Combining ail of the above effects can make a very wide range of sounds, many of '
them unexpected QL sound is best explored through experiment By specifying a time
interval of zero the sound can be made to repeat forever and so a sequence of BEEP
commands can be used until the sound generated is the sound which is required A
word of warning slight changes in the value of a single parameter can have alarming
results on the sound generated

statement
A SuperBASIC statement is an instruction to the QL to perform a specific operation, for
example:

LET a = 2

will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual
statements from each other by a colon (.), for example:

LET a = a + 2 : PR INT a

will add 2 to the value identified by the variable a and will store the result back in a.
The answer will then be printed out

If a line is not preceded by a line number then the line is a direct command and
SuperBASIC processes the statement immediately. If the statement is preceded by a
line number then the statement becomes part of a SuperBASIC program and is added
into the SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over the rest
of the logical line in which they appear i e. IF, FOR, REPeat, REM, etc. It is meaningless
to use certain SuperBASIC statements as direct commands

string arrays
String arrays and numeric arrays are essentially the same, however there are slight ctfinfl VflPIJlhlpC
differences in treatment by SuperBASIC The last dimension of a string array defines Oil II ly VQI iQUICv
the maximum length of the strings within the array. String variables can be any length
up to 32766 Both string arrays and string variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are
not the same then either the right hand string is truncated to fit or the length of the left
hand string is reduced to match. If an assignment is made to a sliced string then if
necessary the 'hole defined by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the
dimension selects the whole string while specifying a single element will pick out a single
character and specifying a slice will define a sub string

Unlike many BASICS SuperBASIC does not treat string arrays as fixed length strings, comment
If the data stored in a string array is less than the maximum size of the string array then
the length of the string is reduced.

Assigning data to a sliced string array or string variable may not have the desired effect, warning
Assignments made in this way will not update the length of the string and so it is possible
that the system will not recognise the assignment. The length of a string array or a string
variable is only updated when an assignment is made to the whole string.

Command Function

FILL$ generate a string
LEN$ find the length of a string

12/24 51

string
comparison

order (decimal point/full stop)
digits or numbers in numerical order
A a B b C c D d E e F f G g H h l i J j K k L l M m N n O o P p Q q R r S s T t U u V v W w X x Y y Z z

space ' " # $ % & ' <) * + , - . / : ; < = > * @ [|] * _/ (| J~©
other non printing characters

The relationship of one string to another may be

equal All characters or numbers are the same or equivalent

lesser The first part of the string, which is different from the corresponding
character in the second string, is before it in the defined order

greater The first part of the first string which is different from the corresponding
character in the second string, is after it in the defined order

Note that a ' may be treated as a decimal point in the case of string comparison which
sorts numbers (such as SuperBASIC comparisons) Note also that comparison of strings
containing non-printable characters may give unexpected results

types of comparison type 0 case dependent character by character comparison

type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system

usage type 1 File and variable comparison

type 2 SuperBASIC <,<=,=,>=,> INSTR and < >

type 3 SuperBASIC == (equivalence)

12/2452

syntax
SuperBASIC syntax is defined using a non-rigorous 'meta language' type notation Four fjpf initlOHS
types of construction are used w^'" "l v *

| | Select one of
[] Enclosed item(s) are optional
** Enclosed items are repeated

. Range
() Comment

eg A j B | A or B
[A] A is optional
* A * A is repeated
A..Z A, B, C, etc

[this is a comment]

Consider a SuperBASIC identifier

A sequence of numbers, digits, underscores, starting with a letter and finishing with an
optional °/o or $

letter = \ A Z
! a z

(a letter is one of ABCDEFGHIJKLMNOPQRSTUVWXYZj
or abcdefghyklmnopqrstuvwxyz

digit = | 0 | 1 j 2 | 3 4 | 5 | 6 | 7 8 | 9 |

(a digit is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9j

underscore =

(an underscore is j

identifier=tetter *t[letter \ digit \ underscore J * | % | $ |

must start—'
with a letter _J

a sequence of letters
digits and underscores
i e repeat something
which is optional

windows
Windows are areas of the screen which behave, in most respects, as though each
individual window was a screen in its own right, i e the window will scroll when it has
become filled by text it can be cleared with the CIS command, etc

Windows can be specified and linked to a channel when the channel is opened The
current window shape can be changed with the WINDOW command and a border
added to a window with the BORDER command Output can be directed to a window
by printing to the relevant channel Input can be directed to have come from a particular
window by inputting from the relevant channel if more than one channel is ready for
input then input can be switched between the ready channels by pressing

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time The non
graphic output is relative to the current cursor position which can be positioned anywhere
within the specified window with the CURSOR command and at any line-column
boundary with the AT command The graphics output is relative to a graphics cursor
which can be positioned and manipulated with the graphics procedures

parts Certain commands (CLS, PAN etc) will accept an optional parameter to define part of
the current window for their operation This parameter is as defined below

part description

0 whole screen
1 above and excluding cursor line
2 bottom of screen excluding cursor line
3 whole of cursor line
4 line right of and including cursor

Command Function

WINDOW re-define a window
BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents
SCROLL scroll a windows contents
AT position the print position
CLS clear a window
CSIZE set character size
FLASH character flash
RECOL recolour a window

turtle
^erBASIC has a set of turtle graphics commands flfrinfliP^

_mmand Function

zNUP stop drawing
iNDOWN start drawing
^VE move the turtle
^RN turn the turtle
, RNTO turn to a specific heading

- set of commands is the minimum and normally would be used within another
;edure to expand on the commands For example

100 DEFine PROCedure f o r w a r d (d i s t a n c e)
110 MOVE d i s t a n c e
120 END D E F i n e
130 DEF ine PROCedure b a c k w a r d s (d i s t a n c e)
140 MOVE -di s tance
150 END DEF ine
160 DEFine PROCedure L e f t (a n g l e)
170 TURN angle
180 END D E F i n e
190 DEF ine PROCedure r igh t (ang le)
200 TURN -angle
210 END DEFine

-se will define some of the more famous turtle graphic commands.

a!iy the turtle's pen is up and the turtle is pointing at 0°, which is to the right-hand
^ of the window

- FILL command will also work with figures drawn with turtle graphics Also ordinary
-pnics and turtle graphics can be mixed, although the direction of the turtle is not
dified by the ordinary graphics commands

Concepts Index

A i/o
Microdnves (mdv) 1631

ArraVs I network (net) 1634
scin9 46 peripherals 36
srin9s 5? screen (scr) 16
Stora9e 1 serial (ser) 13,16

channels 4
D file types 22
D Dimension 1
BASIC 2 Direct command 18
Baud rates 13 DTE 13
BEEP 48
Monochrome monitor 33 F
Booting 50
Break 3 Elements 1

Error handling 19
EXIT 43

C Expansion
ROM cartridge 44

Cartridges peripherals 36
ROM 44 Expressions 21
Microdrive 31

Channels 4 p
Character set 5 '
Circles 24 R|es 22

Clock 10 Filename 1626
Coercion 11 F|H|ng shapes 24
Close channels 4 Floating point 15
Commands FOR 43

keywords 28 Functions 23
direct 18
turtle graphics 55 /-\
windows 56 «
screen 45 Graphics 24

Codes tur1,e 55
characters 5
colour 12 LI

Communications 13 M

^hamels ^ Handshaking 13
devices 16 Hgx codeg

 a
 5

networking 34 High resolution montor 33
Comparisons 53
Console device 16 .
Control characters 5 I

^ : ™ '
P'Xel 36 ^anne|s 4

r «nr 9A Devices 16Cursor 24 , CGwindows ob
Integers 15

D i/0
devices 16

Data monitor 33
structures 1 peripherals 36
types 15 Qdos 40

Data storage windows 56
Microdnves 31
arrays 1 J

date 10
DCE 13 Joystick 27
DEFine FuNction 23
Defaults l̂
DEFine PROCedure 23
Devices Keyboard conventions 5

console (con) 16 Keywords 28

12/84

L S
Lines 24 Scaling 24
Line numbering 3951 Scheduler 39

direct commands 18 Screen 45
Local variables 23 con 16
Loops 43 scr 16

windows 56
colours 12

M modes 45
Serial communications 13

Maths functions 29 Signals 13
Memory Slicing 46

map 30 Sound 48
expansion 36 Start up 50

Microdnves 31 Statements 51
Modes 45 Stipples 12
Monitor 33 Stnngs

Multitasking 41 variables 52
slicing ' 46

N arrays 52
comparisons 53

Name 26 Switching on 50
^Ej 34 Syntax definitions 54

Network 34
NEXT 43 T

n Time 10
LJ Trig functions 29
OPFN 4 Turtle graphics 55

TXD 13
Ssysten, % Type converse

Output
monitor 33 \J
channels 4

Ordering Variables 15
coercion 11 local 23
precedence 35 string 15

P W
Parameters 23 Windows 56
Peripheral expansion 36
Pictures 24
Pixel coordinates 38
Points 24
Power up 50
Precedence 35
Procedure 23
Programs 39

Q
Qdos 40

R
RAM 30
Repetition 43
RGB 33
ROM 30
RS-232-C 13
RTS 13
RXD 13

12 '84

QL
QL Quill

CHAPTER 1
ABOUT

_ cated wordprocessor It has been designed to give you the maximum Vxt VJCUI1-L
z ty, yet is still easy to learn and to use As you will see later, you will
crmed as to what you can do next and how to do it

-•^processor in any circumstance where you would otherwise use a
" machines are very similar in function, although the wordprocessor
=395 that are not matched by a conventional typewriter Perhaps the
= ence is the ease with which mistakes can be corrected Since the
•"mediately as you type it in, you can make as many corrections as

-: only print the text when you are sure that it is exactly what you want
os assured of perfect results every time

..orking through this manual there are a number of other advantages
* jsmg a typewriter it is necessary to press the carnage return key

ne In Quill, this function is performed automatically Whenever the
-~ the end of a line a new line is started, you press ENTER when

new paragraph Whenever a new line is started you will notice that
- exi in the last line will be adjusted so that the left and right margins
cpout the text This process, which is known as justification gives a

- appearance to the final result, without any effort on your part Like
, es of Quill, the form of justification that you use can be modified

-• requirements

_ are not sure what to do remember that you can ask for Help by
eTiember that you can cancel any partially completed operation {eg

: oy pressing ESC

CHAPTER 2

GETTING
STARTED

LUAUINu UL QUILL Load QL Quill as described in the QL Program Introduction When loaded the following
message will be displayed

LOADING QL QUILL

version x . xx

Copyr igh t © 1984 PSION S Y S T E M S

w o r d p r o c e s s o r

where x xx is the version number eg 200

Quid will only need to access the cartridge in Microdrive 1 whenever you print a document
or ask for Help

When a document is being entered Quill will only reauire a cartridge in Microdrive
2 when the text is longer than about three pages Quill will ask for a cartridge when
necessary Once the cartridge is inserted it should not be removed until the document
is saved or abandoned

GENERAL
ArrhAHANUh Initially the Quill display should look like that shown in Figure 21 or Figure 22 This

is known as the main display

Quill can show 80, 64 or 40 characters per line of the screen If you are using a domestic
television the display may not be clear enough for you to see 80 characters per line
If this is the case you will need to use 64 or 40 characters The 64 character screen
is very similar to that for 80 characters. The 40 character screen is arranged differently
and the main display will look like Figure 2 2

12/84

Quill initially selects either an 80 or a 64 character display - depending on whether
you pressed F1 or F2 when you switched on the computer You can change from one
form of display to another at any time with the Design command which is described later.

Apart from the difference in appearance, Quill works in exactly the same way with all
three forms of display. Most of the diagrams in this manual are shown for the 80 character
display.

The screen is divided into three main sections: the display area, the status area and
the control area.

The largest area, in the centre of the screen, is reserved for the text of your document. The Display Area
Almost everything that you type at the keyboard will appear in this area

Across the top of the display area is the ruler. This is a row of dots, marking each character
space across the screen. Every fifth space on it is marked with a colon (:) and every
tenth space is numbered.

12'84 t

Getting Started

The Status Area The status area, which uses the bottom three lines of the screen, shows information about
your current document For example it normally shows its name Initially you will not
have given a name to a document and Quill shows no name Quill will show this for
any text that you type, until you give the document a name

The status area also shows that Quill is currently in insert mode, which means that anything
you type into your document will be inserted (as opposed to writing over any following
text) It also shows that there is no special typeface, i e that you are using a normal
typeface Bold (emphasised), underlined, subscript and superscript typefaces are also
available and we shall see how to use them later on

In addition, the status area shows the number of words in the current document, and
the line and page number of the position of the cursor It initially shows that you are
at line 1 of page 1 of a document which contains no words

The status area is also used tor showing any special text that is typed in during the
use of commands (the set of instructions available when you press F3) For example
the section of text being searched for when you use the Search command (see Chapter
5) will appear in the status area

The Control Area The control area occupies the top few lines of the screen it shows the normal options
to obtain Help (F1), to turn the prompts on and off (F2). to select a command (F3) and
to cancel any incomplete operation (ESC) In addition there are three options that are
specific to Quill These are displayed in the three central boxes of the control area and are

Cursor - move the cursor
Text - add or remove text
Typeface - change the typeface

I rib UUHoUn On the top line of the central display area you will see a small rectangle This is known
as a cursor and marks the position where the text you type will be placed

The control area shows that you can move the cursor around the text area by use of
the four cursor keys on the keyboard When you have some text in your document, each
time that you press one of these keys, the cursor will move by one space in the direction
indicated by the arrow The cursor will not pass the end of the text If there is no text
in your document you will not be able to move the cursor from its original position

You can also move the cursor around the text in larger steps If you hold down SHIFT
and, press the left or right cursor keys the cursor will move left or right by units of one
word When you press SHIFT together with the up or down cursor keys the cursor will
move backwards or forwards by one paragraph

I CA I The option shown at the centre of the control area indicates the various ways in which
you can change the text of the document Simply typing at the keyboard will insert the
text at the cursor position

A 12/84

The second line of the Text option shows that pressing ENTER is used to mark the start
of a new paragraph You do not need to press ENTER when you reach the end of
a line of text If you continue typing in words until you reach the end of the first line,
the new words will automatically appear on the second line and the spacing of the words
on the first line will be adjusted This is justification which controls the way the text is
aligned with respect to the left and right margins

Try pressing ENTER and then typing in some text to see the effect of starting a new
paragraph Do not worry if the indentation of the new paragraph is not as you wish
- you will find how to change it in Chapter 4

You can include characters in your document which are not shown on the keyboard
They are selected by pressing CTRL or CTRL and SHIFT and another key The Concept
reference guide contains a full list of the usable characters together with the relevant
keying

You can delete text, one character at a time, to the left or right of the cursor position
Hold down CTRL and press either the left or the right cursor keys

While you were typing in text you may have noticed some changes taking place in the
status area at the bottom of the screen The word and line counts will always agree with
the contents of the document The remainder of the status area will not have changed
In particular, the document will still be unnamed You give a name to a document when
you save it on a Microdrive cartridge, (as described in Chapter 7)

Now that you have some text in your document, you can try moving the cursor around
the text area by use of all four cursor keys When you have finished, move the cursor
to the end of the text

A further option in the control area is headed typeface and is used to modify the I YrhrAUb
appearance of the text in your document

Press F4 and you are given five choices

to use bold (or heavy) type
to display high script (superscript)
to display low script (subscript)
to produce underlined text
to 'paint' existing text

Any one of these is brought into effect by pressing F4 and then a single key from the
list shown in the control area As an example let us use this option to produce underlined
text Press F4, then the U key

The display returns to normal and nothing seems to have changed except that the
typeface is marked as UNDERLINE' in the status area If you now type in some more
text you will see that it is underlined as it is displayed

In Quill you see exactly what will appear in the final printed version The only things
that are not always shown on the screen are the upper and lower page margins, and
the spacing between lines (when you select double or triple spacing) Quii) does not
show these since they would reduce the amount of text visible on the screen at any
one time

12/84 5

Getting Started

To turn off underlining, press F4 and then the U key again If you now type in a few
more words you will see that they are not underlined - the underlining option works
like a simple on-off switch, or toggle

You will find a fuller description of underlining, and the other three typeface options,
tn Chapter 4

Getting Started

OUMIVIANL/O You select a command by pressing F3 The list of commands in the control area is known
as the command menu

You can select any of the commands shown in the menu (list) at the centre of the control
area by pressing the key corresponding to its first letter

Quill has more commands than can be displayed in the command menu. You are
therefore given two alternative lists and can switch between therm with the Other
command

Since some commands start with the same letter it is important to check that the
command you want is displayed in the control area before you select it.

The descriptions of the various commands will take up much of the rest of this manual
For the moment we will describe the use of just two commands Quit and Zap

Quit is used when you have finished with Quill Press F3 and then the Q key to use
quit and return to SuperBASIC Quit will ask whether you want to save your current
document on a Microdrive cartridge before quitting Press ENTER to save it or press
A to abandon it

You can press ESC to cancel the command and return to your document

The Zap command is in the commands II menu and so you will have to use the Other
command before selecting Zap You must press F3, O and then Z Zap clears from
memory the text of the current document but does not return to SuperBASIC

Getting Started

If you clear the text before you have saved it on a Microdrive cartridge you will not be
able to recover it without typing it in again Quill will therefore ask you to confirm your
choice by pressing ENTER You have the alternative choice of pressing ESC to cancel
the command and return to your document

12'84 7

CHAPTER 3
CURSOR
CUI I IliVj in this chapter you will learn how to use Quill's simple editing facilities The changes

to the text will always occur at the position of the cursor You must therefore use the
cursor keys to move the cursor to the place you want to alter before making any changes

This form of editing is known, for fairly obvious reasons, as cursor editing You may practise
using these techniques on a piece of text that you type in yourself, or you may use the
text provided with Quill If you type in your own text, do not worry about any mistakes
you make In fact it may be a good idea to add deliberate mistakes - each mistake
will give you extra practice in using the editing facilities

INSERTING TEXT Quill is initially in insert mode so that any text you type is automatically inserted at the
cursor position To insert letters or words into the middle of the text, do the following

Move the cursor, by using the four cursor keys, to the point where you want to
make the insertion
Type the letters or words that you want to insert The characters are inserted
immediately under the cursor position and any existing text moves to the right
to make room for them

The text is rejustified automatically as you make the insertion

If you wished to insert several words, it would be annoying to have to wait until the text
was adjusted each time you pressed a key Quill detects this situation and reacts by
splitting the line at the point where you are inserting text This is known as an automatic
text split You can then type in as much text as you like

Quill will restore the text when you finish inserting text at that point (ie when you press
a cursor key, a function key or ESC)

DELETING TEXT The deletion of text at the cursor position is also very simple You use the CTRL key
together with the cursor keys

To see the action of the left cursor key, position the cursor immediately after the character
or characters that you want to delete Now hold down CTRL and press the left cursor
key briefly The letter immediately to the left of the cursor position will be deleted and
the cursor will move one space to the left Each time you press the left cursor key, with
the CTRL key held down, one more letter will be deleted If you wish to delete'several
letters you can hold both the CTRL and the left cursor key down using the auto-repeat
facility Always press the CTRL key before the cursor key

If you use CTRL together with the right cursor key text will be deleted, character by
character from beneath the cursor position and the text to the right will close up to
fill the gap

You can delete whole words at a time, to the left or to the right of the cursor, by using
SHIFT and CTRL together and pressing either the left or the right cursor key

You can delete the whole line to the left or right of the cursor Hold down the CTRL
key and press the up cursor key The line to the left of the cursor will disappear Similarly
pressing the down cursor key will delete the whole of the line to the right of the cursor

In all cases the text will be rejustified automatically

OVERWRITING In overwrite mode you can write over existing text and replace it with the new text

You can change to overwrite mode by holding down SHIFT and pressing F4 The mode
indicator at the left hand side of the status area will change from INSERT to OVERWRITE
indicating that text typed at the keyboard will replace existing text Pressing SHIFT and
F4 again will change back to insert mode

With Quill set to overwrite mode, position the cursor at the start of the text to be replaced
and type in the replacement When you have finished making replacements, return to
insert mode by pressing SHIFT and F4 again, otherwise you will write over text that
you want to keep

a 12/84

Figure 3.1 shows a typical situation where you would want to use the overwrite mode.
With the display as shown, with the cursor on the 'n' of 'sentnece! you can overwrite
with e' and 'n' to correct the word. (You can also practice deleting a character by removing
one of the 'm's from 'ammendedl)

CHAPTER 4
TEXT

.̂ IVIHI I UNO This chapter is concerned with the format of the text, that is the layout and appearance
' as opposed to the actual content You will find out how to use the different typefaces,

Bold, Underline, High and Low script You will also learn how to move the position of
the left, right and indent margins and how to change the justification which affects the
way the text is aligned with respect to the margins

TYPEFACE The underlining facility has already been used as an example of the use of the typeface
option In this section we shall examine its use more fully, together with the options to
use bold characters high script (superscript) and low script (subscript)

In general you can select any of these options by pressing F4 and then the appropriate
letter - Bold, Underline High script or Low script If one of these options is currently
switched on you can turn it off again by exactly the same method as you used to turn
it on - by pressing F4 and then the appropriate letter

Note that any text that you type will always appear in the typeface shown in the status
area If you move the cursor into a region which is in bold type, for example the status
area will show Bold typeface, and any further text that you type within this region will
also be in bold type the typeface changes automatically as soon as you move to a
region containing a different typeface

Of course, you can only use one of High script or Low script at any one time If you
select one of these, the other is automatically switched off

There are three ways in which you may want to use the typeface option

Insert new text in a particular typeface
Alter existing text to a new typeface,
Change or remove an existing typeface

!f you want to type in some text in a particular typeface you should press F4 and select
the typeface you want Any text that you then type in will appear in the typeface you
have selected When you want to return to normal text you should switch off the typeface
by pressing F4 followed by the appropriate typeface letter(s)

12/84

It is easy to change the typeface used in existing text The method is known as painting
since you use the cursor like a paint brush changing the typeface of any text over which
it moves

First you must move the cursor to the start of the text to be changed press F4 and
then press the P key Next, select the combination of typefaces you want Use the right
and down cursor keys to move the cursor across the text to be changed When you
reach the end of the text you want to alter, leave the option by pressing ENTER You
do not need to switch off the typeface selection it will revert to the correct typeface as
soon as you move away from the area painted in the new typeface Figure 4 2 shows
the appearance of the screen while painting text with underlining

You can change, or remove, an existing typeface in the same way in which you add
a new typeface to existing text Again you should move the cursor to the start of the
text before pressing F4 Press the P key and then select (or switch off) the typeface
combination you require Move the cursor through the text you wish to change and then
press ESC

When you change text from an existing typeface to a new one, Quill does not remember
the original typeface Suppose, for example, you change text which was originally
underlined to being in bold characters If you later remove the bold typeface the final
text will be in plain characters, and will not revert to being underlined

You change the widths of the margins with the margin command Each new margin MARGINS
position takes effect from the current paragraph and remains in force for all following
paragraphs, until you make another change to the position of the margin

Press the command key (F3) and then the M key to start this command In addition
to other changes in the control area you will see that three choices - LEFT, INDENT
and RIGHT will appear and that the LEFT option is highlighted These options represent
the three margins, and the one that is highlighted is the one that you can move You
can step the highlighting from option to option by pressing the space bar or you can
select a particular option by pressing the key corresponding to its first letter When the
name of a margin is highlighted in the control area you can move that margin with the
left or right cursor keys

Suppose you wish to move the left margin to the right by three characters, starting with
the second paragraph of your document

12/84 "

Text Formatting

First move the cursor to any point in the second paragraph and then type

23]M

As indicated by the highlighting, the left margin is the one you can move so you just
have to press the right cursor key three times The change in the margin takes place
immediately, so that you can see the effect before you leave the command

You can leave the command straight away by pressing ENTER or you can continue
to make further margin changes Press the space bar until the correct margin is selected
and move it with the left and right cursor keys You can use the up and down cursor
keys to move the cursor to another paragraph and make further changes to the margins
After you have made all the changes you want you can leave the command by pressing
ENTER

The indent margin marks the character position which is used for the start of a new
paragraph For an 80 character display it is initially set at the fifteenth character position

There is no restriction on the relative positions of the indent and left margins If you do
not want to use indented paragraphs you may move them so that they are both in the
same place You may even place the indent margin to the left of the left margin This
is useful for producing numbered paragraphs as shown in the following example

Indent Margin

I Left Martin
I I
1) This is the first of two

paragraphs to show how you can
use indent margins

2} The indent margin is three
characters to the left
of the left margin

In this case, starting a new paragraph (by pressing ENTER) will allow text to be typed
at the 'indent" position All following text will be displayed between the left and right
margin positions until you press ENTER again

JUSTIFICATION The justify command allows you to alter the type of justification used in your document
Like the margins command, all changes take effect from the current paragraph (that
containing the cursor) and remain in force until the end of the document, or until the
next change of justification When you select this command you will see that you are
offered the choice of left right or centred justification

Initially, it assumes right justification, the text is aligned on both the left and right margins,
producing text with an appearance like that of this manual If there are not
sufficient characters on a line to make the margins match extra spaces will be added
between the words until they do The final effect is very professional However,
if you use an unusually large quantity of extra-long or hyphenated words in a document,
unpleasant-looking spaces may result

To choose left justification, press the L key after calling the Justify command
This wtll produce text which looks like the text in this paragraph The left margin is
aligned, but the spacing of the text within a line is not adjusted, so that the right
hand margin is left uneven

Centre justification, selected by using the C option
of the Justify command, causes the text of each line to be centred between the left

and right margins The text could then appear as shown in this paragraph
Centre justification is useful, for example, in centering headings

and titles, or for adding labels to diagrams

As with the margins command you may press the up or down cursor keys to move
to another paragraph and make further changes of justification Press ENTER to leave
the command

12 12/84

CHAPTER 5
COMMAND

This chapter will extend your knowledge of the editing facilities to include block copies, CL/I I IIN\3
moves and erasures In addition, the extremely powerful technique of search and replace
editing will be tntroduced These facilities are available through the Quill editing commands
- copy, erase, search and replace

In addition to copying a block of text from one place in the document to another the COPY
copy command also allows you to move blocks of text

The only difference between copying and moving text 15 that, in the case of a copy
the original text is left in position so that you end up with two copies You would use
this, for example if you wanted to create a table with a piece of text repeated a number
of times, or if you wanted to see the best place to include a particular paragraph

If you move some text, the new copy is inserted and the old copy is deleted, so that
you are left with only one version

The copy command gives you the option of either keeping or deleting the old copy
and therefore gives you both facilities in a single command

When you select the copy command (by pressing F3 and then the C key) you must
first move the cursor to the beginning of the text you want to copy, and then press ENTER
Move the cursor to the end of the text to be copied When you move the cursor the
text that will be affected by the command is highlighted so that ft ts easy to see how
much text will be copied If you accidentally mark too much text you may use the left
or up cursor keys to move backwards, but you may not pass the start of the marked
text After you have marked the text you should again press ENTER

In response to the next prompt you should move the cursor to the point where you want
the selected text to be inserted and press the C key The copy will be made and inserted
immediately You are then asked if you want to delete the old copy You should press
the K key to keep the old version (to produce the effect of a copy) or press ENTER
to accept Quill's suggestion to delete it

You can then end the command by pressing ENTER, which will take you back to the
main display

However you also have an option of making further copies of the same text at other
places in your document All you have to do is to move the cursor to the point where
you want another copy and press the C key You can repeat this as many times as you
want While you are making these extra copies you are not asked whether to keep or
delete the old copy When you have finished making copies you should press ENTER
to leave the command

As is normal in Quill, pressing ESC will cancel any partially completed action but will
not undo anything that has been completed All copies that you have made will be left
in the text if you press ESC

You should use this command (press F3 and then E) if you want to remove any large LnAoL
blocks of text from your document Remember that it is simpler to delete small bits of
text with the cursor editing facilities described in Chapter 3

As with the copy command, you are asked to move the cursor to the start of the text
to be erased and then to press ENTER You then have to move the cursor to the end
of the text - agam the text which will be affected is highlighted When you are satisfied
that you have marked the correct amount of text you should press ENTER and the
marked text will be erased immediately

The search command allows you to look for a particular word or phrase, through all bbnnUn
or part of your document You can use it, for example, to check whether you have used
a particular word or phrase too often The first search will start at the beginning of the
text but can then be continued from the current cursor position

The search command is in the second command menu so you select it by pressing
F3, 0 and then S

When you use the command you are asked to type in the text which you want to find,
finishing with ENTER Quill will immediately start searching your document from the
top until it finds the first occurrence of the text The cursor \$ left positioned at the start

12/84 13

of the found text If this is the occurrence you want, you can leave the command by
pressing ENTER

However, once you have given the search command some text to look for you can use
it again to find the next occurrence of that text Instead of pressing ENTER, just press
the C key If you do this Quill continues to search from the current cursor position until
it finds the next occurrence of the given text You can repeat this as many times as you
like, finding successive occurrences Press ENTER to leave the command when you
have found the occurrence you want

If at any stage, Quiff does not find another occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the mam
display

ntr LAOh The replace command is similar to the search command, but also gives you the ability
to replace some or all of the occurrences that are found The command is in the second
command menu, so you select it by pressing F3, 0 and then R

You are asked to type tn the text to be found When you press ENTER at the end of
the text, Quill immediately finds the first occurrence and asks you to type in the
replacement text (dont forget to press ENTER at the end)

Quill then asks if you want to replace the found text Press the R key to replace the text
- if you press the N key the text is not replaced In either case Quiii then continues
the search for the next occurrence and offers you the same choice of keeping or replacing
the found text This continues until no further occurrences are found, or until you press
ENTER

If, at any stage, Quill does not find another occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the main
display

You can use the command to make multiple replacements, insertions or deletions as
illustrated in the foiiowing examples

To replace occurrences of 'river' by 'stream; give 'river' as the text to be found and
'stream' as the replacement text

To insert 'or stream! give 'river' as the text to be found and 'river or stream' as the
replacement text

To delete 'river! give 'river' as the text to be found and give no replacement text
(just press R)

12/84

CHAFER 6
MORE

In this chapter we shall cover the remaining options for modifying the appearance of nV/fllVIMI ' M »V3
the text It includes setting tab stops and page breaks and using bold characters
underlining, subscripts or superscripts In addition there is a section on the design
command which you can use to change the settings of various options (such as the
page size) that control the overall appearance of your documents

TABS
A very common way of controlling the layout of a document is by tab stops These are Using Tab Stops
marked positions at particular columns of the text of your document When you press
the TABULATE key, the cursor will move to the right from its present position to the
next tab stop in the line If you have passed the last tab stop, then pressing the TABULATE
key will move you to the start of the following line

So that you know where the tab stops are, Quill draws the tab positions and their types
(as described below) in the line immediately below the ruler

Quill allows you to use several different types of tab stop and to position them in any >
column You can have up to sixteen tab stops in a line

There are four different types of tab stop Tab Stop Types

The most common type is known as a left tab stop and this works in exactly the same
way as the tab positions on a normal typewriter When you press the TABULATE key
the cursor will move to the next tab position and any text you type in will start at the
tab column It is called a left tab since lines of text at such a tab stop are aligned at
their left hand edges

A second type is a right tab stop When you move to such a tab stop and start typing,
the cursor will remain at the tab position and the text will appear to the left, so that it
ends at the tab position This will continue until the text to the left of the tab position
has filled the space available or until you press the TABULATE key again to move to
the next tab position Lines of text at such a tab stop are aligned at their right hand edges

There is also a centred tab stop Text typed at such a tab position will be adjusted so
that its central character is positioned on the tab stop Again the aligning of the text wtfl
continue until the available space (to existing text or to the left margin) is filled, or you
press the TABULATE key again

The fourth type of tab stop is a decimal tab, and is used for typing in numerical values
When you type a number at such a tab stop it is positioned so that its decimal point
is at the tab column If you do not type a decimal point in the text, it will behave like
a Right tab

Figure 61 shows the appearance of text typed at each of the four different types of tab
stops

Left Centre Right Decimal
I I I I
a a a a
piece of piece of piece of piece of
text text text text
I I I I
12345 12345 12345 12345
1234 1234 1234 1234
123456 123456 123456 123456
I I I I

F gure 61 The four [ypes of lab stop

Initially tab stops are set at every tenth character position and are all Left tabs You can The Tabs Command
change the number; position and type of tab stops with the tabs command

You can place tab stops at any point in the line and mix the different types in any way
you like The only limit is that you may not have more than sixteen tab stops in the line
The new tab stops take effect from the current paragraph (that containing the cursor
when you called the tabs command) to the end of the document, or to the next change
of tab positions

12/84 15

More Formatting

When you select the tabs command (F3 and T) the positions are drawn in the display
immediately beneath the ruler

Each tab stop is marked by a letter (L C, R or D) to indicate its type The cursor is
positioned at the beginning of the line and you can move it to the left or right using
the appropriate cursor keys

You can make as many changes to the tab stops as you like You may also press the
up or down cursor keys to move to another paragraph and make more changes to the
tab stops When you have made all the changes you want press ENTER to leave the
command and return to the main display

Inserting a Tab To insert a tab stop, select the type you want, use the left and right cursor keys to move
the cursor to the position the tab is required, and press T

When you have selected the Tabs command the types are shown in the control area

The control area contains the words (L)eft, (R)ight, (C)entre and {D)eomal and the word
{L)eft is highlighted This shows that the next tab stop to be inserted will be a Left tab

You can change the type of tab stop to be inserted either by pressing the space bar
(each time you press it the highlight moves from one type to the next) or by 'pressing
the key corresponding to its first letter For example, if you want to change to a Right
tab, you can either keep pressing the space bar until the word (R)ight is highlighted,
or just press the R key

Deleting a Tab Remove a tab stop by moving the cursor until it is over the tab marker that you want
to delete and pressing the X key

UhblbN You use the Design command to change features in the main display, such as"

characters per tine
line spacing
lines per document page

The command is illustrated in figure 62 and a full description of each option appears
in Chapter 8,

Press F3 and then D to select the design command Quill then shows the list of options
if, for example, you want to select a 40 character display, press the D key for the 'Display
Width' option This option will be highlighted and Quill waits for you to press 4, 6 or
8 to select a display width of 40, 64 or 80 characters. It will not allow you to select any
other option until you have chosen one of these three

Bottom marg in (type No. & END 3

Disp lay w id th 80,64,40, (8 ,6 ,4) 8

Gaps between Lines (0,1,2,) 0

Page s ize (type No. t ines & ENT) 66

S ta r t page no. (type No. & ENT) 1

Type cotour-Green or Whi te GRN

Upper margin (type No. & ENT) 6

Figure 6 2 The design command

You then have the option of changing any or all of the items listed m the display. When
you have made all the changes you want you should leave the command by pressing
ENTER.

16 12/84

More Formatting

If you move the right margin so that the number of characters in a line is greater than WIDE DOCUMENTS
the screen width, Quill cannot show the full width of your document on the screen In
this situation the display area acts like a window, through which you see only part of
the full document As you move the cursor along a line the window will slide across
the width of your document, so that it always shows the region containing the cursor

One of the options n the design command is to set page size, in terms of the maximum Paging
number of lines of text that can appear on a page of your document In addition to
the text, frits number of lines ncludes the upper and lower margins any header or footer
and the lines of space between them and your text

Suppose for example that you have an upper margin of 3 lines a header separated
by 2 blank lines from your text a footer separated from the text by 4 blank lines and
a bottom margin of 5 lines This takes up a total of 3+1+2+4+5=16 lines If you have
a page size of 66 lines then there will be 66-16=50 lines of text on each page If you
were then to use the design command to set the gaps between Itnes to be 1 (double
spacing) you would have only 25 lines of text on each page

A page break marks the point n your document where a new page will start depending Page Breaks
on the length of the page that is set in the design command ft is shown as a horizontal
Sine across the screen and includes the page number Quill allows for the upper and
lower margins, headers and footers when calculating the length of a page In the above
example with the gaps between lines set to zero Quill will insert a page break after
each block of 50 lines of text

If you set a page size that does not leave space for five or more lines of text per page
Quill will turn off the paging No page breaks are shown and Quill treats the whole
document as a single page You can make sure that automatic paging is turned off by
setting the page size to zero

You can use the page command to force a page break to occur at a particular line Forced Page Breaks
This is very useful for making sure that a section of text such as a list or a table is started
at the top of a new page and is not shown m two parts on different pages

You can set a page break in your text at any time by using the"page command which
is in the second command menu - press F3, the O key and then the P key You should
then position the cursor anywhere in the line at which you want the page to ertd and
press the P key Quid will insert a page break after the end of this line

You may set several forced page breaks at different positions but you may not set more
than one forced page break in any one line of your document When you have finished,
press ENTER to leave the command

You can remove a forced page break from your document at any time - you do not
use the page command for this purpose Remove a forced page break by moving the
cursor with the up cursor key until rt lies on the page break Then press CTRL and
while holding it down press the left cursor key

CHAPTER 7
FILE

vi tnrtl Iv/lilO When you have produced a document you will probably want to save a copy of it on
a Microdrive cartridge At some later date you may want to make some changes and
keep a copy of the new version If you have a printer you will certainly want to produce
printed copies

Each document is saved on a Microdrive cartridge in the form of a file - a named
chunk of information This chapter describes the commands provided to save load and
print files

oAV b You use this command to save a copy of the text of a Quill document on a Microdrive
cartridge If you do not save a document after you have written it you will lose its contents
when you leave Quill

When you use the save command (F3 and then S) you are asked to type in a name
for the document The simplest way to use the command is therefore to type tn something
like the following sequence

[HIS my L e t t e r [ENTER]

This saves your document with the name 'myletter doc' on the cartridge in Microdrive 2

If this name is the same as that of a document which is already saved on Microdrive
2 Quill will remind you that the document already exists and ask if you want to overwrite
it with the new one Press Y (yes) to replace the document or ESC to save the document
with a different name

When the document has been saved Quill asks you if you want to continue editing the
document press ENTER to continue and the space bar if you want to change to another
document

When you name a document to save it or if you load a previously saved document
Quill displays the document name in the status area If, at some time later, you want
to save the document again, Quill suggests the current document name as the name
to be used If you type in a name of your own choice it will replace the one suggested
Alternatively you may accept Quill s suggestion by just pressing ENTER In such a case
you can just type in

fF3l S I ENTER I

The new version will then be saved on the Microdrive cartridge, replacing the old one

LUAU You should use the load command when you want to copy a document from a Microdrive
cartridge into the computer's memory so that it may, for example, be edited

You are first asked to type in the name of the document you want to load If you have
forgotten it you can type in a question mark, plus ENTER Quill will then display a list
of all the documents on Microdrive 2 and again asks you to type in the name

If the name you type in does not correspond to the name of an existing document
Quill will tell you that the document does not exist and give you another chance to type
the name

rlLbo ANU MbHub The files command includes four options

Backup - to copy a Microdrive document or other Microdrive file
Delete - to erase a Microdrive document or other Microdrive file
Format - to format a Microdrive cartridge
Import - to insert a Microdrive file, exported from Abacus, Archive or

Easel, into the current document at the position of the cursor

The merge command allows you to insert a document from a Microdrive cartridge into
the current document at the position of the cursor

With these commands you will often want to use a second data cartridge For example
you will usually want to make a backup copy of a document on a different cartridge
and an import file will not usually be on the same cartridge as your Quill document

You can remove the Quill cartridge in Microdrive 1 and replace it with another cartridge
but remember to replace the Quill cartridge before printing a document or asking for
Help If you are using additional Microdnves then normally it will be necessary to remove
the Quill cartridge in Microdrive 1

18 12/84

This command is used to produce a printed copy of all or part of a Quill document PRINT
It is, of course, necessary that you have a printer and that it is correctly connected to
the computer, otherwise nothing much will happen'

Quill suggests that you print the document you are currently working on and waits for
you to press a key Press ENTER to accept this suggestion or type in the name of
the document to be printed (which must be a document on the cartridge n Microdrive 2)

Quit! will ask you if you want the whole document to be printed Press ENTER to accept
the suggestion Otherwise you type the number of the page of the document at which
you want printing to start and also the page number of the last page you want printed
terminating each number by ENTER You can only print complete pages of your
document

The print command has an option to print to a Microdrive file instead of to the printer
Press ENTER to use the printer, or type a new file name if you want to send the text
to a file The file produced will contain all the characters and control codes that would
otherwise have been sent to the printer

The simplest use is to print all of the current document The keys you press in this case are

US P I ENTER | [ENTER] [ENTER]

To print pages 2 to 4 inclusive of a document called "myletter doc to a new file
"rnyletter lis" (both on drive 2) you should type

fF3l P my Let ten|ENTER I 2 \ENTER I 4|ENTER!my tetter|ENTERJ

Before starting to print Quill will read the current printer driver from the Quill cartridge
in Microdrive 1 This will tell Quill what facilities are available on a particular printer and
how they can be used Quill will work with most makes of printer and you wif! find details
of how to make changes for a particular type of printer in the Information section, where
the printer driver program is described

You may also wish to change things such as the line spacing and the number of lines
per page of the printed document These are alf included in the design command, which
is described in Chapter 6

12/84 19

CHAPTER 8
QL QUILL

REFERENCE
THE FUNCTION

KEYS In addition to the standard use of F1 F2 and F3 function key 4 is used as follows

F4 change typeface
SHIFT & F4 switch between insert and overwrite

Quill does not use function key 5

Select a command by pressing F3 This switches Quill to display a command menu
You can still move the cursor but you are not allowed to insert or delete text

The control area display changes to show a list of the commands available You select
a command by typing its first letter A second set of commands (COMMANDS II) is
available and you can switch between them using the Other command

Since there are commands in the two sets that start with the same letter you must always
make sure that the command you want is shown in the control area before you select it

In general, you can leave any partially completed command by pressing ESC

At the end of most commands Quill returns to the main display The exceptions are those
commands that have their own internal menu (eg Files) tn these cases you are left
in the internal menu and must press ESC to go back to the main display

In any command that requires text input (eg save, load, files, replace) you may edit
the text with the line editor, described in the QL Program introduction

THE COMMANDS The following commands are available -

They are listed in alphabetical order If they are part of the second command menu
then this is shown by a II symbol after the command name

COPY Use this command for either moving or copying text from one place in the document
to another

You are first asked to move the cursor to the start of the text to be copied and then
to press ENTER Next move the cursor to the end of the text you want to copy You
can move the cursor backwards with the up and left cursor keys but you cannot move
it back past the starting point The affected text is highlighted Press ENTER when you
have finished Press ENTER again to delete the original marked text or press K to keep
it Move the cursor to the position where you want the marked text to appear and press
the C key to insert the text at the new position

You can make further copies of the text at any other point in your document Position
the cursor where you want another copy to appear and press the C key You may make
as many copies as you like When you have finished press ENTER to end the command

DESIGN This command allows you to set or change a number of features which control the overall
appearance of your document Within the command you are asked to choose, by
pressing the appropriate key, from the following options

Bottom margin type in the number of lines to be left blank at the bottom of each
printed page of your document Press ENTER when you have
typed in the number The initial setting is for a bottom margin
of 3 lines

Display width type in 4, 6 or 8 to select a display of 40, 64 or 80 characters
per line Quill will not accept any other characters The initial setting
is for either 80 or 64 characters depending on whether you are
using a monitor or a television

Gaps between lines type in 0, 1 or 2 to select how many blank lines will be printed
between each line of text in your document Quill will not accept
any other characters The initial setting is 0

Page size type in the total number of lines to be used for each page of
your document and press ENTER. This number includes the
blank lines in both the upper and bottom margins. If you type

20 12/84

in a zero the document will not be split into pages The initial
setting is 66 (You can normally print 66 lines on a standard A4
page)

Start page number type in a number followed by ENTER This number is used to
number the first page of your document Successive pages are
numbered consecutively from this value You may want to change
it if your document is a continuation of another document The
initial value is 1

Type colour to change colours used for normal and bold text Each time you
select this option the normal and bold text colours switch between
green and white The initial setting is tor ordinary text to be green
and bold text to be white

Upper margin type in the number of lines space to be left blank at the top of
each page of your document and press ENTER The initial setting
is for 6 lines

At the end of each option you may select another option, or press ENTER to leave
the command

This command allows you to erase text from your document You are first asked to move ERASE
the cursor (with the cursor keys) to the first character that you want to erase, press ENTER,
and then move the cursor through the text you want to erase The marked text is
highlighted When you have marked the text you should press ENTER again and the
text is erased immediately

There are four options provided in this command FILES II

Delete to delete a named document or file from a Microdrive cartridge
You are asked to type in the name of the file you want to delete
The file is deleted when you press ENTER

Format to format a cartridge in Microdrive 2 Since this erases all the
information on the cartridge you must confirm your selection

Warning, all information on the cartridge is erased when you
format it

Backup to make a second security copy of a document on a Microdrive
cartridge You are asked to type in the name of the document
and the name you want to give to the new copy You would
normally make the copy on a different cartridge and could
therefore use the same name again

Import to insert another file from a Microdrive cartridge into your
document, at the position of the cursor The file must be a file
exported from either QL Abacus or QL Archive, or a text file
produced say from SuperBASIC See the Information section

This command allows you to specify a line of text to be used as the bottom line on each FOOTER
page It does not appear on the display screen—only on the printed page

You are first asked to select the position of the footer from the four options

None - no footer text
Left - at the left margin
Centre- centred in the page (the initial setting)
Right - at the right margin

Press the space bar until the required option is highlighted and then press ENTER
You are then asked to type the text for the footer, ending by pressing ENTER

If you have previously specified a footer then this list is shown in the status area You
have the option of altering it with the line editor, rather than typing in the whole of the
revised text

You can include a page number anywhere in the text The position and type of number
is marked by a three character code

12 84 21

Characters Page Number Style

nnn or NNN Arabic Numerals eg 1 2, 3, 4
r r r or R R R Roman Numerals eg I, II, III, IV
aaa or A A A Alphabetic eg A, B, C, D

You are finally asked to type in a number, from 0 to 9 to indicate the number of iines
to be left between the bottom of the text and the footer

GOTO You may use this command to move the cursor to the top, bottom or to a specified page
in your document You are offered three options

Top to move the cursor to the beginning of your document

Bottom to move the cursor to the end of your document

a page number typing in a number, foliowed by ENTER moves the cursor to the
start of that page of your document If there are no page breaks
in your document this option will move the cursor to the end

HEADER This command allows you to specify a line of text to be used as the first line on each
page. Note that the header does not appear in the display of your document on screen
Quill does not automatically provide a header for your document

You are first asked to select the position of the header from the four options

None no header text (the initial setting)
Left at the left margin
Centre centred in the page
Right at the right margin

You press the space bar until the required option is highlighted and then press ENTER
You are then asked to type the text for the header, ending by pressing ENTER

If you have added a header at an earlier stage the existing text is shown in the status
area You then have the option of changing with the line editor, rather than typing in
the whole of the text

You can include a page number anywhere in the text The position and type of number
is marked by a three character code1

Characters Page Number Style

nnn or NNN Arabic Numerals e.g 1, 2, 3, 4
r r r or R R R Roman Numerals ag I, II, II!, IV
a a a or A A A Alphabetic e.g A, B, C, D

HYPHENATE (II) This command allows you to specify a point within a word where it can be split, with
an automatically inserted hyphen, if it extends beyond the end of a line Words not marked
in this way will, if necessary, be moved to the next line in their entirety

Hyphenation is particularly useful when you are using right justification, to avoid large
gaps being left between the words

Move the cursor to the first character following the position where you want to allow a
split to be made and press the H key You may repeat this process as many times as
you want Press ENTER to leave the command

The command will have no apparent effect on the word if it is not at the end of a line

22 12/84

Use this command to select the type of justification you want ft takes effect from the JUSTIFY
start of the paragraph containing the cursor, and remains in effect to the end of the
document, or to the next change of justification

You are offered the following options, selected by pressing the key corresponding to
its first letter

Left the text is aligned at the left margin, but the right margin is uneven

Centre the text of each line is centred between the margins

Right additional spaces are inserted between words in each line so
that the text is aligned at both the left and right margins

You may make changes of justification to more than one paragraph Press the up or
down cursor keys to move up or down by a paragraph and change the justification as
described above Press ENTER to end the command

This command allows you to load a document into memory from a Microdrive cartridge, LOAD
ready for printing or editing

Type in the name of the document (the name you gave it when you saved it) If you
just press "?" plus ENTER, Quill will show you a list of the names of all the documents
saved on Microdrive 2 Edit the suggested text, Microdrive 2 - if you want a list of the
files from a different Microdrive When Quill has shown the list, you are again asked to
type in a document name

Use this command to set or change the positions of the left, indent and right margins MARGINS
of your document All changes in the margins are shown in the text as you make them

The control area shows the words left, indent and right and on first entering this command
the word left is highlighted This means that you can use the left and right cursor keys
to move the (eft margin

You can select any of the three margins by pressing the space bar until the correct margin
name is highlighted You can move the selected margin by pressing either the right or
left cursor key

The change in each margin takes effect from the paragraph containing the cursor It
remains in effect to the end of your document, or to the next change of position of that
margin

You may make changes of margin positions to more then one paragraph Press the
up or down cursor keys to move up or down by a paragraph and change the margins
as described above Press ENTER to leave the command

The merge command takes a copy of a named Quill document from a Microdrive MERGE (II)
cartridge and inserts it, at the position of the cursor, in the document currently in memory

This command allows you the option to replace the Quill cartridge with a data cartridge
You must replace the Quill cartridge in Microdrive 1 at the end of the command

Position the cursor at the point where you want the document to be inserted before
selecting the command Quill asks you to type in the name of the file you want to insert
If you insert the document in the middle of a paragraph, QuiH will split it into two
paragraphs at the position of the cursor and insert the document between them

This command allows you to switch to the display of a second set of commands in the OTHER
control area The list of commands in the control area alternates between the two lists
each time you use Other

Since several commands start with the same letter, you must make sure that the
command you want is one of those displayed, before you choose it.

You can use this command to mark a point in your document where you want a new PAGE (II)
page to start

Move the cursor to the point where you want the new page to start and press P

You may add such page breaks at several points in your document Move the cursor
to the point where you want another page to start and press the P key Press ENTER
to leave the command

<o 04 23

Do not use the page command for deleting a forced page break You can cancel a
page break by moving the cursor to any point on the page break line and then pressing
CTRL and the left cursor key together

PRINT This command prints all or part of the document currently in the computers memory,
or any other document on the cartridge in Microdrive 2

Press ENTER to print the current document, or type in the filename of the document
to be printed, followed by ENTER

Quill then suggests printing the whole document If you reply by pressing ENTER the
whole document will be printed If you only want to print some of the pages, type in
the number of the first page you want printed, followed by ENTER Then type the number
of the last page you want printed, again ending by pressing ENTER

Finally, press ENTER to send the text to a printer, or type the file name of a new file,
followed by ENTER to send the output to a Microdrive file

Before printing, Quill will read a 'printerdat' file entering the printer driver information

QUIT This command allows you to leave Quill and return to SuperBASIC You have three options

ENTER to save your current document before returning to SuperBASIC
You are given the further option of typing in a name for the saved
document If you just press ENTER the document will be saved
with its old name, replacing the original version of the document
on the Microdrive cartridge

A to abandon your current document and return to SuperBASIC
without saving it

ESC to cancel the command and return to your document

REPLACE (II) You can use this command to replace some or all occurrences of one piece of text by
another

First type in the word(s) to be replaced followed by ENTER Then type in the replacement
word(s), again followed by ENTER

Quill searches from the start of the document until the first occurrence of the old text
is found It then offers you the option of replacing the old text with the new Press the
R key to replace the text, or N if you do not want to replace it

Qutll will then search for the next occurrence and again offer you the option to make
the replacement This process will continue until you reach the end of the document
or until you end the command by pressing ENTER

SAVE You use this command to save a copy of your document on a Microdrive cartridge

Type in a name for your document so that it can be identified The document is then
saved under that name If, instead of typing in a name, you just press ENTER, the
document will be saved with its old name, replacing the original version

Quill then asks you if you want to continue editing the document you have just saved
If you press ENTER, the text of the document remains in the computer's memory and
you can continue working on it

Alternatively, press the space bar if you want to work with another document

SEARCH (II) This command searches your document for a particular word or phrase

First type in the text which you want to find When you press ENTER Qutll starts at the
top of your document and searches for the first occurrence of the text

You may press the C key to continue the search to find the next occurrence of the text
Press ENTER to end the command when you have found the occurrence you want.

?4 1 ? 'RJ

The tabs command allows you to specify the positions and types of tab stops on a line TABS
of text The tabulate key will then take you straight to the next tab stop along the rule
which you have set Each change of the tab stops will take effect from the start of the
current paragraph (the one containing the cursor) It will remain in effect to the end of
your document, or until the next change of tab stops

There are four types of tab stop provided

Left the tab stop behaves like a left margin, the text is positioned to
the right of the tab stop

Centred the text will be centred around the tab stop

Right the tab stop behaves like a right margin, the text is positioned
to the left of the tab stop

Decimal this is used for aligning decimal numbers Each number will be
positioned so that its decimal point is at the tab stop Until a
decimal point is encountered it behaves like a right tab

The tab positions are drawn on the screen, below the ruler using the following symbols

L- left
C centred
R - right
D - decimal

The cursor is positioned at the start of that line You can move the cursor along the line
by using the left and right cursor keys

You can remove a tab marker by moving the cursor with the left and right cursor keys
until it is over the tab marker in the line under the ruler and then pressing the X key

To insert a tab marker you should first select the type you want by either pressing the
space bar until the correct type is highlighted in the control area, or pressing the L,
C R, or D key Then move the cursor to the appropriate point and press the T key

You can mix inserting and deleting tab markers in any combination You may also press
the up or down cursor keys to move to another paragraph and make further changes
to the tab stops When you have made all the changes you want you should press ENTER
to leave the command and return to the main display

This command deletes the whole of your current document, without saving it on a ZAP
Microdrive cartridge It allows you to discard your current document and start again

You can change the typeface of the text in your document by pressing F4 and then TYPEFACE
the first letter of one of the four options listed below The selected typeface affects all
text subsequently typed in

Alternatively you may press F4 and then the P key to paint new text in a new style

You are offered the following options

Bold text is converted to a bold, or heavy typeface

High script text is printed in the upper half of the line

Low script text is printed in the lower half of the line

Underline text is underlined

You may select any combination of these options except, of course, that you can not
have both high and low scripts selected together ff you select either of these, the other
will be switched off automatically

If you want to select a combination of typefaces, you should select them one after another,
by pressing F4 and the appropriate tetters

If you press the P key to select the paint option, Quill allows you to select one or more
typeface styles Move the cursor to 'paint' the text to the new style and press ENTER
when you have finished Note that the original typestyle is restored after painting

You can switch off any of the typeface options in the same way that you use to turn
it on - that is by pressing F4 and then the appropriate key (B H, L or U)

1?Pd OS

INSERT AND
UV tnWnl 11 MUUto Initially Quill in insert mode and any text that you type in wifl be inserted into your document

at the position of the cursor Any surrounding text wiii be spread out to make room

If you hold down SHIFT and press F4, Quill will switch to overwrite mode In this mode
any text that you type in will replace, character by character, any text from the cursor
position onwards

You can switch back to insert mode by the same method, that is by holding SHIFT
down and pressing F4

THE START-UP
rAHAMcTCnO When you first load QUILL it is in the state described by the following list You can change

each of the properties by the method indicated in the right hand column

Feature Initially Change By

Mode insert SHIFT & F4
Display width 80(mon) 64(TV) Design
Left margin 10 0 Margins
Indent margin 15 5 Margins
Right margin 70 64 Margins (max 160)
Upper margin 6 Design
Bottom margin 3 Design
Justification Right Justify
Tab stops Left, cols 10,20 ,80 Tabs
Page size 66 Design
Gaps between lines 0 Design
Page header none Header
Page footer centred "page nnn" Footer
Start page number 1 Design
Text colour

Normal green Design
Bold white Design

Typeface
Bold off F4
Underline off F4
High script off F4
Low script off F4

QL
QL Abacus

©1984 PSION LIMITED
by Dick de Grandis-Harnson (Psion Limited)

CHAPTER 1
ABOUT

QL Abacus is a spreadsheet which can be used for planning budgeting, tabulating V*L MDMwUO
data calculation, information storage or for presenting information This information is
represented on a tabulated grid divided into 255 rows and 64 columns The data area
you see on the computer screen is a window through which you can see part of the
grid You can move this window across the grid The intersections of the rows and columns
represent more than 16,000 celts or boxes in the grid You can enter text into any cell
or cells, or the cells may be used for the storage of numbers or data

The real power of Abacus however comes from the use of rules or formulae, which
can connect different blocks, rows or columns of cells, or even individual cells of the
grid This means that information inserted in one area can immediately be evaluated
and represented in another form elsewhere

For example, you can use twelve of the columns to represent months of the year and
you can then enter sales data along a 'sales' row The next two rows can contain formulae
to calculate the cost of sales (as a percentage of sales plus a fixed cost, say) and the
profit The monthly profits will then be evaluated automatically each time you type in
a sales figure The yearly totals can also be summed by another formula so that a change
in the sates of say March will immediately lead to a completely different profit profile
and total for the year All the figures are evaluated by Abacus automatically

You can also represent the data from Abacus as graphics or in a table in the word
processor through the export commands of the Psion QL package

In many respects Abacus is like a visual programming language, but one which is easy
to use You may manipulate text, data or formulae, use input and output statements and
text variables

If, at any time you are not sure wnat to do, remember that you can ask for Help by
pressing F1 Also remember that you can cancel any partially-completed operation (eg
typing in a number or using a command) by pressing ESC

12'84 1

CHAPTER 2

GETTING
STARTED

LOADING
QL ABACUS Load QL Abacus as described in the Introduction to the QL Programs don't forget

that Abacus requires a formatted cartridge m Microdrive 2 When loaded the following
message will de displayed

LOADING QL ABACUS
version x.xx

Copyright © 1984 PSION SYSTEMS
spreadsheet

where x xx represents the version number (eg 1 02)

The program will then wait for a few seconds before starting

The Help information is not loaded into the computer's memory together with the
program It is only read from the Abacus cartridge when it is needed You should
therefore not remove the Abacus cartridge from Microdrive 1 if you intend to use
the Help facility.

When Abacus is first loaded the appearance of the screen is as shown in Figure 21
This is the mam display

UulNtnAL Abacus can display 80, 64 or 40 characters per line of the display If you are using
APPEARANCE a dorTiestlc television the display may not be clear enough for you to see 80 characters

per line and you should use 64 or 40 characters. The 64 character display is very
similar to that for 80 characters but the 40 character display is arranged slightly differently.
This is shown in figure 2 2

Figure 2 1 The main display wilh a monitor (80 characters)

Abacus initially selects either an 80 or a 64 character display depending on whether
you started from SuperBASiC in the Monitor or the TV

12/84

Apart from the difference in appearance. Abacus works in exactly the same way with
all three display formats Most of the diagrams in this manual are shown for the 80
character display

Figure 2 2 The main display for 40 characters

The central area of the screen contains the window showing part of the grid The Window

Across the top of the window you will see a line in which a number of letters appear
These letters label vertical columns of cells making up the grid As you can see, columns
A,BC and so on are visible Down the side of the window there is a series of numbers,
from 1 to 15 These numbers label the rows of cells in the grid

Figure 23 The window Figure 24 The grid labels

A combination of a letter and a number will therefore identify one particular ceil, and
is known as a cell reference. For example, A1 This refers to the cell which is in column
A and row 1, {the top left hand cell in the window)

You will see that this cell is different from all the others in that it is filled by a large red
rectangle. This is known as the cursor and it marks the current cell, that is the cell which
will receive any data you type in

12,84 3

The Status Area The bottom section ot the display contains the status area which gives information
about the current state of the grid

It contains the cell reference of the current cell and its contents This cell is empty when
you have just loaded Abacus In addition the status area shows the extent of the used
portion of the grid (as the cell reference of the bottom right cell of the used portion)
and the amount of memory left

The Control Area The control area shows the normal options to obtain Help (F1) to turn the prompts
on and off (F2), to select a command (F3) and to cancel an incomplete selection (ESC)
In addition there are three options that are specific to Abacus These are

move (he cursor
type in data or a formula,
type in text

MUVINu I Ht The four cursor keys move the cursor around the grid Press the right cursor key once
CURSOR "*~he cursor mews one column to the right and the current cell indicator now shows

B1 If you then press the left cursor key once the cursor returns to cell A1 Pressing
the left cursor key again will have no effect because you are at the extreme left hand
edge of the grid

Move the cursor to the extreme right hand edge of the grid Pressing the right cursor
key again will not move the cursor but the letters across the top of the window will
change When you attempt to make the cursor leave the visible area of the grid the
window will move across the grid so that the cursor remains in view

The cursor keys are a useful way of moving the cursor provided you only wish to move
it one or two cells They are very inefficient for making large movements across the
grid For such large movements it ts more convenient to go directly to the required
cell You can do this by pressing F5, to select the goto option, and then typing the
required eel! reference, followed by ENTER

4 12/84

Getting Started

Getting Started

As an example of using the goto option, ask Abacus to move the cursor to cell D11
First press F5 to select the goto option The words goto AT will then appear in the
line immediately below the window Abacus is suggesting that the cursor be moved
to the top left hand corner of the grid If you accept this suggestion (by just pressing
ENTER) the cursor will move to that point To move the cursor to another cell type
in the cell reference - in this case type

d11

and press ENTER Note that the d may be in upper or lower case - Abacus will
accept either The ceil reference you type in replaces that suggested by Abacus and
the cursor moves directly to the cell you have specified

You should now move the cursor back to the top left hand corner of the grid by using
this option again This time you can accept the suggested celt reference (A1) so all
you have to type is

TsllENTERl

You will find that you go back to the original state of the display, with the cursor at
the top left hand corner of the window, in cell A1

Now move the cursor to cell Y1, by typing in

fF5l y1 I ENTER [

Look at the letters labelling the columns across the top of the window and you will
find the column to the right of column Z is labelled AA, the next one is labelled AB,
and so on This enables you to refer to more than 26 columns

There are 64 columns in total and after AZ, the columns are labelled BA, BB and
so on The last column in the grid is labelled BL

You can also move down the grid to find the last row but you will have to go a long
way there are 255 rows in the grid

Return the cursor to cell A1 and then type ENTERING

100 NUMBERS
but don't press ENTER just yet The 'Data or Formula' option box in the control area
is now highlighted, to confirm your action The prompt value > followed by the number
100 will also have appeared in the line immediately below the window

All typed input and the text that Abacus shows while you are using a command,
appears in this line It is the input line

The small rectangle in the input line marks where the next input character will appear,
and is known as the input cursor to distinguish it from the main cursor in the window
If you make a mistake at any time during typing to the input line, you can correct it
by using the line editor, described in the Introduction to the QL Programs

When you press ENTER the value 100 will be transferred to the current cell (A1) and ENTERING TEXT
the input line will clear ready for more input You will see that the value 100 also appears
in the status area, at the bottom of the display

Putting text into a cell is the same as entering a number except that text is preceded
by double quotation marks As soon as you type the quotation marks, Abacus responds
by emphasising the TEXT option box in the control area and showing text>" in the
input line You then type in exactly what you want to appear in the cell, followed by
ENTER There is no need for a closing quotation mark Try entering text into a few
cells and, in particular, notice the difference between entering, say

1000 [ENTER | (a number)

and

"1000 I ENTER I (text)

A number is shown at the right of the cell, whereas text is placed at the left The status
area also shows the type of information, text, numeric and so on, in the current cell

1284 5

Getting Started

THE COMMANDS You select a command by first pressing F3

The central part of the control area shows a list, or menu, of the available commands
and is known as the command menu, illustrated Figure 29

Most of the commands are described in later chapters but we can take a quick look
at two of them These are Zap, which you use to clear the whole grid, and Quit, which
allows you to stop usino. Abacus and return to SuperBASIC

Try the Zap command first Press F3 and locate the Zap command in the displayed
menu If you press the Z key, the word Zap will appear in the input line - you need
never type more than the first letter of any command Also, the command box in the
controi area changes to show the menu for Zap Try pressing ESC first, to cancel the
command

Now return to the command menu by pressing F3 and then press Z to call the Zap
command again but this time press ENTER next to clear the grid You will be left
with a blank grid and with the cursor in cell A1 ready to start afresh

Whenever you want to leave Abacus and return to SuperBASIC, you must use the Quit
command This works in a similar way to Zap, (press F3 and then the first .letter of
the command (Q)) Quitting causes you to lose the contents of your grid so you are
again given the option of going back to the mam level by pressing ESC

6 12/84

Getting Started

CHAPTER 3
CELLS,
ROWS,
COLUMNS

Much of the power of Abacus lies in its ability to handle whole rows columns or ranges MllU FiMIt vltX
of cells in a single operation You do this by using simple expressions which allow you,
for example, to fill all or part of a row of cells The values in the cells may all be made
the same or they may vary in a regular way

This chapter describes some of the properties of cells and the ways in which you can
refer to them

The cell is the basic unit for holding information in Abacus Each cell can contain one L/tLLo
item of information which may be text a number or a formula

For each cell that contains information, Abacus also keeps a record of how that information
is to be displayed You can, for example, display numbers or text at the left, centre or
right of the celt, and you can display numbers in several different formats

You use the Justify command to change the position of the display within a cell It allows Justification
you to select the position of numbers or of text within a cell or group of cells

Put a value of 100 in ceil A1 and then use the Justify command by pressing F3 and
then the J key Abacus first asks you to select between a Cells and a Defaults option
select the Cells option by pressing ENTER Abacus then asks you to choose between
either text or numbers Select numbers by pressing the N key Next you must select
Left Centre or Right justificaton Since Left is suggested by Abacus, select it by pressing
ENTER

Finally Abacus asks you to specify the range of cells that are to be affected In this case
just press ENTER You will see that the value of 100 in cell A1 will move to the left hand
side of the ceii

Note that you can change the numeric format or numeric justification of a cell which
currently contains text Nothing will appear to happen If, however, you later change the
contents of the cell to be numeric, it will be displayed with the format and justification
that you specified This also applies to a change of text justification for a cell which currently
contains numeric information

Cells that contain no information do not exist as far as Abacus is concerned, and use Empty Cells
no memory They can therefore have no properties If you attempt to use the Cells option
of either the Justify or the Units command on an empty cell they will have no effect
Numbers subsequently placed into such a cell will be displayed in the general default
format

If you want to change these defaults you must use the Defaults option of either the Justify
or the Units command (or both) For example, use the Defaults option of the Units
command (press F3, U and then D) to select a default of percent format with one decimal
place The choices are similar to those in the Cells option, but you are not asked for
a cell range

The Defaults option of the Justify command works in the same way Again you are not
asked to type in a cell range because Abacus will use the new default each time you
put informaton into any previously empty cell

The new default settings will remain in effect until you change them again, or until you
finish using Abacus and return to SuperBASIC

To restore the defaults to their original state - numbers justified right, text justified left
and numbers displayed in General format - use the following sequences

fF3l J D N R [number right justified)

fFGl J D I ENTER 11 ENTER I [text left justified)

[F3| U D G {number displayed in general formatj

Very often you will want to fill several celts in a particular row with a particular value, nUVVO
or with values that vary in a regular way Abacus provides simple ways of doing this
One method is to refer to the cells of a row with a range identifier There are two range

1284 7

Cells Rows Columns and Ranges

identifiers, row and col They refer to the cells of the current row or column - the row
or the column that contains the cursor

As an example, let us fill the first row, from column B to column D with the value 100
We shall use the range identifier row as follows Place the cursor in cell A1 and then type

row = 100 I ENTER I

As soon as you press ENTER a prompt appears in the input line suggesting that the
row be filled starting at column A (the column containing the cursor) The system will
always make a reasonable suggestion for the starting point and this can be accepted
simply by pressing ENTER In this case, however we want to start at column B so you
should press

BI ENTER I

The input line changes to show that the filling of the row is to start at column B and
a further prompt appears with a suggestion of BL (the last column in the grid) for the
end column Again this will have to be changed, since we want to end at column D
so you should press

P i ENTER I

The instruction is now complete and will be carried out - the value 100 will appear
in each of the cells from 61 to D1 inclusive and the input line will clear ready for your
next input

UULUiviNb Filling a column follows a very similar pattern except, of course, that you refer to a column
by one or two letters rather than the number that identifies a row Suppose we want
to put the text 'hello' in each of the cells of column D, from row 5 to row 11 We can
do this by using the second range identifier col Move the cursor to cell 05 and type

c o L = "hello"[ENTER

This time Abacus suggests the correct starting point (row 5) as this row contains the
cursor, and you can accept this suggestion by pressing ENTER Row 255 will then be
offered as a suggested end point and you should change this by typing

11|ENTER|

The text will appear in cells D5 to D11 inclusive and the input line will clear, ready for
the next input

Each time you use col you will be asked to specify the first and last row to be affected
You may as usual, accept or replace the values that Abacus suggests

In addition to this way of using the range identifiers row and col, you can also use them
to specify the range of cells for any function that needs such a range For example

For example put some numbers in all the cells of the rectangular area whose top left
hand corner is the cell A1 and whose bottom right hand corner is the cell C3 (ntne
numbers in all) Now move the cursor to cell D1 and type

col = sum(row) I ENTER I

This fills each cell of column D with the total of the values in the cells of the corresponding
row Abacus needs to know the ranges for both row and col It will therefore ask for
the range of columns for row (Abacus suggests column D to column D whtch is correct
- accept each by pressing ENTER) and then for the range of rows to be used by
col Abacus suggests from row 1, which is correct to row 255 (or to row 11 if you type
in this example immediately after the previous one) Accept the first by pressing ENTER
and type the correct value, 3 (don't forget to press ENTER) for the second Abacus
will then calculate the total for each of the three rows and display the results in the cells
of column D

LAbbLb The previous examples referred to rows and columns by an explicit use of their number
and letter cell references An important alternative for identifying rows or columns is to
use labels, that is names which you may choose yourself These labels are then used
to refer to specific rows, columns or cells

Any text that you put into a cell can be used as a label You can use labels in any
command or formula where you would otherwise use a letter and number reference
The advantage is it is much easier to remember names than numbers and letters when
you want to refer to a particular cell

8 12/84

Cells Rows Columns and Ranges

This is an extremely powerful and flexible method which you can use to great advantage
to simplify the setting out and operation of a grid The following two sections explain
how you can use these labels

A label may refer to either a row or a column, depending on the contents of the other Row and Column
cells in the grid The basic rule when you use a label to identify a row or column of Labels
figures is that Abacus searches below and to the right from the cell containing the label.

12'84 9

Cells, Rows, Columns arid Ranges

The closest cell that contains a number, below or to the right of the position of the label,
determines whether the label refers to a row or to a cotumn Figures 31 and 3 2 should
help make this clear In Figure 31 the label refers to a raw and in Figure 32 it refers
to a column

In more complex cases for example where there are numbers both to the right and
below the label the nearest number (measured by the number of cells separating the
number from the label) determines whether it is a row or a column reference If the two
numbers are the same distance from the label Abacus shows the message

Cannot tetl whether name is a row or col

and wait for you to press the space bar Abacus will then put the text of your formula
back into the input line so that you can correct it with the line editor

You should replace the unresolved reference with either row or col and press ENTER
again You should consider rearranging the labels so that Abacus can resolve the
reference in future

Figure 33 Labelling a cell

Labelling Cells You can also use labels to refer to single cells, but in this case two labels are needed
In the following example the labels March and 'Costs' can be used to refer to cell C4

The reference is made up of the names of the two labels separated by a full stop (eg ,
March Costs) It is not necessary to give the full names, and no distinction is made between
upper and lower case letters Also Abacus needs only enough letters of each name
to make sure that the identification is unique In the above example 'marcos would be
perfectly adequate The order of the labels is also irrelevant so you could also use
'cos mar' to refer to the same cell

HANubo In addition to being able to refer to a whole row or a whole column, you can make
an instruction work on a rectangular block, or range of cells

A range reference is made up of two parts The first part is the row and column reference
of the top left hand cell of the range This is separated by a colon from the second part,
which is the row and column reference of the bottom right hand corner of the range
An example of a range reference is

A 2 : D 2 7

10 12/84

An example of the use of a range reference would be the use of the Copy command
to copy the contents of a range of cells to a similar range at a different place in the grid

Many of the commands ask you to type in a range reference, to identify the cells on
which they are to work Since a range reference has a much wider set of possibilities
than a row or column reference, Abacus can not suggest a possible range You must
type in the entire range reference yourself You can specify the range in any one of four
ways These are

1 With explicit row and column numbers and letters,
eg A1C7

2 With labels,
e,g January sales march costs

3 With a combination of the above two methods
eg, A1 march costs

4 With a range identifier,
eg row (or cot)

This refers to the cells of the row (or column) that contains the cursor In this case
Abacus can suggest suitable start and end points.

Cells Rows Columns and Ranges

Figure 3 4 A range reference

Now that we have seen how the position of a cell or range of cells can be specified MUnt AbUU I
to Abacus, we can go on to show how the appearance of the contents of these cells Ml JMRPPQ AMP)
can be modified First we must explain the way in which numbers are stored. Move tno niNU
the cursor to cell A1 and type in the number 123 456 TEXT

Abacus stores all numbers to an accuracy of 16 significant figures and it can display
up to 14 significant figures - the extra two figures are used to make sure that the
calculated value is displayed accurately Although Abacus calculates and stores all
numbers to this accuracy, you do not have to display all the significant figures

Select the Units command (by pressing F3 and then the U key) There are two options
Cells or Defaults In this case press ENTER to select the suggested Cells option.

Abacus offers you several different forms of display

12/84 11

Cells, Rows, Cdumns and Ranges

Press the M key to select the Monetary form of display Abacus asks you to choose
how you want it to show negative values Abacus suggests that they are displayed with
a leading minus sign and you can accept this suggestion by pressing ENTER
Alternatively you can display negative values in brackets by pressing the B key instead
In this example it does not matter which we choose, but we shall assume the minus
sign option

Abacus then asks you to specify the range of ceils which are to be affected You could
reply by typing in a range reference (eg A1 B3) or just the reference to a single cell
Abacus wtli always try to anticipate the range you require However, in some circumstances
Abacus is unable to do this and will simply suggest the range A1 A1 This range reference
is identical to the single cell reference A1 You can either accept the suggestion by pressing
ENTER or type in your own reference choice followed by ENTER

We will assume that Abacus makes the default range suggestion A1 A1 and the complete
sequence of keypresses is

fF3l U I ENTER I M [ENTEB 1 TENTER

Just before you press ENTER for the third time the input line should contain

C o m m a n d > u n i t s , c e t I s , m o n e t a r y , m i n u s s ign,range A1 :A1

When you press ENTER the display in ceil A1 will change to £12346, even though the
actual value (123456) is still kept, and shown in the status area Abacus automatically
takes you back to the main display.

The monetary form of display always shows the number rounded to two decimal places,
with a leading currency sign (You can change the sign to $, or anything else, by using
one of the options in the Design command)

Let us now change the display in ce!! A1 to Integer (whole number) format, by calling
the Cells option of the Units command again, but this time pressing the I key This format
also allows you to choose whether to use a minus sign or brackets to show negative
numbers and this time we can choose the bracket option by pressing the B key followed
by ENTER (again we are only affecting cell A1)

The full sequence of keypresses in this case is

[Will I ENTER i I B I ENTERl

and the input line shows

Command>uni ts , c e f f s , in teger , b r a c k e t s , range A 1 : A 1

The ceil display now shows 123 - the decimal point and all figures following it are not
shown in integer format

We can now try Decimal format, For this, and the remaining formats you do not have
the option of displaying negative values in brackets Instead (except for the General format)
you must specify the number of figures you want to be displayed after the decimal point
let's use five decimal places Select the Cells option of the Units command Decimal
is the default format and can be selected simply by pressing ENTER, then specifying
five decimal places. Finally, in response to the 'range' prompt, press ENTER to accept
the default suggestion The full sequence of keypresses and the corresponding input
line contents are.

[F3l U I ENTER II ENTERl 5 I ENTER 11 ENTER

C o m m a n d > u n i t s , c e l l s , d e c i m a t , d e c i m a I p l a c e s 5 , range A 1 : A 1

Cell A1 will now show 12345600 as required.

Now use the command again, but the time press the P key, to specify the Percent format
Use one decimal place and select cell A1 The full sequence of keypresses is

[F31 U rENTERl P 1 I ENTER I rENTERl

The display will now show 123456% The percent option shows a number multiplied
by 100 with an added % sign Note that the stored value, as shown in the status area
is still 123456, regardless of the cell display

We can now try the Exponential format, with three decimal places, by typing

[F3]U I ENTER I E 3 [ENTER 11 ENTER !

12 12/84

Cells Rows Columns and Ranges

Before you press ENTER for the third time the input line should contain

Command>umts ,ce t Is ,exponent ,dec ima l p laces 3,range A1 :A1

and, after pressing it, the cell display will be 1 235E+02

The exponential format is used to display numbers which are too large or too small to
be written in decimal format The number is written as a value between 1 and 10,
multiplied by the appropriate power of ten The number 2 300 000 000, for example,
can be written as 23 multiplied by 1 000 000 000 and 1 000 000 000 is ten raised
to the ninth power (nine tens multiplied together) So 2 300 000 000 could be written
in exponential format as 23 E+09 Very small numbers are written using negative powers
of ten Thus, the number 0000123, which is 1 23 divided by 10000 (ten raised to the
fourth power) can be written in exponential format as 1 23 E-04

The remaining option is the General format which you can see in cell A1 by typing

fF3lU I ENTER I G fENTER I

The input line contains

Command>umts,ce I Is,generaL,range A1:A1

This format again does not require you to specify the number of decimal places Using
the General format lets Abacus choose a sensible form for the display of each number
It does the best it can to display each number as accurately as possible in the space
that is available

Before we leave the Units command, try displaying the number in cell A1 in decimal
format, with nine decimal places Type

fRfl U CENTER!! ENTER I 9 I ENTER 11 ENTER I

Cell A1 now shows # # # # # # # # # # indicating that the display will not fit in the
space available Whenever you see this, you should then either change the display format
or increase the width of that column

Now clear the grid by using the Zap command With the cursor at cell A1, type

"This is a Long bit of t ex t

Although the text is too long to be contained in one celt, it is all shown It overflows across
the following cells Now put the number 1 into cell B1 The text is cut off at the end
of cell A1 as it is not allowed to overflow across another filled cell Move the cursor back
to cell A1 and verify that the whole of the text is still stored by looking in the status area

Move the cursor back to cell B1 and use the Rubout command to erase When you
use this command you are asked to specify the range of cells whose contents you want
to delete In this case we only want to delete the contents of cell B1 and can do so
by pressing ENTER The full sequence of key presses is

rFal R I ENTER!
Now that cell B1 is empty, the full text in cell A1 appears again

12/84 13

CHAPTER 4
FUNCTIONS

AND
FORMULAE

rUNL I lUNb Abacus contains a number of pre-defined functions which are used to perform specific
calculations on the contents of one or more cells A function takes a number of input
values known as arguments, and from them calculates a specific result The result is
said to be the value that the function returns

In Abacus you must supply the arguments in brackets after the name of the function
and if there is more than one argument, you must separate each with commas Most
of the functions provided return a numeric value, for example the function sum() This
takes, as an argument, a range reference and returns a numeric value equal to the sum
of the numeric values contained in all the cells within the range

Some functions, such as month() return a text value (month(1) for example returns
the text January') A few functions require no arguments, but you must still include the
brackets For example the function pi(} returns the numerical value of the mathematical
constant TT (approximately 314)

Two particularly useful functions are col{) and row() These return the number of the
column (or row) which intersect at the cell that contains the function They are used
extensively in the examples in the next chapter

For example, col() will return a value of 1 from column A 2 from column B, and so
on The function row(} simply returns the row number

As an example we can use the two functions month() and col() to label columns of
the grid The object will be to place the headings January February and so on at the
top of columns B to M We use the function col() to supply the number that month()
needs as its argument so that it gets a different value in every column Type in

row = month(co I O)

and then press ENTER Select the range from B to M when Abacus asks for the start
and end columns You will see that the result is not quite what we want in that, although
the labels start at column B, the first label is February and not January This is because,
in column B, col() returns the value 2 and month{2) is the text February All we have
to do is to alter the instruction so that 1 is subtracted from the value returned by col()
before calculating the month Type in

row = mont h (co I O -1)

{Don't forget to press ENTER to mark the end of the input) Select the column range
from B to M, as before

FOnMULAc A formula is usually used to relate the contents of one cell to the contents of one or
more of the other cells in the grid The idea of formulae is very important in the use
of Abacus as it allows you to describe even the most complicated calculations in a simple
way

You enter a formula into a cell using the same method employed for entering numbers,
that is, by moving the cursor to the cell, typing it and then pressing ENTER Abacus
assumes that anything it does not recognise as a number (starting with a numeric digit)
or a text value (starting with quotation marks) is a formula

Move the cursor to cell B3 and enter the number 100 move the cursor to cell C3 and
enter 200 Now move the cursor to cell D3 and type in the following formula

B3 + C3

When you press ENTER you will see two things happen First the value 300 will appear
in cell D3, the formulas result has been calculated by adding together the contents of
cell B3 and cell C3 and the total placed in cell D3 In addition you will see that the status
area at the bottom of the screen shows the formula used to calculate the value in this
cell A cell which contains a formula will always show the result of the calculation If you
position the cursor on the cell then Abacus will show the formula itself in the status area
at the bottom of the screen

14 12'04

Functions and Formulae

The rest of the examples using formulae make use of the labelling facility and the row
and col range identifiers They allow much more efficent methods of entering information
into the grid than the direct use of letter and number cell references

Note that any numeric formula that does not contain any cell references is not stored
as a formula In such a case Abacus calculates its value and stores the result as a pure
number For example 37 + 100/20 is stored as the value 42 and not as the original
formula

A SIMPLE CASH
FLOW EXAMPLE

Figure 41 Simple cash flow analysis

Start this example with a grid containing month headings in cells B1 to M1 If you have
anything else in the grid you should clear it with the Zap command

Now move the cursor to cell A2 enter the text 'Sales' and then put the value 1000 in
cell B2 Now move the cursor to cell C2 and type in the formula

row=sales.januarx*1.Q5

Accept the range selection given by Abacus (column C to column M) by pressing ENTER
twice Note that Abacus knows the end of the row is at column M because that is where
the previous row ended When you press ENTER a second time you will see a whole
series of values appearing in row 2, from column C onwards, and the formula B2 * 105
will appear in the status area at the bottom of the screen

If you move the cursor along row two you will see that the formula for each cell is slightly
different In each case the formula takes the contents of the cell on the immediate left
and multiplies it by 105 to obtain the value to place in the current cell For example
the formula in cell E2 refers to cell D2, and the formula in cell H2 refers to cell G2, and
so on

In Abacus all formulae work in this way unless you specify otherwise Each formula
remembers the relative positions of all cells to which it refers When such a formula is
used in more than one cell the references are adjusted to maintain a relative cell reference

It may prove helpful to point out that the initial value of 1000 placed in cell B2 was
necessary for two purposes to ensure that fhe label Sales' was recognised as a row
reference and also to specify the first value to be used by the formula

Now position the cursor at cell A3 and enter the text Costs Without moving the cursor
type in the formula

c o s t s = sa les * 0 .55 + 172

This formula calculates the cost from two components They can be regarded as
manufacturing costs {55% of sales) and fixed costs totalling £17200

Use the suggested start and end points of column B and column M Since the contents
of the row is defined in terms of the row reference Sales the label Costs' will also be
taken as a row reference, with the same range as Sales'

Again you should move the cursor along the row, examining the different formulae shown
at the bottom of the screen in order to understand how the results have been calculated

Finally, put the text 'Profit' in cell A4 and type in a further formula

p ro f i t = s a l e s - c o s t s

12'84 15

Functions and Formulae

with the same range selection as before (ie columns B to M) Abacus will do all the
rest of the work for you, producing a simple, but complete, example If you now change
the display to monetary format with the command

| F3 I U n i t s , C e l l s , M o n e t a r y , M i n u s s ign ,Range B2:MA

you should find that the first few columns appear as in Figure 41

AUTO-CALCULATION When you have typed in the simple cash flow application described in the previous
section try changing the number in cell B2 (SalesJanuary)

Move the cursor to this cell - the easiest method is to press F5 and then type in the
cell reference {either 62 or sal jan) followed by ENTER Now type in any number you
like When you press ENTER you will see that all the numbers in the grid will change1

All the formulae in the cells of the grid are recalculated automatically each time you
make an entry to a cell Since ail the formulae in this example refer, directly or indirectly,
to the value held in cell B2 all their values will change when you alter the contents of
this cell (Remember that we assumed that sales would increase by 5% per, month,
based on the January figure)

You can switch off the auto calculate facility by using the Design command This is useful,
for example, when you have many complicated formulae in the grid and do not want
to wait for a recalculation each time you change a single value.

Select the Design comand by pressing F3 and then the D key. The display changes
to show a list of the options, as shown in Figure 42. You can select any one of these
options by typing its first letter. Select the auto-calculate option by pressing A and the
auto-calculate state changes automatically You leave the command by pressing ENTER.

AUTO-CALCULATE on input YES

BLANK if zero__ NO

CALCULATION order row or column SOU

DISPLAY 80,64,40, columns (8,6,4) 64

FORM feed between pages YES

GAPS between Lines on printer 0

LINES per page of printer paper 66

MONETARY symbol (e.g. f,$) £

PRINTER paper width (characters) 80

Figure 4 2 The design command

If you now change the contents of cell B2 you will see that there is no change in the
contents of any of the other cells

You can also force a recalculation of all the formulae in the grid at any time by using
the Xecute command While you have the auto-calculate turned off, try using this
command Make sure that the command menu is displayed in the control area (press
F3) and then press the X key The values in the cells of the grid will be recalculated.

16 12/84

Functions and Formulae

Before you go any further you should restore the auto-calculate facility by using the Design
command again. Select the auto-calculate option by pressing the A key, as before, and
leave the command by pressing ENTER.

CHAPTER 5
THE

Cl AM IVI f LCw The following sections illustrate the use of Abacus by developing a number of examples
In addition to explaining the way a number of features work the examples have been
chosen to show some of Abacus's wide range of applications The best way to learn
about Abacus is to use it The examples have been written with this in mind

You are recommended to work through all the examples yourself, typing them in as
you go along Each contains some additional information as well as giving more practice
with the topics covered in earlier examples You may well be able to think of modifications
and improvements and they should give you ideas about how to construct applications
of your own

In all the examples in this chapter, text numbers and formulae are shown exactly as
you would type them in If a cell range is required, it will be given in brackets at the
end of the line In many cases the range you need will be the one that Abacus suggests
and you can select it simply by pressing ENTER In other cases you will have to type
in the range yourself If the cursor needs to be positioned on a particular cell its cell
reference is shown in square brackets at the beginning of the line - do not type in
any such cell reference For example the line

[A4] row=month (co I O-1) [columns B to MJ

should be read as

move the cursor to cell A4 and then type in
r o w = m o n t h (c o L () - 1)
If necessary modifying the range suggested by ABACUS to be from column B
to column M

Where you have to type in an explicit range reference, eg b3e15, it will be given in
that form

When commands are given in full they are shown exactly as they will appear on the
screen Remember that you only need to type in the first letter of each option the rest
is filled in by Abacus If you want to use the default option you should just press ENTER

Each example assumes that you start with a completely blank grid If necessary clear
the grid with the Zap command before starting to type in the example

CAoH FLOW This is a more complete version of the simple cash flow example of Chapter 4 When
jU|Anp| I iiup you have finished the grid it should look like Figure 51

The first two cell entries produce an underlined title for the grid

[C1] "CASH FLOW
[C2J rept<"=", L e n C c D)

The second entry uses the rept() function which needs two arguments The first is text,
or a reference to a cell which shows a text value and the second is numeric The function
produces that number of repetitions of the first character of the text In this case it
underlines the title with '=' signs, to the exact length of the title If you decide to change
the title there is no need to alter the formula in cell C2 since it uses the len() function
to read the length of the text in cell C1

[A4] row=month(co l () -1> (columns B to Mi
[A5] row=rept (" - " ,w id th (>+1> [columns A to MJ

These row entries produce month headings, and rule a line across the whole of the
used part of the grid The function width() gives the width in character spaces of each
column It can therefore be used to rule lines across a grid with columns of different
widths There is one extra character space separating each column of the grid, which
is why the additional +1 is needed

|A6] " S A L E S
[86] 4000
[C6| row=sal. jan*1.02 {columns C to Mj

18 12/84

rhnr.rt entries fill in the sales figures for the year, assuming that the January sales were
/10(Ki and that sales are increasing at 2% per month

A | 6 [C [D E
1 C A S H FLOW
, | =======

•>
'< January February March Apr i L

6 S A L E S 4000.00 4080.00 4161.60 4244.83
7 C O S T OF S A L E S 2750.00 2790.00 2830.80 2872.42
8

9 G R O S S PROFIT 1250.00 1290.00 1330.80 1372.42
10
11 E X P E N S E S
12 w a g e s 700.00 700.00 700.00 700.00
13 a d v e r t i s i n g 100.00 100.00 100.00 100.00
14 rent 200.00 200.00 200.00 200.00
15 e l e c t r i c i t y 50.00 50.00 50.00 50.00
16 deprec ia t i on 90.00 90.00 90.00 90.00
17

18 T O T A L EXPENSES 1140.00 1140.00 1140.00 1140.00
19
20 NET PROFIT 110.00 150.00 190.80 232.42
21 =:= = = = = = = = = = = = = = = -- = = = = =

-igure 5.1. The completed cash flow grid (first five columns)

[A7j "COST OF S A L E S
cos = sal*0. 5+750 [columns B to Ml

<The costs are assumed to be half of the selling price plus a fixed amount of £750.00.)

[A8] row=a5 [columns A to Mj
[A9] " G R O S S PROFIT

gro=sa L - C O S [columns B to Mj

This rules off the grid again and calculates the monthly gross profit figures.

[A11] "EXPENSES

[A12J "wages
row=70Q [columns B to Mj

[A13] "adver t i s ing
row=1QO {columns B to MJ

[A14J "rent
row=200 [columns B to MJ

[A15J "e lect r ic i ty
row = 50 [columns B to Mj

[A16] "depreciat ion
row=90 [columns B to M{

These entries fill in the expense figures, assuming them to be constant throughout the
year. You can, of course, change the expense headings and'amounts to suit yourself.
You can include more or fewer entries, as long as you make the necessary changes
to the cell references in the rest of the example. You may want to have different values
for each month, but it is faster to set up the table with fixed values and modify them later

[A17] row = a5 (columns A to MJ
[A18] " T O T A L E X P E N S E S

[B18] row = s u m (c o l) [rows 12 to 16, columns B to MJ
[A19] row=a5 [columns A to MJ

You now have the totals of the monthly expenses.

The sum{) function adds the contents of all the numeric cells in the range specified
as its argument. All empty cells, together with those containing text, are ignored. The
range could be given as an explicit range reference - B12:B16 for example. In this

(2 '84 19

Examples

case, however, each range is only a single column so we have used the range specifier
tot' All you need to do is to answer the range questions asked by Abacus, and just
press ENTER if the suggested range is what you want.

Note that this formula uses the range identifiers row and col in the two different ways
Firstly, row is used to indicate that the formula is to be placed in several cells of the
current row Secondly col is used to specify the range of cells over which the addition
should take place Both of the range identifiers need you to confirm (or change) their
beginning and end points In this case Abacus deals with the range for the sum() function
first

[A20] "NET PROFIT
net=gross-tot [columns B to M]
[A21] row= rept ("=", w i d t h O+1) [columns A to M]

The table is now complete, with the net profit figures calculated as the difference between
the gross profits and the total expenses All you have to do now is to ad|ust the appearance
of the table by using a few commands Remember to press F3 each time you want
to use a command

First we change the width of column a (note that the Grid command has its own menu
of options)

Gnd>Width , 15 FROM a TO a

Then we change the justification and numeric display format for a few cells

J u s t i f y , C e l l s , T e x t , R i g h t , R a n g e a4:m4
J u s t i f y , C e l l s , T e x t , R i g h t , R a n g e a12:a16
U n i t s , C e t I s , D e c i m a t , D e c i m a l p laces 2 ,Range Range a1:m21

We have chosen to display the figures in decimal format, with two decimal places If
you prefer the pound sign to appear you should replace the last command by

Units, C e L L s . M o n e t a r y , M i n u s s ign,Range a1:m21

It is very simple to alter any of the figures Suppose you want to increase the February
advertising figure All you have to do is press F5 (go to a cell) and type the cell reference

feb.adv

The cursor will move to that cell and you can type a new value

Remember that the sales figures were calculated by a formula which assumed a 2%
increase each month. If you change one of these cells to a numeric value you will destroy
the formula in that cell The formulae in the other cells of the row will, however, be
unchanged The amounts in the following cells will still increase by 2% per month, starting
from the new value

MULI IrLluAl IUIN This simple example may prove useful to a child who wants to learn the multiplication
TABLES ta^'es 't 'ets vou request a particular table and then displays it

When you have typed in the example you use it by forcing a recalculation of the grid
with the Xecute command, i e you type

Abacus then asks you to type in a number and displays the corresponding multiplication
table

The table in Figure 52 shows an example of the display it produces

First title the application as normal

B1] "MULTIPLICATION TABLES
[B2J rept("=", LentbD)

The next three lines give a heading to the table

[B3] "The
C3 asknO'Which m u l t i p l i c a t i o n table do you want")
D3 "times table

20 12/84

Examples

Here we have used the askn() function to request input, it allows you to choose which
table you want, by typing in a number

A B j C | D I E | F
1 MULTIPL ICATION T A B L E S
2 ==================

3 The 7 t imes tab le
4 1 * 7 = 7
5 2 + 7 = 1 4
6 3 * 7 = 21
7 4 * 7 = 28
8 5 * 7 = 35
9 6 * 7 = 42

10 7 * 7 = 49
11 8 * 7 = 56
12 9 * 7 = 63
1 3 1 0 * 7 = 7 0
1 4 1 1 * 7 = 7 7
15 12 * 7 = 84

Figure 52 A multiplication table

This function takes a text string as its argument and displays the text in the input line,
followed by a question mark It then waits for you to type in a number, ending with ENTER
The number that you type in will be displayed in the cell which contains askn(}

Note that askn() will not wait for input during a normal auto-calculation of the grid It
will only display the message and request input when first put the fomula into the cell,
or when you force a recalculation of the grid by using the Xecute command Once you
have input a value to the cell it will be retained until the next time you force a recalculation
with the Xecute command

The remaining grid entries use the column-filling facility to produce the body of the
multiplication table

[B4] col = s t r (rowO-3 ,2 ,0)+" *" (rows 4 to 15j

This is the most complicated formula of the example It is used to display the multiplier
in each row of the table The number is converted to a text string so that we can combine
it with the multiplication sign and display them both in a single cell

The str() function converts a number to the equivalent string of digits It takes three values,
the number to be converted, a code for the format (0 = decimal, 1 = exponential,
2 = integer, 3 = general) in which the number is to be displayed, and the number
of decimal places to be shown In this case the number is converted to integer format

In this case the value is obtained from the expression 'row()-3', whose value is 1 in
row four, 2 in row five, and so on up to 12 in row 15 The next value (2) selects display
as an integer (whole number) The third number normally specifies how many decimal
places are to be used Its value must always be given but is ignored for integers It has
been given a value of zero (any other value could have been used)

Finally the result is concatenated (the correct term for adding one text string to another)
with the string *, so that both the multiplier and the multiplication sign are displayed
in a single cell

[C4j coL=$c3 (rows 4 to 15]

Column C contains copies of the value typed in in answer to the askn{) function The
cell reference is preceded by a $ sign to make it an absolute cell reference When you
have entered the formula, move the cursor up and down the cells of column C and
look at their contents You will see that they all contain the cell reference $C3 The reference
has not been adjusted in each row An absolute cell reference always refers to one
particular cell, from any position in the grid. You can make any cell reference absolute
by adding a leading $ sign

[D4] col="=" (rows 4 to 15j
[E4] coL=$c3* (rowO-3) (rows 4 to 151

These last two cofumn entries are almost self-explanatory They are used to produce
the equals sign and the answer for each row of the table The last formula multiplies

'2SJ 21

Examples

the value from the askn() function in cell C3 (another absolute cell reference) by the
row()-3 expression which, as we saw earlier, gives a value of 1 in row four 2 in row
five, up to 12 in row fifteen

We now need to use a few commands to change the display of the table to a more
convenient form Use the following commands

J u s t i f y , C e l l s , T e x t , R i g h t , R a n g e b3:b15
J u s t i f y , C e l l s , T e x t , R i g h t , R a n g e d4:d15
J u s t i f y , C e I I s ,Numbers ,Cen t re ,Range c3
Gr id>U id th , 5 FROM b TO b
Gnd>Wid th , 3 FROM c TO c
Gnd>Wid th , 2 FROM d TO d
G r i d > W i d t h , 4 FROM e TO e

You use the table by forcing a recalculation of the grid with the Xecute command The
text of the askn() function will appear in the input line - and you should type in a number
between one and twelve

CHEQUt uUUK This example allows you to keep a check on your bank account You enter details of
RECONCILIATION your cnec?ues in tne spaces provided At the end of the month you add the details of
ni_^wiNWiuini \\jn your sa|ary stanc|ing orders etc You are then provided with a balance which you can

compare with your bank statements

The result with a few figures added, is shown in Figure 53

A j B | C

1 CHEQUE BOOK R E C O N C I L I A T I O N
2 ======================
3
4 Month January
5
6 Opening balance 200.00
7 Salary 527.35
8 Miscellaneous income 0.00
9
10 CREDIT 727.35
11 =====
12
13 Standing orders 130.00
14 | Charges 0.00
15 |
16 Cheques Date Cheque no. Amount
17 3/01/84 123456 50.00
18 j 10/01/84 123457 50.00
19 14/01/84 123458 32.21
20 17/01/84 123459 50.00
21 24/01/84 123460 50.00
22 31/01/84 123461 50.00
23 ---
24
25
26
27
28 DEBIT 412.21
29 =====
30 C l o s i n g ba lance 315.14
31 =====

Figure 53 Cheque book reconciliation

[B1] "CHEQUE BOOK R E C O N C I L I A T I O N
[B2] rept<"=", len(bD)

[C4] "Month
[D4] a s k t (" E n t e r month")

12'84

Examples

The askt() function works in the same way as askn(), but the expected input is text
instead of a number When you use Xecute Abacus will display the message in the
input line and then wait for you to type in some text. You should type in the name of
the month for your balance.

[A6] "Opening b a L a n c e
[A7] " S a L a r y
[A8] "Misce l laneous income
[C6] askn(a6+" for "+$d4)

The prompt string for askn() is constructed from the text of other cell entries, using both
relative and absolute cell references

We now use the Echo command to copy the formula from cell C6 into cells C7 and
C8 Instead of typing the range reference C7 C8, we can use the range identifier col

E c h o , c e l l c6 ,ove r range col (rows 7 to 8)

[B10] "CREDIT
|C10] s u m C c o l) [rows 6 to 8)

Cell C10 is used to contain the total of all credits for the month This cell is labelled,
its reference is "credit month"

The cell's contents are calculated using the sum() function which we met in the first
example in this chapter This function adds the numeric contents of all cells in the range
specified by its argument Remember that it ignores any cell in the range that is empty
or that contains text

In this case we have again used it as sum(col), which specifies that the cells to be summed
lie in the current column As normal, Abacus asks you to specify the exact range,
suggesting reasonable values based on your previous work

[C11] r ep t ("= " , Len (s t rCc red i t .mon th ,0 ,2)))

Cell C11 underlines the total, using the usual rept() and len() functions In this case,
however; we do not know in advance the number of characters to underline We therefore
have to convert the number to a string of characters with the str() function, assuming
that it is to be shown in decimal format with two decimal places. The length of this string
gives the correct number of characters to underline

[A13] "Standing orders
[A14] "Charges
[D13] askn(a13+" for "+$d4)
(D14J askn(aU+" for "+$o%)

These allow you to enter the monthly debits in response to prompts, using askn() in
the same way as described earlier

[A16] "Cheques
[816] "Date
[C16J "Cheque no
[D16J "Amount
[B17J row="~-" [columns B to Dj

These cells set up an area of the grid which you will later use to enter the details of
your cheques

[828] "DEBIT
[D28] sum (col) [rows 13 to 26)

This calculates the total of the debits. Remember that sum() only adds numeric values
in the cells of the specified range Cells containing text, and empty cells, are not included
The sum will therefore ignore all unused entries in the list of cheques, as well as the
table heading in column D

[A30] "C los ing balance
[C30] c redi t .month-deb i t .amount

The calculation of the closing balance completes the grid entries You should now use
the commands to tidy up the appearance of the application.

First we can use the Echo command to fill the rest of the cheque table and complete
the underlining of the totals This command makes copies of the contents of a single

12 84 23

Examples

cell into all the cells in a range The first of the following three uses, for example, copies
the contents of cell B17 into all the cells in a rectangle whose top left and bottom right
corners are B18 and D26 respectively

Echo,Cell b17,over range b18:d26
Echo,Celt c11,over range d29:d29
Echo,Celt c11,over range c31:c31

Next we need to set the numeric display to decimal, with two decimal places, for the
whole of the application, with integer format for the cheque numbers

U n i t s , C e L L s , D e c i m a l , D e c i m a l places 2,Range a1:d30
Units,CeLLs,Integer,Minus sign,Range c17:c26

We have already explained that empty cells do not exist as far as Abacus is concerned
and so a change of format will therefore only affect non-empty cells We can fill the cheque
table with ' — ' before making the change to ensure that these cells are changed to
decimal format An alternative method is to change the default format

Finally we can modify the justification of the text, including the underlining, to improve
the final appearance

Justify, CeL Is, Text, Right.Range b16:d26
Justify,CeLLs,Text,Right,Range c11
Justify,CeLLs,Text,Right,Range d29
Justify,CeLLs,Text,Right,Range c31

The part of the grid that is used is too large for it all to be visible in the window at once.
In order to see the final results, together with the values entered via the askt() and askn()
functions, you might like to use the split window facility The Window command splits
the window, either vertically or horizontally, into two windows, using the position of the
cursor to determine the position of the split

A vertical split is most suitable for this grid and you can set it up by moving the cursor
to the centre of the window and then using the command

W i n d o w , V e r t i c a l , S e p a r a t e L y

You can move the cursor from one window to the other by pressing F4 For this example
you should use the cursor to adjust the left hand window to show cell A1 at its top left
corner, and cell B15 at the top left corner of the right hand window

STANDARD This example calculates the mean and standard deviation of a set of numbers It makes
DFVI ATlflN use of the Iabellin9 facilities of Abacus so that the formulae used in the calculations are
UCV1MIIVIN most]y self-explanatory

A S B | c | D I E
1 S T A N D A R D D E V I A T I O N
2 ===============

3
4 Vatue Deviation Square of dev.
5 5.00 -4.50 20.25
6 6.00 -3.50 12,25
7 7.00 -2.50 6.25
8 8.00 -1.50 2.25
9 9.00 -0.50 0,25
10 10.00 0.50 0.25
11 11.00 1.50 2.25
12 12.00 2.50 6.25
13 13.00 3.50 12.25
14 14.00 4.50 20.25
15
16 Mean 9.50 Variance 8.25
17 Std. Dev. 2.87
18

Figure 54 Standard deviation calculation

In addition it uses a grid layout which requires calculation in column order, rather than
the normal row order.

24 12/84

Examples

In general, a formula should only refer to cells that are in the region above and to the
left of the cell containing the formula, including the row and column containing the formula

If you do not follow this rule as in this example it is likely that the results may be incorrect
In most cases you can obtain a correct result by forcing a recalculation of the grid with
the Xecute command or as in this case calculating the grid in column order

[B1] " S T A N D A R D D E V I A T I O N
[B2] rept("=", Len(bD)
|B4j "Value
[C4] "Dev ia t ion
[D4J "Square of dev.
[B5J c o t = r o w () {rows 5 to 14]

This last formula inserts a set of dummy values in the cells of column 8 for testing the
application When the grid entries are complete you can replace them with other values
The table described in this example will only hold ten values - you can change this
to cope with more if you want

[A16] "Mean
[B16] a v e (v a l u e) [rows 5 to 14j

devi at ion=va lue-$mean. va Lue [rows 5 to 14j
square=dev*dev (rows 5 to 14]

[C16] "Va r i ance
[D16J ave(square) (rows 5 to 14]

These formulae show that the variance of a set of numbers is defined as the average
of the squares of the deviations from the mean

[C17] "Std. Dev.
[D17] sqr(van ance) (columns D to D]

and that the standard deviation can be calculated as the square root of the variance

[D18] rept (" - " , i .en<st r (s td .sq,3 ,0)) :>

The numbers in this example are left in general format so that it can handle any range
of values The underlining uses the length of the text string corresponding to the number
in the cell above (with cell reference 'std sq) expressed in general format

You can improve the appearance of the display by changing to centre justification for
the text in the range B4 D4, and using left justified numbers in the range B16 D17

If you try using this example by putting different values in the cells of column B, you
will find that it does not give the correct answers The reason is that the recalculation
of the grid is performed row by row, from the top downwards Any alteration you make
wiil therefore be worked out on the basis of an incorrect mean value (since the new
mean will not be calculated until after the deviations from the mean) The solution is
to make the recalculation of the grid be in column order; from left to right You do this
with the Design command

Use the C' option to change the column order and leave the command by pressing
ENTER, as indicated in the control area When you next change a value in column
B the calculation will be correct, since the new mean is now calculated before the
deviations Although this ability to change the order of calculation is very useful, you
should not get into the habit of using it too often - calculating in column order is much
slower than row order

If you save a grid to a Microdrive file, the current settings of all the Design options are
saved with it and they are used whenever you reload the file

This example will allow you to plan your household expenditure over the year You can A rlUUbbnULU
enter your estimated expenditure under a number of headings for each quarter You pi inppj
are then provided with quarterly totals your expenditure for the whole year and the DULJUt I
averaged monthly cost

Do not type any numbers into the table until you have completed it This allows you
to change the form of numeric display, with the Defaults option of the Units command
as described later

12/84 25

| A | B |C| D |E| F |G| H |I| J |X

1 HOUSEHOLD BUDGET
2

3
4
5 ! i ESTIMATED EXPENDITURE !
6 i Item i Jan-Mar i Apr-Jun i Jul-Sep ! Oct-Dec >
7
8 !Mortgate|Rent ! 400.00 ! 400.00 i 400.00 400.00 i
9 i Rates ! ! 450.00 ! '
10 !Gas ! 150.00 ! 80.00 ! 60.00 150.00 i
11 'Electricity ' 40.00 ' 30.00 ! 30.00 40.00 i
12 (Water rates ! ! 35.00 • 35.00 i
13 (Telephone ! 150.00 ' 150.00 ! 150.00 150.00 i
14 i Insurance i ! ! '
15 (C l o t h i n g i i i \
16 'Hire-purchase (' ' • < !
17 ! Car tax ! ' i !
18 I P e t r o l ! ' ! !
19 !TV Licence ' ! i '
20 ! Savings ! ! ! !
21
22 Quarterly tots ! 740.00 ' 1145.00 ' 640.00 ' 775.00 !
23
24 |
25 j Yearly Monthly
26 |
27 | Payments £3300.00 £275.00
28 | ==================

Figure 55 Home budget example

[D1] "HOUSEHOLD BUDGET
[D2J rept("=",len(dm

Now we can set up the structure of the table with its ruled divisions.

[A4] row=rept (" - " ,w id th()+1) [columns A to KJ
[A5j col = "!" [rows 5 to 20j

The following commands complete the table structure.

Grid>Width, 16 FROM b TO b
Grid>Width, 8 FROM d TO j
Grid>Uidth, 1 FROM a TO a
Grid>Uidth, 1 FROM c TO c
Grid>Width, 1 FROM e TO e
Grid>Width, 1 FROM g TO g
Grid>Width, 1 FROM i TO i
Grid>Width, 1 FROM k TO k

Echo,Cell a5,over range c5:c22
Echo,Cell a5,over range e6:e22
Echo,Cell a5,over range g6:g22
Echo,Cell a5,over range i6:i22
Echo,Cell aS.over range k5:k22
Echo,Celt a4,over range b7:j7
Echo,Cell a4,over range b21:k21
Echo,Cell a4,over range c23:k23

[A7] "!-
[F5] "ESTIMATED EXPENDITURE
[B6] " I t e m
[D6] "Jan-Mar
[F6] "Apr-Jun
[H6j "Jul-Sep
[J6] "Oct-Dec

12/84

Examples

[B8| "Mortgage/Rent
[B9J "Ra tes
[B10J "Gas
[811] " E l e c t r i c i t y
JB12] " W a t e r ra tes
[B13J "Te lephone
[B14] "Insurance
[B15] "Clo th ing
[B16] "H i re -pu rchase
[B17| "Car tax
[B18J "Petrol
[B19J "TV Li cence
JB20J "Sav ings

[B22] "Quar te r ly to ts

JD22! s u m (c o l) [rows 8 to 20j
[F22J sum C c o I) jrows 8 to 20j
[H22J s u m < c o l) (rows 8 to 20j
[J22J sum (co t) (rows 8 to 20)

[D25J " Y e a r l y
[F25] "Monthly
[B27] "Payments

[D27] s u m (d 2 2 : j 2 2)
[F27] yea r .pay /12
[D28J r e p t (" = " , l e n C s t r (y e a r . p a y , 0 , 2)) + 1)
[F28] d28

Note that the underlining of the two final figures assumes a monetary format. The length
of the underlining is for a number in decimal format, with two decimal places, plus one
(for the currency symbol)

You also should use a few more commands, to justify text right in the range B22,'B27
(quarterly tots and payments) and to justify numbers left over the cells containing the
yearly and monthly payments.

You must also modify the numeric display format Since many of the cells are still empty,
simply changing the format will have no effect You must change the default format of
the cells to make the effect permanent

The following command will change the display default to monetary units over the whole
of the budget application.

Units,Defaults,Monetary,Minus sign

The display of Figure 55 uses decimal format, with two decimal places, except for the
yearly and monthly payments, which are in monetary format The appropriate commands
are

Urn ts,Defaults.Decimal,Decimal places 2
Units,CelIs,Monetary , Minus sign,Range d27:f27

This last command can use the Cells option since the cells concerned already exist

You can enter values in this table by moving the cursor to the appropriate cell and typing
in the number. The easiest way of moving the cursor is to press F5 (Go to cell) and
then use a cell label, such as

ap r .gas

The chart displays twelve values, labelled by month The values are read from twelve AN AUTO'SCALING
cells above the chart The vertical scale is ad|usted automatically to make sure that all RAD PWART
values will fit the display. It is only suited to displaying positive values Dnn V^nnn I

First you should set the column widths to five in column A, one in column B and three
in columns C to N, using the Width option of the Grid command

[C2J row=0 [columns C to N]

1234 2!

A J B C | D | E | F | G | H | I | J | K | L | M | N
1
2 3 4 3 2 3 4 3 4 1 2 3 2
3 S C A L E D BAR G R A P H
4 5
5 4.5

6 4 *** *** ***
7 3.5 *** *** ***

8 3 *** *** •*** *** *** ***• ***
9 2.5 *** * + * *** *** *** *** *** ***

10 2 *** *** *** *** *** *** *** *** *** *** ***

11 1,5 *** *** *** *** *** *** *** *** *** *** ***
12 1 *** *** *** *** *** *** *** *** *** *** *** ***

13 0.5 *** *** *** *** *** **•* *** *** *** *** *** ***
-]4 "Q

15 Jan Feb Mar Apr May Jun Jut Aug Sep Oct Nov Dec

Figure 56 A scaled bar chart

Row two will contain the values to be displayed - initially filled with dummy dots

[F3J " S C A L E D BAR GRAPH

[P2] i n t (m a x (c 2 : n 2) / 5 + 1) * 5
[Q2] i n t (i 7 i i n t c2 :n2> /5) *5

Cells P2 and Q2 contain the maximum and minimum values for the vertical scale of
the graph These ceils are chosen so that they do not appear in the final display of
the chart Their initial values are five and zero respectively

The max() function finds the maximum, or largest, numerical value in the range of cells
specified by its argument Similarly the mm() function finds the minimum or smallest,
value in the range

Let us first examine the formula in cell Q2 The mm{) function finds the minimum, or
smallest, value in the specified range which is then divided by five The int() function
then removes the fractional part of the result of the division If, for example, the minimum
value is 13, dividing by 5 gives a value 26, and int(2.6) is 2 When this is multiplied
by 5 we end up with a value of 10, which is the largest multiple of 5 that is less than
the minimum

The formula in cell P2 is similar except that it finds the largest value in the range and
adds 1 to the number before the final multiplication by 5 If as an example, we assume
that the maximum value is 21 you can verify that the formula will give a value of 25
- the smallest multiple of 5 that is greater than the maximum

The two values in these cells will therefore always bracket the values in the cells from
C2 to N2 Their difference is always a multiple of five

The next formula displays the vertical scale of the graph tn column A

[A4] coL=$q2+(U-rowO)*<$p2-$q2) /10 (rows 4 to 14}

The interval between successive numbers in the scale is (P2 -Q2) /10 Note that we
made the difference between the contents of P2 and Q2 a multiple of five so that this
interval always has a simple value

This interval is multiplied by a number (14-row{)) which starts at zero in row fourteen
and increases by steps of one to a value of ten in row four The result is added to the
smallest value, from cell Q2 to produce the number for each cell

The net result is that the value in cell Q2 is displayed in A14 the value from P2 is displayed
in A4 and the intervening cells contain a set of equally spaced values between these
two limits

[B4] coL='"" [rows 4 to 14J
[814) row=rep t<" - " ,w id thO+1> (columns B to Nj
[C15] row=month (co lO-2) < to 3) [columns C to Nj

These draw the axes for the chart and add the horizontal axis labels, using the months
of the year Note that we have used the string slicing operator, similar to that of SuperBASIC,
to display only the first three characters of each month

28 12/84

Examples

fC4] i f (indexCI , r o w O) > i ndex (co l C), 2) ,"","***")

This is the formula that does all the work of producing the bars themselves It must be
copied into every celt in the display area

Echo,Cell cA,over range c4:n13

The formula itself needs some explanation It uses the i f f } function to decide whether
to display part of a bar The if() function takes three arguments The first is an expression
which must give a numeric result If this result is non zero the cell displays the second
argument which may be text or numeric If however, the result is zero the third argument
is displayed in the cell Again this may be text or numeric

In each cell the formula compares the number in column one of that row (the value
labelling the vertical axis) with the number in row two of that column (the value to be
displayed in the graph) If the axis label is greater than the display value the condition
is true (it evaluates to 1) and nothing is displayed If the axis label is less than or equal
to the display value the condition results in a value of zero, and three asterisks are shown
in the cell The net result is that a bar is drawn to the correct height in each column

Since a single formula is used for all the cells in the display the cell reference can be
neither absolute nor relative The reference to the display values must change as we
move from column to column (ie it must be relative along a column) but must always
refer to row two as we move down from row to row We need a form of cell reference
which is relative with respect to columns but absolute with respect to rows

Fortunately the mdex() function can be used to produce this effect It takes two
parameters, a column number and then a row number returning the contents of the
specified cell With this we can construct any combination of absolute and relative
references For example

Function Column Ref Row Ref.

index(5,5) absolute absolute
mdex(col(),5) relative absolute
index(5,row()) absolute relative
index(col(),row()) relative relative

The function mdex(col(),2) therefore returns the contents of the cell in row two of the
current column and index(1,row()) returns the contents of the cell in column one (A)
of the current row

Try putting different values in cells C2 to N2 and see what effect they have on the display

This example enables you to calculate the monthly payments due on a repayment MUnluAut
mortgage You are asked to type in the amount of the loan, the interest rate, the length p/u pi jl ATHD
of the loan in years and the month of the first payment The required repayments are wnLwULnlUn
calculated and displayed, together with a complete repayment table for the whole period
of the loan This table shows you the outstanding sum at the beginning of each month
until the loan is repaid

Several of the calculations in the grid make use of values that are input by use of the
askn() function

In this section we shall produce the part of the grid that accepts your input and calculates Mortgage Repayment
the monthly repayments When you have typed in the formulae and added a few figures Calculations
in response to the askn() functions it should look like Figure 57

[C1J "MORTGAGE REPAYMENT C A L C U L A T O R
[C2] rept("=", len(cD)

[B4] "Loan
[C4] askn("Amount of loan")

The next three entries request the input of the interest rate The original input is to a
cell (H4) well away from the displayed portion of the grid so that you do not normally
see it You type in a percentage value, eg you type 12 to mean 12% The value needed
by the rest of the formulae is a fractional value (eg 12% must be converted to 012)
and this is calculated from the input value by the formula in cell C5

12/84 29

Figure 57 Calculating the repayments

[H4j a s k n O ' P e r c e n t a g e in terest rate")
[B5 "Int rate
[C5] h4/100

[B6] "Term
[C6] asknC'Period of loan in years [maximum 35]")

E5] "Mnth
D6] "Start
E6] asknC'Month of first payment [Jan=1, Feb=2, etc]")
[E7] ' (' + month <e6) + ")"

In this last formula we enclose the literal text with single quotation marks If the first
character had been a double quote, Abacus would have interpreted the following
characters as text input, rather than a formula

[D8] "REPAYMENTS

[D9j rept (" - " , len(d8)>
[C10] "Annual
[D10] m o r . l o a n * m o r . i n t / (1 - (1 + m o r . i n t) A (- m o r , t e r n >))

This formula, which calculates the annual repayment, assumes that the interest is
calculated annually and added to the loan before the twelve monthly repayments are
made

[C11] "Monthly
[D11J ann.rep/12
[D12] d9

The grid is now sufficiently complete to calculate mortgage repayments Try using the
Xecute command and enter the figures requested, so that you can see it working

To make the example look better we can change the format of some of the numbers
with the Units command In this example there is no need to alter the default numeric
format since you do not need to make new entries in any grid cell once the application
is completed

Units, CeI Is,Percentage,Decima I places 2, Range c5
Units,CelIs,Monetary,Minus sign,Range c4
Units, Cells,Monetary,Minus sign,Range d10:d11

In addition it improves the appearance if we move the numbers in rows 4, 5 and 6 to
the left hand side of the ceils-

Justify.CeLLs,Numbers,Left,Range c4:e6

Mortgage Repayment This section describes how you can add a repayment table to the mortgage calculator.
Table The ^Irst Part: °f a repayment table for the values appearing in Figure 57 is illustrated

in Figure 5.8

30 12'84

1 A | B | C | D | E
1 | M O R T G A G E R E P A Y M E N T C A L C U L A T O R
2 i _ _ _|

3 1
4 | Loan £25,000.00
5 I Int r a t e 14.00% Mnth
6 [T e r m 25 S ta r t 4
7 | (Apr i I)
8 R E P A Y M E N T S
9

10 Annual £3637.46
11 Mon th l y £303.12
12

A 1 B i c I D I E
15 REPAYMENT TABLE
16
17
18 Year 1 2 3
!9
20 A p r i l 28500.00 28343.30 28164.65
21 May 28196.88 28040.17 27861.53
22 June 27893.76 27737.05 27558.41
23 July 27590.63 27433.93 27255.29
24 August 27287.51 27130.81 26952.17
25 September 26984.39 26827.69 26649.04
26 October 26681.27 26524.57 26345.92
27 November 26378.15 26221.44 26042.80
28 December 26075.03 25918.32 25739.68
29 January 25771.90 25615.20 25436.56
30 February 25468.78 25312.08 25133.44
31 March 25165.66 25008.96 24830.31
32
33 Year 1 2 3
34
35 End-of-year balance 24862.54 24705.84 24527.19

Figure 58 The repayment lable

if you have a mortgage, type in your own figures. Don't spend too much time over the
results for the first few years - they make rather depressing reading!

[C15] "REPAYMENT TABLE
[C16] rept(" = ", L e n (c 1 5))
[B18 "Year
[C18 row=co lO-2 (columns C to AKj
[B19J row=rept (" - " ,w id th()+1) [columns B to AK)
[B20] co l=mon th (row() -20+$mnth . s ta r t) (rows 20 to 31)

These entries set up the headers for the table' now we must add the formulae that will
calculate the values. We start with the first item which is the initial amount due. It is
calculated by adding the first year's interest to the amount of the loan.

[C20] mor. loan*(1+mor . int)

Then the rest of the first row is calculated by subtracting the yearly payment and adding
the interest for the current year These values should not be calculated beyond the year
in which the loan is repaid and we allow for this by using the if() function. If the year
number (given by col{)-2) is greater than the term of the mortgage, zero is placed
in the cell.

[D20J
row=i f «co l () - 2)>$mor . t e rm ,Q , (c20-$ann. rep) *(1+$mor . int))

[columns D to AKj

The remainder of the table can be filled with a single formula. We fill the first cell with
a formula which just subtracts the monthly repayment from the amount in the cell above.
Again we use the if() function to prevent the calculations extending beyond the year
in which the loan is repaid.

[C21] i f ((c o t () -2)>$mo' r . te rm,0 ,c2Q-$mon. rep)

You can then use the Echo command to copy the formula from cell C21 to the range
C21:AK31.

E c h o , C e l l c21 ,ove r range c21:ak31

We can now complete the table by adding a final row to give the outstanding balance
at the end of each year. It is probably a good idea to add a copy of the year, from row
18, for easy reference.

[B33] row=year . t e rm [colurnns B to AK]
[A35] "End-of-year ba lance
[C35] row = i f ((co l () -2)>$mor . t e rm,0 ,c31 -$mon . rep)

[columns C to AKj

12/84 31

Exarnptes

The entire table, ancf the end-of-year balances should be set to either monetary
format or to decimal format with two places of decimals The ranges for these
changes are C20 AK31 and C35 AK35

rUUnltn AINnLYOlO The French scientist Fourier showed that a repetitive wave of any shape can be built
up from a set of sine or cosine waves of the correct amplitudes and frequencies The
building up of complex waves from pure sine and cosine waves is known as Fourier
synthesis and is employed, for example, in many of the music synthesisers tn use today

The opposite process decomposing a complex wave shape into a number of pure sine
and cosine waves is known as Fourier analysts This example allows you to perform
a Fourier analysis of any shape of wave All you have to do is type in the height of the
wave at sixteen equally spaced intervals and let the formulae in the grid do the rest
The formulae assume that the wave repeats its shape after the sixteenth value, i e that
the seventeenth value is the same as the first, the eighteenth is the same as the second
and so on

Calculating the Since the calculation takes an appreciable time it is worth turning off the auto-calculate,
Fourier Transform by use of the Design command, before typing in the example

[C1] "FOURIER A N A L Y S I S
[C2] rep t ("= " , ten (c l))

B3] "Funct ion:
A7] "Input
A8J "Values

The Cosine The input values are placed in the sixteen cells from B9 to B24 inclusive
Components , ,, r n n ,

col = rowO-9 [rows 9 to 24]

We shall now set up the headings for the table which will calculate the cosine components
of the wave The result contains the amounts of all cosine like waves in the input

E3] "Transform:
E4] "Cos ine
D6) " C y c l e s
row=co lO-5 [columns E to T]
[D8] "Sample

Surprisingly the entire cosine transformation can be performed by a single
formula In each row the input vaiue is multiplied by the cosine of an angle (in radians)
which is calculated as follows

angle = 2 * pi() * rownumber * colnumber / 16

The row number and column number are the values given in the raw labelled Cycle'
and the column labelled 'Sample respectively They each count up from zero to fifteen
The final divisor is simply the number of points in the input (or output)

[E9] i ndex (2 , rowO) *cos (p i O * C r o w O - 9) * (c o l () -5) /8)

Now use the Echo command to copy the contents of cell E9 to the cells in the range
from E10 to T24

The final result is calculated by summing the contents of each column to produce the
sixteen output values

[A26J "Components
[E26] row=sum(col) [rows 9 to 24, columns E to T]

The Sine Components The calculation of the sine components follows exactly the same pattern as for the cosine
ones The resulting values are the amounts of all sine-like waves in the input

[X4J "Sine
[X6] r o w = c o l (> - 2 4 [columns X to AM)
[X9] index(2 , r o w O) * s i n < p i O * (r o w O - 9 > * (c o l O-24) /8)

[columns X to AM)

32 12/64

Examples

Now Echo the contents of cell X9 over the range from X10 to AM24, to fill in the rest
of the table, and Echo the contents of cell C9 to column V from V9 to V24 (this makes
a copy of the Sample' values)

[X26] row=sum(coU (rows 9 to 24, columns X to AMj

Any input wave that is not a pure sine or pure cosine wave will generally produce The Power Spectrum
components in both the sine and cosine transforms Furthermore, when you calculate
the transform of many types of wave, some of the components will turn out to be negative
In order to obtain results which combine both transforms, and are never negative, we
shall make one more calculation This will add the squares of the sine and cosine
components In the case of a real wave this result shows how much power (energy per
second) is present in the wave at each frequency, irrespective of whether it is in the
sine or the cosine components It is usually called the power spectrum (a spectrum
records how much of each frequency is present) In this case we shall calculate the
square root of the power spectrum, to avoid having too large a range of values for the
simple graphical display we are using

[C28] "Power
[E28] row=sqr(cos.comp*cos.comp + sin.comp*sin.comp)

[columns E to T)

The results of this calculation can be made clearer by presenting them in graphical form Graphical Display of
If you would like high-quality graphs the best way is for you to use the Export command the Fourier Transform
to create files that can be read by Easei, containing the input and output values of the
calculation The following additions to the grid will allow you to see very simple graphical
results

A I B I c I D
31 max = 10.00 80.00=max
32 mi n = -10. 00 0.00 = min
33 * *
34 * *
35 * *
36 * *
37 * *
38 * *
39 . .* *
40 * *
41 *
42 *
43 . . *
44 *
45 *
46 *
47 *
48 *

INPUT POWER SPECTRUM

Figure 59 Simple graphical output

The output graphs are only half the size of the input graph, since the highest detectable
frequency is numerically equal to half the number of input points. All the information
is present in the first half of the results

The first part produces a bar graph of the input values

[A30] "Graph
[A31 "max =
[B31 m a x (c o L) (rows 9 to 24j
[A32] "min=
[B32] m i n < c o l) (rows 9 to 24J
JA33] c o L = r e p t (" . " , C f u n c . m a x - $ f u n c . m i n)

18/($func.max-$func.min-H))+"" [rows 33 to 48]

12'84 33

Examples

The second set of entries graphs the power spectrum

D31 "= max
C31 r n a x C e 2 8 : t 2 8)

[D32 "= nsin
[C32 0
[C33J c o l = r e p t (" . " , (i n d e x (r o w () - 2 8 , 2 8) - S p o w . m i n)

18/ ($poH.max-$pow.min+1)}+"" (rows 33 to 40]

The next set of entries graphs the cosine components

[F31] "= max
[E31J m a x < e 2 6 : t 2 6 >
[F32] "= min
[E32] m in (e26 : t26)
[E33] col=rept (".", (index (rowO-28 ,26) -$cos .mi n)

* 1 8 / ($ c o s . m a x - $ c o s . m i n + 1))+"*" (rows 33 to 40j

The final set of entries gives a graph of the sine components

[Y31J "= max
[X31J m a x (x 2 6 : a m 2 6)
[Y32] "= min
[X32 min(x26:am26)
[X33 col = rep t (" . " ,< index (rowO-9 ,26) -$s in .m in)

18/ ($s in .max-$s in .min-H))+"" (rows 33 to 40]

Using the As was mentioned earlier you should put the input values in cells 89 to B24 inclusive
Fourier Transform You may try any set of values you like, but here are a few suggestions.

[B9] to l=10*cos(pi O* (rowO-9> /8) [rows 9 to 24}
[B9] c o L = 1 0 * c o s C p i O * C r o w O - 9) / 4) (rows 9 to 24j
[B9] c o l = 1 0 * s i n < p i (> * (r o w (> - 9) / 8) [rows 9 to 24]
[B9] c o L = 10*sgn (cos (p iO*< rowO-9> /8» [rows 9 to 24J
[B9] c o L = 10 (rows 9 to 24)

Remember that, since the auto-calculate is turned off, you must use Xecute to calculate
each result

A further advantage of including lots of labels is that you can move the window to most
of the interesting points in the grid by using the goto (F5) facility, followed by a cell
reference in its label form.

34 12'84

CHAPTER 6
QL ABACUS
REFERENCE
THE FUNCTION

In addition to the standard use of F1, F2 and F3, function keys 4 and 5 are used as follows Kb TO

F4 move cursor between the two halves of a split window
F5 Go to a cell

You can refer to single cells rows columns or ranges either by using explicit letter and dhLL HhrbHcNLto
number references or by using text labels

A reference to a single cell consists of two parts a column and a row reference SinglG Cells

There are 64 columns in the grid and they are labelled from A to BL There are 255
rows, numbered from 1 to 255 Typical cell references are

A1 AC13 BD200

A range reference is made up of two cell references, separated by a colon You must Range References
always type in the colon to separate the two parts of the reference The first cell reference
specifies the top left hand corner of the block and the second one identifies the bottom
right hand corner Examples of range references are

B5:D9
AZ23:BA155

A part of a row or column can be considered as a range that is only one column wide Row and Column
(or one row deep) You can therefore use a range reference to specify part of a row References
or column, such as

A3: L3 [cells A to L of row 3)
D7: D L L [cells 7 to 11 of column Dj

There are two range identifiers row and col They refer to the cells of the current row Range Identifiers
or the current column respectively (those that intersect at the cell containing the range
identifier)

Each time you use one of them in a formula you will be asked to specify the exact range
of cells within the row or column Abacus will suggest reasonable starting and ending
points for the range and you can either accept this choice or change it

There are two ways in which you can use range identifiers You can fill the current row
or column by use of either

row = (formula) or col = (formula)

You can also use them as the argument for any function that requires a range, for example
count(row) You can, of course, only use them in this way when you just want to refer
to the cells of a single row or column

You can mix the two methods freely, for example,

col = ave(row)

Each occurrence in a formula will result in Abacus asking you for a particular range

Abacus normally assumes that all cell references are relative, i e, that the important thing Relative and Absolute
is the difference in position between the cell containing the reference and the cell to Cell References
which you refer When you copy such a reference into another cell, the references are
modified to keep this relative difference For example, imagine that a formula in cell B2
contains a reference to ceil A1 {one column to the left and one row above) If the formula
in cell B2 is copied into cell D4 it will, in this new location, refer to cell C3 (again one
column to the left and one row above)

This is illustrated in Figure 61 A formula in cell X contains a reference to the lightly shaded
cell If this formula is copied to cell Y it then refers to the heavily shaded cell The two
cells in each pair have the same relative positions

12/84 35

Figure 6.1 Relative cell references Figure 6 2 Absolute cell references

Suppose we put the formula A1*2 into cell A2, and then use the Echo command to
copy the formula into cells in the range B2:G2. Examining the cells of row 2 will show
that they have the following contents:

Cell: A2 82 C2 D2 E2 F2 G2
Contents: A1*2 B1*2 C1"2 D1*2 E1*2 F1*2 G1*2

You can make any cell reference absolute by prefacing it with a $ sign Such a reference
will not be modified when the formula ts copied to other cells. For example, if a reference
in cell 82 was to $A1, any copy of the formula will also contain the reference $A1 You
can also use labels to give an absolute cell reference (e.g. $march.costs).

Figure 6.2 shows the effect of an absolute cell reference A formula in cell X contains
an absolute reference to the shaded cell. A copy of the formula in cell Y refers to the
same cell.

Let us try the previous example, but this time we shall use an absolute reference. Put
the formula $A1*2 in cell A2 and Echo it to cells 82 to G2 inclusive. You will then find
that the cells contain the following:

Cell- A2 B2 C2 D2 E2 F2 G2
Contents: $A1*2 $A1*2 $A1*2 SA1*2 $41*2 $A1*2 $A1*2

See also the indexf) function

Cell ranges, in any form (including the range identifiers, row and col) are always relative

LABELS
Row and Column A label is a cell containing text The text must only include letters and digits. Any such

Labels cell can be used to identify a row or column in the grid. You can also use labels to
refer to a single cell, but you may not use them to replace a range reference or to refer
to a whole block of cells.

Whenever you refer to a labef in an expression or formula, Abacus uses a set of rules
to determine whether it refers to a row, a column or a cell The rules for rows and columns
are:

1 The row and column intersecting at the label are scanned (to the right and below)
to find the numeric entry.

a) if only a row entry is found, the label refers to the row, starting at the found
entry

b) If only a column entry is found, the label refers to the column, starting at
the found entry

c) (f entries are found in both the row and the column, the entry closest to the
labelled cell is used to make the choice.

2 If no decision can be made under 1), but the label is used on the left hand side
of an expression, it will be given the type of any label{s) used on the right hand
side. For example, if "Costs" is a row label:

36 12/84

Reference

Sa les = Cos ts * 0.5

then "Sales" will also be a row label

If both of these rules fail you are told that Abacus cannot decide the meaning
of the label

You need to use two labels to identify a single cell and you make the cell reference Cell Labels
by giving both labels, separated by a full stop For example, tf you have two labels 'fruit"
and "apples" you can refer to a cell as

frui t.app tes

(or by any unique abbreviation, such as frap) The order of the two labels is unimportant
so you could also use apples fruit, apfr and so on

Such a reference refers to the cell at the intersection of the row s and columns containing
the labels but, as Figure 63 shows, there are two such cells (labelled X and Y)

The cell that is selected is the one in the right-most column and the lower of the two
rows In the previous example, the cell labelled Y will be selected You should, therefore,
always place labels above or to the left of the cells to which they refer

A formula is any allowed combination of functions, cell references, labels and arithmetic HJnMULAb
operators Examples are

A1*B3

month (co l O-1)
i f C i n s t r (B 6 , " i s ") , 1 , 0)
rept<"=", l en (G23)>+" : "

Each new formula, in addition to being used in one or more grid cells, is stored separately Master Formulae
m a list of master formulae Each master formula may therefore appear in one ceil or
in many When you fill celfs by use of the row and column fill operations or by using
the Copy or Echo commands, all the filled cells share a single master formula If a master
formula contains relative cell references they are adjusted, in each cell using the formula,
to be valid for that particular location The formulae may therefore appear superficially
different but are all based on the one master formula

You can modify all copies of the formula by editing only one of the copies If you use
the Amend command to change any copy of a master formula, the master is also
modified and all copies are changed simultaneously

This section contains a full description of all the commands available in Abacus I HL lAJMMANUo

This command allows you to change the contents of a cell The contents of the cell AMEND (A)
containing the cursor are copied to the input line, ready for editing with the line editor
described in the Introduction to the QL Programs When you press ENTER the edited
version replaces the original cell contents

12/84 37

Reference

COPY (C) You use this command to copy a range of cells from one area of the grid to a simiiar
range in another place Abacus first asks you to give the range reference of the cells
to be copied eg A1 B3 and you should then press ENTER Abacus next asks you
to specify the cell reference for the top left hand corner of the area to which the range
of cells is to be copied When you then press ENTER the range will be copied to the
new location

DESIGN (D) You use the Design command to modify a number of the features of Abacus that affect
the appearance of the whole grid such as whether the display should be set for a
domestic television or a monitor The choices remain in force until you modify them again
or until you leave Abacus When you save an application these choices (except for the
Display option) are saved with it so that they are used every time you load the application

Changing the defaults however, does not affect Abacus itself You must set them to the
values you want each time you load Abacus from SuperBASlC

When you have finished you return to the main display by pressing ENTER The options
are

Auto-calculate on input
used to specify auto-calculate or no auto-calculate Each time you press the A key the
auto calculate option switches between YES and NO

If you choose YES, the whole spreadsheet will be recalculated after each entry Selecting
NO however means that the spreadsheet will only be recalculated when you use the
Xecute command The initial value is YES

Blank if zero
switches between two ways of treating zero values in the grid The original option is to
display the value zero in the appropriate format for that cell You may select the alternative
which is to display a blank cell if its contents evaluate to zero

Note that in this option, a blank cell will only be shown if the value is truly zero Suppose
you have selected decimal display format, with two decimal places, and the value in
such a cell is 0003 The cell will show 000 rather than being blank since the true value
is non zero

Calculation order
selects between calculating the spreadsheet in ROW or COLumn order The option
changes each time you press the C key (as for auto-calculate) The specified order will
be used for both auto-calculate and the Xecute command The initial value is for row order

Display 80,60,40 columns
selects the number of characters displayed across the screen You are asked to type
in 8, 6 or 4 (followed by ENTER) to select an 80,64 or 40 character display The initial
value is either 80 or 40 depending on whether you select the Monitor or Television option
when you load Abacus from its Microdrive cartridge

Form feed between pages
selects whether or not a form-feed is issued at the end of each page of printed output
in the same way as for auto-calculate The initial value is YES

Gaps between lines on printer
sets the line spacing on printed output by specifying the number of gaps between the
lines of text You are asked to type in 01 or 2 (no ENTER is necessary) You can set
ordinary double-spaced printer output, for example by specifying one gap between each
line The initial value is zero

Lines
specifies how many lines on a page of printed output You should type in a number;
followed by ENTER The initial value is 66 and the maximum is 255

Monetary
specifies the currency sign to be used in the display of monetary values You should
type in the single character that you want (no ENTER is necessary) The initial value
is the pound sign

Printer
sets the number of characters per line of printed output You should type in a number,
followed by ENTER The initial value is 80 and the maximum is 255

38 12/84

Reference

The Echo command makes a copy of the data or formula in a particular cell to all the ECHO (E)
cells in a specified range

You are given the option of specifying the cell reference of the cell to be copied, or
pressing ENTER to copy the current cell You then should type in the range over which
the cell contents are to be copied, followed by ENTER

This command allows you to modify Abacus files, previously saved on a Microdrive FILES (F)
cartridge The options ask you to type in the names of files Each time you are asked
for a file name you can press ? for a list of all files on Microdrive 2

You are offered the following options

Backup
used to make a backup copy of an Abacus file You are asked for the name of the file
to be copied You are strongly recommended to make copies of all your files to protect
yourself against accidental loss of or damage to the cartridge

Delete
deletes a named file from a Microdrive cartridge Note that this command is NOT
reversible and should therefore be used with GREAT CARE.

Export
exports a named file The file is saved in a form suitable for being imported by Archive,
Easel or Quill

Abacus first asks you whether you want to export to Quill, Archive or Easel Accept the
suggestion of export to Quill by pressing ENTER, or select export to Archive or Easel
by pressing either the A key or the E key

In all cases you are then asked to type in the range reference for the section of the
grid that you want to export, ending your input by pressing ENTER

If you have chosen to export to Archive or Easel you can export the file by rows or by
columns Abacus asks you to press ENTER to accept the suggestion of exporting by
rows or to press the C key to choose export by columns You are not given this option
if you choose to export to Quill In this case the data is always exported by rows

Abacus finally asks you to type in a name for the exported file If you do not specify
a file name extension Abacus will supply an extension of exp

Format
formats the cartridge in Microdrive 2 Abacus gives you the Microdrive specifier mdv2
and you must type in a volume name for the cartridge

Make sure that the cartridge in Microdrive 2 contains no files that you want to keep -
ALL the contents of the cartridge are erased

Import
imports a named file It allows Abacus to read files exported from Archive or Ease! There
is a full description of Import in the Information section in the User Guide

You may import a file in either row or column order, and are asked to select which You
are also asked for the cell reference of the top left hand corner of the area of the grid
into which the data is to be imported

If you do not specify a file name extension Abacus will assume an extension of exp.

The Grid command is used to make changes which affect the entire spreadsheet It GRID (G)
allows you to insert or delete an entire row or column, or to change the number of
characters displayed in one or more columns

The options are

Insert
allows you to insert empty rows or columns into the grid You are first asked if you want
to insert rows (press ENTER) or columns (press C) You are then asked to give the number
of rows or columns to insert, and a row (or column) reference When you then press
ENTER empty rows or columns are inserted before the one specified The last rows
(or columns) will be lost from the grid If, for example, you insert three rows, the last
three rows of the old grid will be lost

You will not be able to recover any of the data that these lost rows contain unless you
type it in again

12/84 39

Reference

Delete
allows you to delete one or more rows or columns from the grid You are first asked
if you want to delete rows (press ENTER) or columns (press C) You are then asked
to give the reference of the starting row (or column) of the region you want to delete,
followed by ENTER You are then asked for the row (or column) reference of the end
of the region

When you then press ENTER the selected region is deleted and the following rows (or
columns) close up to fill the gap Empty rows (or columns) will be inserted at the bottom
(or at the extreme right) of the grid

In both of these options all formulae in the rows or columns that are moved will be adjusted
to correct them for their new positions

Width
allows you to change the width (number of characters) of one or more columns You
are first asked to specify the number of characters in a column, and then to specify
the starting and ending columns over which you wish the change to take effect

JUSTIFY (J) The Justify command is used to modify the positioning of text and numbers in a range
of cells It has two mam options, to modify existing cells or to set the default justification
that Abacus will use when you put data in a cell which is currently empty You should
press ENTER to select the Cells option or the D key to select the Defaults option

You are then asked to specify whether you want to modify the justification of text (by
pressing ENTER) or of numbers (by pressing the N key) in either case you can then
select left (ENTER), right (R) or centre (C) justification

In the case of the Cells option you are finally asked to give the range over which the
change is to act

You do not have to give a range in the Defaults option The new default will apply to
all newly created cells, at any point in the grid until you make a further change in the
default justification

Some of the different types of justification together with the original settings (text justified
left and numbers justified right) are shown in Figure 64

LOAD (L) This is used to load a file from the Microdrive You are first asked to specify the file name
pressing the ? key at this point gives you a list the files on Microdrive 2

40 12/84

Reference

If you do not include an extension in the file name you type in Abacus will assume
an extension of aba

This command is used to combine or consolidate, data from a previously saved file MERGE (M)
with the data in the current grid You are first asked for the name of the file to be merged
from the Microdrive cartridge and will then have to indicate whether the data in this file
is to be added to (press ENTER) or subtracted from {press S) the data in the current grid

Whenever a cell (in the file) containing a number or a formula matches a corresponding
data cell in the grid, the value from the file will be added to or subtracted from the grid
data The contents of any other cells are not affected The command will not have any
effect on grid cells containing text which are therefore protected against alteration

The resulting grid contains purely numeric values in each cell that have been affected
by the merge The formulae that produced these values in the original grid cells will
be destroyed These formulae would not have any meaning in the consolidated grid

This command offers a fast and easy method of combining the data in two similar models
It is, of course, essential that you have laid out the two grids in exactly the same way
using the same cell locations for the results of the command to make sense

You use this command to sort the rows of the grid into ascending order based on the ORDER (O)
contents of one particular column

You are first asked to specify the column on which the sorting is to be based You are
then asked for the first and last rows to be sorted The exact ordering sequence that
is used is

Empty cells
Numertc cells in ascending numeric order
Text cells in alphabetic order

Only use the Order command on rows or columns which contain data It is likely to
invalidate any formulae present in the affected portion of the grid as they are not adjusted
for their new locations

This command is used to send a selected portion of the grid to a printer or to a Microdrive PRINT (P)
file You are first asked whether you want the printed grid to show the values or the
formulae in each cell Press ENTER to show the values or press the F key to show
the formulae Abacus next asks you to specify the range of celts which you want printed
Then you are asked if you want the grid border to be included (press ENTER) or not
(press the N key) Following this you should specify whether the output should be sent
to the printer (press ENTER) or to a Microdrive file (press the F key) If you choose to
send the output to a file, you are also asked to type in a file name (ending with ENTER)

The selected portion of the grid will be sent to the chosen destination You can stop
the printing at any time by pressing ESC

If you have asked for a display of the formulae Abacus will first print a numbered list
of all the formulae used in the grid It then prints the grid itself The formula number
is shown in any cell that contains a formula

If you do not in the case of the option to print to a file specify an extension when you
type m the fife name, Abacus will assume an extension of lis

You use this command to leave Abacus when you have finished using it QUIT (Q)

When you leave Abacus the current grid contents are lost You are asked to confirm
your request so that you have the chance to change your mind You can cancel the
command and return to your spreadsheet by pressing ESC If you press ENTER you
will confirm your wish to leave Abacus and return to SuperBASIC

This command is used to rub out, or delete, tne contents of one or more cells in the RUBOUT (R)
grid When you use this command you will be asked to specify a range of cells All
the cells in that range will be cleared

This is used to save a file on a Microdrive You are first asked to specify the fife name, SAVE (S)
pressing the ? key at this point gives you a list of the files on Microdrive 2

If you do not include an extension when you type in the file name, Abacus will assume
an 9xtension of _aba

The Units command is used to change the way that numbers are displayed within a UNITS (U)
cell or group of cells It does not affect the values of the numbers in any way

12'84 J1

Reference

You are first asked to select whether you want the command to affect existing cells (just
press ENTER) or to set the default format that Abacus will use for all subsequently created
cells (press the D key)

In either case you are then asked to choose the display format from the following list:

Decimal
Numbers are displayed in a fixed point decimal notation, that is, all numbers are shown
in the same way, with a fixed number of decimal places. Numbers which actually contain
more decimal places than are displayed will be rounded up or down as necessary. You
are asked to type in the number of decimal places you require. It will not accept a value
greater than 14

If you want the cell values themselves to be rounded, rather than just being displayed
in rounded form, you must do the rounding yourself For example, to round a value
to two decimal places:

1. multiply by 100 (1000 for rounding to 3 decimal places, and so on)
2 add 0.5
3, discard the decimal fraction with the int() function
4. divide by 100 (or 1000)

The following formula will round the value in cell C3 to 2 decimal places:

int{c3100+0.5)/100

Integer
Numbers are shown as integers, or whole numbers, as for the int() function. You are
given the option for negative values to be enclosed in brackets, rather than with a leading
minus sign. Press the B key for bracketed negative values, or enter for a leading minus
sign.

Use the int() function if you want the cell values to be converted to integers, rather than
just being displayed in integer format.

Exponent
numbers are displayed in exponential, or scientific notation. The option asks you to type
in the number of decimal places you want to be shown It will not accept a value greater
than 14, Again the displayed number is rounded as necessary, to the number of decimal
places that you select.

Percent
this displays numbers as percentages so that, for example, the value 0.55 is displayed
as 55%. The option asks you to type in the number of decimal places you want to be
shown. It will not accept a value greater than 14.

General
this is a general numeric format in which any of the previous formats is chosen, depending
on the value of the number, to make best use of the space available in the cell.

Monetary
numbers are displayed in fixed-point decimal format, with two decimal places and a
leading currency symbol. You are given the option for negative values to be enclosed
in brackets, rather than with a leading minus sign. Press the B key for bracketed negative
values, or ENTER for a leading minus sign.

In the case of the Cells option Abacus asks you, at the end of any of the above choices,
to specify the range over which the change is to act. You can type in any form of cell
or range reference (including labels or range identifiers). Press ENTER to mark the end
of the reference.

Abacus does not ask you to specify a range if you selected the Defaults option. In this
case the selected format will be used for all new cells, as they are created.

'INDOW (W) You use this command to control whether the display is a single window or is split into
two windows which can be used to show two separate portions of the grid.

You are first asked to choose between a vertical (V) split, a horizontal (H) split, or to join
(J) a split display back into a single window. If the window is initially split and you want
to change from, say, a horizontal to a vertical split you must first join the two windows
before making the new split.

If you choose to split the window then the split will occur at the column or row containing
the cursor. You should therefore position the cursor at the point where you want the split

12/84

Reference

to occur before making the split Whole columns will always be displayed Each window
in a vertical split will never be less than ten characters wide

You then are given a further choice as to whether the two windows should move together
(T) or separately (S) If you specify the T option, thts means that any change in the position
of one window - in the direction parallel to the split - wiil cause a corresponding change
in the position of the other Movements at right angles to the sptit are not related in this
way The S option allows the two windows to move around the surface of the grid
independently

This command is used to force a recalculation of all formulae appearing in the grid XECUTE (X)
A recalculation is normally performed automatically when you make any new entry in
the grid You will only need to use this command if you have switched off the automatic
recalculation option or if you want to activate any askn() or asks() functions stored in
the cells of the grid

This command clears the entire contents of the grid and returns you to the beginning ZAP (Z)
of Abacus for a fresh start Since this command is drastic (and irreversible) in its action
you will be asked to confirm your request If you press ESC you will return to the command
menu without any deletion taking place You should press ENTER to confirm your wish
to clear the grid

Think of a function as a kind of recipe which converts a number of values, known as FUNCTIUNS
the function's arguments into a different value which is said to be the value that is returned
by the function In Abacus this is the value which would be shown in a cell containing
the function

The functions provided by Abacus may take three, two, one or no arguments which
are placed in brackets after its name You must not leave a space between the name
and the opening bracket but spaces are allowed between items within the brackets
If a function takes more than one argument then they are separated by commas Ait
functions must be followed by the brackets even if they take no arguments The presence
of the brackets is a useful reminder that you are referring to a function

In the descriptions of the functions

n is either a numeric expression or a reference
to a cell displaying a numeric value

text is either a text expression or a reference to
a cell displaying a text value

range is a grid range reference

A numeric expression is either a number or an expression which gives a numeric result

A text expression is either a text string {enclosed in quotes) or an expression which gives
a text result

The following functions are provided

ABS(n)
Returns the absolute value (that is the value ignoring any minus sign) of the argument

For example abs(3) returns 3 and abs(-T) returns 7

ASKN(texf)
This function is used for the input of numeric data It displays the given text (which may
be up to 40 characters in length) as a prompt in the input line, followed by a "> and
waits for a reply to be typed in The reply is shown in the cell containing the function
Input will only be requested when you first put the function into a cell, and when you
recalculate the grid by use of the Xecute command It is not asked for during an auto-
calculate after each grid entry

ASKT(fexr)
This function is used for the input of text strings It works in exactly the same way as
askn(}, except that it expects you to type in text instead of a number

ATN(n)
Returns the angle,in radians whose tangent is n

12/84 43

Reference

AVE(rangre)
Returns the average of the numeric values contained in all the cells in the specified range
Empty cells and cells containing text are ignored in the calculation of the average If
there are no numeric cells in the range it will return a value of zero

CHR(n)
This function returns the ASCII character whose code is n A character with an ASCII
code less than 32 has no effect on the screen but is sent to the printer (when you print
the portion of the grid containing it) if preceded by an ASCI! null For example,
chr{0)+chr{13) passes the ASCII character for a carnage return to a printer when the
cell containing it is printed

You can show an A' on the screen with chr{65)

CODE(texr)
This returns the ASCII value of the first character found in the specified text

COL()
Returns the number of the current column

COS(n)
Returns the cosine of the given (radian) angle

COUNT(range)
Returns the number of non-empty cells in the specified range Both text and numeric
cells are included in the count

DATE(n)
Returns today's date as a text string in one of three forms

n date string

0 "YYYY/MM/DD"
1 "DD/MM/YYYY"
2 "MM/DD/YYYY"

You must first have set the system clock as described in the SuperBASIC keyword guide

DAYS(fexf)
Returns a number of days from the first of January 1583 to a date given by a text
expression of the form YYYY/MM/DD' The conversion assumes the Gregorian (modern)
calendar is being used The formula is therefore only valid for dates after 1582

DEG(n)
Takes an angle, measured in radians, and converts it to the same angle in degrees

EXP(n)
Returns the value of e (approximately 2 718) raised to the power n The returned value
will be in error if n lies outside the range from -87 to +88, since the result will then
exceed the numeric range of Abacus

\F(expre$sion, true, false)
The value of the expression is calculated and used to determine which of the following
two arguments should be returned

expression = n
true = n text
false = n \ text

If the expression evaluates to 0 it is considered to be false and the false' argument is
returned Any non-zero value for the expression is interpreted as being true and causes
the true' argument to be returned The true' and false arguments may be either text
or numeric in nature Thus all the following examples are valid uses of the function,

i f<A1=B1,"equaL","not equal")

i f C A 1 , 1 , 0)

You can also mix a text and a numeric argument as in the following example Try this
one out if you are not sure how if() works

[A1] 1
[B1]0
[C1] if (A1 or B1,"either",0)

44 12/84

Reference

You should see the word 'either appearing in cell C1 since the first parameter of t f ()
returns a non zero (true) value if either cell A1 or cell B1 contains a non-zero value If
you change the contents of cell A1 to be zero then you will see a zero displayed in cell C1

INDEX(co/u/77n/ow)

column = n
row = n

Returns the contents of the cell at the intersection of the specified column and row

\NSTR(ma/n,sub)

main = text
sub = text

This finds the first occurrence of sub within main and returns the position of the first
character of sub in main It will return a value of zero if no match is found The match
is case-dependent

inst (-("January", "Jan") (returns 1]
i nst r ("January","an") [returns 2j ,
inst rC'January 'V 'AN") (returns 0|

INT(n)
Returns the integer value of the number, by truncating at the decimal point The truncation
always makes the number less positive Thus,

i nt (3 .7) returns 3
int<-4.8) returns -4

^
\RR(range,period) "

period = n

Calculates the Internal Rate of Return for the numeric data in the specified range, which
may be either a row or a column

The data in the range represents a cash flow for each of a series of periods, separated
by n months Negative vaiues represent cash outlays and positive values represent cash
returns

IRR(range, period)

period = n

Calculates the Internal Rate of Return for the numeric data in the specified range, which
may be either a row or a column

The data in the range represents a cash flow for each of a series of periods, separated
by n months Negative values represent cash outlays and positive values represent cash
returns.

The function returns the rate of interest necessary so that investment of your outlay would
match the proposed returns

For example, suppose you are offered a return of twenty thousand pounds at the end
of each of the next seven years, in return for an initial outlay of one hundred thousand
pounds Is this a good deaP

[A1] " f l ow
A2] -100000
A3] co 1=20000 (rows 3 to 9)

We can refer to the range of the data by the label flow and the interval between
successive periods is twelve months

[C2] i r r (f l ow ,12) (rows 2 to 9]

The completed grid should look like Figure 65, showing that the internal rate of return
is 91% If you can invest your hundred thousand pounds at a higher rate of interest
you should do so, and forget the deal

Note that the first item m the range is counted as period zero, the next is period one,
and so on The function assumes that each amount is payable in full at the end of the
relevant period

12/84 45

Reference

| A | B | C
1 | f low
2 | -100000.00 9.10
3 | 20000.00
4 | 20000.00
5 | 20000.00
6 | 20000.00
7 | 20000.00
8 | 20000.00
9 | 20000.00

Figure 65 Internal rate of return

LEN(fexr)
Returns the number of characters in the specified text

LN(n)
Returns the natural or base e, logarithm of n An error results if rc is negative or zero,
since logarithms are not defined in this range

LQQKUP(range,offset,value)

offset = n
value - n

This function implements a look-up table in the grid Two tables of values are assumed
to be present The first table occupies the specified range (which can be in a row or
a column) The second table runs parallel to the first, in the following row or column
For example if the first table is in column G, from G10 to G25, the second wilt be assumed
to be from H10 to H25 Every entry in the first table should have a corresponding entry
in the second The first table is searched for the largest value that is less than or equal
to the specified value The function returns the corresponding entry from the second
table Note that it is assumed, for the correct operation of this function, that both tables
contain numeric values, and that those in the first table are arranged in ascending order

The first value in the first table is a dummy It must be less than the second value which
is the lower limit for the table lookup process It is otherwise ignored The first value in
the second table is the value that is returned if lookup() is called with any number less
than the lower limit

MAX(range)
Returns the largest numeric value found in the cells in the specified range ff there are
no numeric cells in the range the function will return the smallest possible number
(1 7-E+38)

MiN(range)
Returns the smallest numeric value found in the cells within the specified range If there
are no numeric cells in the range the function will return the largest possible number
{-1 7 E+38)

MONTH(n)
Returns as text, the name of month n

For example month(3) returns the text March"

If an argument larger than 12 is used, it is replaced by the remainder after division by
12 so that, for example, month{13) and month(1) will both give the result 'January'

NPV(range,percent,period)

percent = n
period = n

Calculates the Net Present Value for the cash flow data in the specified range Percent
is the annual interest rate (14 represents a 14% rate) The data is assumed to refer to
a series of periods, separated by equal intervals of period months

The net present value is the amount of money required now to produce a given future
cash flow assuming an interest rate For example suppose you are given the opportunity
to buy, for a single payment of seventy thousand pounds, a ten year lease on a shop
which is currently producing a yearly net income of ten thousand pounds You expGCt
the income to increase by 10% per year If you did not buy the shop your seventy
thousand pounds would earn 14% interest What should you do9

12/8446

Reference

You should calculate the net present value of the income and compare it with the sum
you are asked to pay

[A1] " f l o w
[A2j 0
A3] 10000
A4j col=a3*1.1 (rows 4 to 12]

- A14J npvCf L o w , 14,12) (rows 2 to 12}

The result is shown in Figure 66

A | 8
1 f l o w
2 0.00
3 10000.00
4 11000.00
5 12100.00
6 13310.00
7 14641.00
8 16105.10
9 17715.61
10 19487.17
11 21435.89
12 23579.48
13
14 75088.51

Figure 66 Net present value

The net present value (in cell A14) of the cash flow from the shop is more than the asking
price, so you should go ahead

The first item in the list is for period zero, the second is for period one and so on This
is consistent with the assumption, made by the function, that the returns are received
at the end of each period You therefore have to wait for one period before you obtain
any return on your investment In a real situation of this type you would probably work
on a monthly basis rather than on twelve month periods

Pl()
Returns the value of the mathematical constant TT

RAD(n)
Takes an angle, measured in degrees, and converts it to the same angle in radians

REPT(tex?,/i)
This function will fill the current cell with n copies of the first character of the given text
For example,

rept("*",5) (will put five asterisks tn the current cell)
rept <"abc",3) [makes three repetitions of 'a]

ROW()
Returns the number of the current row

SGN(n)
Returns +1, -1, or 0, depending on whether the argument is positive, negative or zero

SIN(n)
Returns the value of the sine of the specified (radian) angle

STR(n,type,dp)

num = n
type = n
dp - n

Converts a number, num, to the equivalent text string Type indicates the form of the
converted string as follows

0 decimal (floating point)
1 exponential, or scientific, notation
2 integer
3 general format

12/84 47

Reference

The third parameter, dp, specifies the number of figures after the decimal point in the
converted string It should always be included, although its value is ignored for integer,
general and monetary formats

SQR(n)
Returns the square root of the number n, which must not be negative

SUM(range)
Note that the value returned by the function is the sum of the exact values in the relevant
cells. It does not take into account any rounding that may result from use of the Units
command For example, if two cells contain the values 344 and 9 73, the sum(function
will add them to give 1317 If you then select a display in decimal format with one decimal
place, the two numbers will be rounded to 34 and 97. The sum, whose value will still
be 13.17, will be rounded to an apparently inaccurate 132 See the units command.

TAN(n)
Returns the tangent of the specified (radian) angle

TIME()
Returns, as text, the time of day in the format "HH MM S3" You must first have set the
system clock, as desribed in the SuperBASIC keyword guide

VAL(fexr)
Val converts the text to its equivalent numeric value It will only convert text composed
of valid numeric characters and the conversion will stop at the first character that cannot
be interpreted as a digit. For exampfe, val("2.2ABC") will return the value 2 2, and
val('ABC") will return 00

WIDTH()
Returns the width in character spaces, of the current column. Note that there is one
space separating adjacent columns,

ERRORS
Grid Errors Any syntax error in a formula - such as supplying the wrong number of arguments

for a function, or mis-matched brackets - will be reported at the time you type in the
formula You are told the nature of the error and the formula is left in the input line. You
can then examine it, and then correct it with the line editor

The possible error messages are listed below

Message Example

Missing closing quotes in a string "abc" + "def

Badly formed numeric constant 1 .5e (missing number after e1)

Number too large 1 . 5e99

Illegal character 12_5 (underscore instead of minus)

All names must refer to columns
All names must refer to rows
Name references may only be relative
(see the section on Cell References,
earlier in this chapter)

Badly formed range reference a1 :

Badly formed name reference c3.
Name is not a row or column (see Chapter 3)

First name reference undefined
Second name reference undefined

{the text does not appear in the
grid, above and to the left of this
cell)

Function requires a range reference i r r (1 ,2 ,3) (see description of irr())

Illegal range
Syntax error
Mismatched brackets

Type mismatch 1 + "abc"

48 12/84

Reference

Wrong number of function arguments sqr (1 ,2)

String bigger than 255 characters rept("*" ,256)

Division by zero

Illegal function arguments sq r (-1)

String subscript out of range
(either subscript less than zero or greater
than 255, or first subscript greater than
length of text)

Reference out of range
(to a cell outside the grid)

Reference to an error cell
(the formula refers to a cell containing a
formula which produces one of the errors
described below)

Out of memory
use RUBOUT to make more room

Other errors such as a formula which adds the contents of two other cells, one containing
a numeric value and the other containing a text value, wtll not be detected until the result
of the formula is calculated - after the formula has been placed in the grid

If a formula contains a reference to an empty cell, Abacus will assume that the cell has
a numeric value of zero This may well cause an error when the formula is calculated

If Abacus detects an error when a formula is calculated it gives a brief error message
in the relevant cell You can then move the cursor to the cell to examine the formula
and find out what is wrong

The possible errors are

#TYPE - the formula contains a reference to a cell containing information of the
wrong type, i e. numeric instead of text, or vice versa

n LONG - the formula contains a reference to a text string that is more than 255
characters long

ft #ZERO The formula is attempting to divide something by zero

##ARG - The formula contains a function called with a non-valid value for one
or more of its arguments eg ln(-5)

##SUB - The formula uses a string slicing operator with an error in one or more
of its subscripts

#REF - The formula contains a reference to a cell which is outside the grid The
formula in such a cell will show the word 'ERROR for each cell reference that
is not valtd

ft # ERR • The formula contains a reference to a cell which contains an error You
can ignore these messages since they will disappear when the original error, in
the cell to which the formula refers, is corrected

The following error messages will only appear if an error occurs while you are using File Errors
a Me related command eg Load or Files

File does not exist
the file name you gave was not found on the cartridge
in Microdrive 2

File I/O incomplete
the loading or saving of a file has started
successfully but has failed at a later stage - this may
mean that the data in the file has been corrupted, or
that the cartridge has been damaged

Unable to open fife
the file can not be opened - for one of the reasons
given for the previous error

12/84 49

Reference

Wrong file type
the file name extension is not the one that Abacus
was expecting - eg attempting to load an export file
instead of importing it

Illegal file name
eg "3test" file names must start with an alphabetic
character and may not be more than 8 characters

Illegal import file format
this is only likely to occur if you attempt to import a
file not created with an export command

bo 12/84

QL
QL Archive

©1984 PSION LIMITED
by Dick de Grandis-Harnson (Psion Limited)

CHAPTER 1
ABOUT

QL Archive is a database program which enables you to create filing systems for any *L MflWIil VC
type of information you choose You are free to decide how this information will be stored
and retrieved

You will quickly discover how Archive can be used for creating simple card index systems
such as address lists or customer records Once you have mastered the creation of
straightforward systems such as these, you may wish to develop more complex multi-file
relational systems where information is shared between for example, purchase and stock
control records

Information may be presented using the screen layout that Archive provides or you may
design your own Printed forms and reports can be produced from the information in
the file in any format you choose

One of the most powerful features of Archive is its command structure Once you have
created a file and stored some records in it, these commands can be used to find
particular records, make searches and selections or display the information in the file
in a particular order

The commands combine to form a powerful programming language similar to
SuperBASIC which can be used to construct a multitude of specialist applications

At all times you will be guided by an informative set of prompt messages which never
leave you in doubt about what your options are or what you are expected to do If you
require further information you can use the Help files You may ask for Help at any stage,
no matter what you are doing, and will automatically be given the information that is
most relevant to your current needs

The real power of Archive becomes apparent when you write your own procedures in
the command language You can create a named procedure to do exactly what you
want and then use it as an additional command, in the same way as you use the
commands provided with Archive

The mechanics of writing and modifying a program are aided by a full procedure editor
which, together with the input line editor (which is available at all times), make editing
a simple and painless task

The data files themselves use variable length fields and records Not only does this lead
to the most efficient use of available memory and cartridge space, but also to simplified
file creation You never need to decide in advance how large a record needs to be

This manual contains a number of working examples Try these out to see some of the
range of things that can be done They contain many general purpose procedures which
you might include in your own programs

If, at any time, you are not sure what to do remember that you can ask for Help by
pressing F1 Also remember that you can cancel any partially completed operation (eg
typing in a number, or using a command) by pressing ESC

Archive has been designed to give you the greatest possible flexibility As a consequence
it cannot give as much assistance with the selection of options as the other QL programs
If you are not familiar with computers and computer programming you may find it helpful
to read the Beginners Guide to SuperBASIC before attempting to write Archive programs

12W 1

CHAPTER 2
GETTING
STARTED

LOADING
UL AHUrllVb Load QL Archive as described in the Introduction to the QL Programs. When loaded

Archive will display the following message:

LOADING QL ARCHIVE
versi on x.xx

Copyright © 1984 PSION SYSTEMS
database

where x.xx represents the version number, e.g. 2.00.

The program will then wait for a few seconds before starting.

The Help information is not loaded into the computer's memory together with the program.
It is only read from the Archive cartridge when it is needed. You should therefore not
remove the Archive cartridge from Microdrive 1 if you intend to use the Help facility.

GENERAL
Ar PbAHANUb When you have loaded Archive the screen should look like Figure 2.1. This is the main

display.

Figure 2.1 The mam display with a monitor (80 characters)

If you are using a domestic television, the screen is arranged slightly differently. This
is because a television is not normally able to show clearly 80 characters per line. Archive
therefore only shows 64 characters.

The screen is divided into three sections: the display area, the work area and the control
area.

12/34

Getting Started

The Display and
As its name suggests, this is where all information produced by Archive is shown WOfK AfGaS

The work area uses the bottom four lines of the screen All commands that you type
in, together with any error messages, are shown here

These two areas almost invariably work together, since commands typed into the work
area produce their results in the display area

As an example, type in the following short program, exactly as it is shown below

let x = 1 3 : w h i L e x>0:print x : L e t x = x-1 cendwhi te I ENTER I

The text of this program will appear in the first line of the work area When you press
ENTER, the numbers from thirteen down to one will be printed on successive lines of
the display area The bottom line of the display area will be left blank except for a red
cursor indicating the next position at which text will be displayed The numbers from
fifteen to one are displayed which together with the bottom blank line, occupy all sixteen
lines of the display area

The command

c is RENTER!
will clear the display area completely

The control area occupies the top few lines of the screen It shows the normal options I (16 wODlrOI nlca
Help (Ft), to turn the prompts on and off (F2), cancel any incomplete operation (ESC),
and use a command (F4)

USING THE
COMMANDSArchive's commands form a programming language and you must type their names

in full. This may seern long-winded at first, but later you will be shown how to create
procedures which allow you to enter commands with a single keystroke

12/84 3

Getting Started

There are four different lists of commands which can be displayed by pressing F3 If
a command list is already being shown, pressing F3 will display the next list in sequence
These commands are used simply by typing in the name and pressing ENTER However,
some commands need further information and will ask for it

You can use any of the commands, even if its name does not appear in the current
display in the control area

THE
MUUt OuMMANU You can combine the control, display and work areas into a single area with the mode

command Used by itself mode will combine the three areas into a single area Typing
mode 0 will also have the same effect Try

mode |ENTER I

and the input from the keyboard and anything displayed by a command or program
will share the whole of the screen A value of 1 divides the screen back into three areas

You can also use the mode command to change the number of characters displayed
across the screen To do this you must supply a second number separated by a comma
from the first The second number must be a 4, 6 or 8 to select a 40, 64 or 80 column
display Try typing

mode 0,4 I ENTER I

to change the display to 40 characters and to combine all three areas on the screen
Note that the 0, which originally was optional must be typed to change the size of the
display

Try some different combinations to see the effect on the display Finish with a command
that leaves the screen divided into its three areas, but choose the number of characters
that gives a clear display on your television or monitor

4 12/84

CHAPTER 3
QL ARCHIVE
FILES
FILES RECORDS
AND FIELDSAn Archive file behaves rather like a card index A real card index consists of a box

containing a set of record cards each card containing various items of information For
such a card index to be useful there have to be rules to determine where each piece
of information is written

Suppose, for example that we have a name and address index You would normally
write the persons name across the top followed by the address and telephone number
(if any) It would be very difficult to use if some cards had the name written at the top
and others had it written near the bottom You would normally expect to be able to use
the index by flipping through the cards reading only the top line until you found the
name you were looking for

If you had two sets of record cards such as a set of name and address records and
a set of stock records, you would not normally store them both in the same box You
would use two boxes and label them for example, "Customer Records' and "Stock
Records"

The card index system contains most of the ideas necessary to understand how an
Archive file works A file is like the card index box and is given a name to identify it
The file is made up of a collection of records, each of which serves the same purpose
as a record card A file, then is simply a collection of related records

Like a card index the information in each record is organised in a regular way Individual
items of data, such as telephone numbers might be kept on a specified area of the
card A record in an Archive file is organised in the same way Each item is stored in
a separate region of the record, known as a field A record in a customer file such as
that described above, would contain a name field, an address field a discount field and
so on

if this were the whole story there would be little point in using an Archive data file in
preference to a physical card index There are, however, many advantages when you
use computerised records A customer record card index would normally be arranged
in alphabetical order of customer names which makes it an efficient way to find the
information about a particular customer Suppose, however you want to send a letter
to all your customers who have not placed an order with you during the last six months
It would be a very tedious task to go through the entire contents of a card index to compile
such a list In Archive you can make such a search by using a few simple commands
Furthermore, it is easy to arrange for a set of address labels to be printed at the same time

You can save a great deal of time and effort by using Archive to store and manipulate
your records

12/84 5

CHAPTER 4
EXAMINING

M 1*1 LtZ The best way to start learning about Archive is to look through the demonstration file
gazet provided on the Archive cartridge This is a file which contains information about
various countries - the continent the capital, the currency, the language, the population
the land area and the gross domestic product per capita

Most of the examples in chapters 4 and 5 refer to the gazet' file Before using it, you
should make a copy of it using the following procedure

When you have loaded Archive put a formatted cartridge into Microdrive 2 and type

backup CENTER]
mdv1_gazet_dbf i ENTER

mdv2_gazet_dbf [ENTER

Wait until the two Microdrives have stopped be patient as the file is quite long and can
take a while to copy Use the copy, now on the cartridge in Microdrive 2 for
experimenting

From now on we will not always write ENTER at the end of every command but please
remember that it must still be used

The look command opens a file so that you may read its contents, but you are not able
to make alterations or additions to the file It is a safer command than open if you are
merely looking through a file because the file is protected against accidental modification
You can examine the copy of the gazet" file on Microdrive 2 by typing

Look "gazet"

DISPLAYING
A RECORD To look at the first record type

f i rst

di sp lay

Don't forget to type ENTER after each command and then the display will show the
first record of the file

Note the first line shows the logical name of the file, Archive automatically supplies the
name 'main" for a single file Logical file names are usually used when you are using
more than one file at a time and are described later

EXAMINING
OTHER RECORDS Having looked at the first record of the file, you may want to move on to the following

record Type

next

and the display shows the next record in the file When you are typing single commands
after a display command the display area is continuously updated to show the contents
of the current record You can use the next command to step through the file, record
by record until you reach the end (it will not pass the last record)

There are three other related commands which you can use to control which record
of the file is displayed

back - which displays the previous record
f i rst - which displays the first record,
Last - which shows the last record of the file

Try using these commands to move around the file, displaying any record you like Note
that the four commands first, last, next and back do not themselves display the record
They merely move from record to record regardless of whether or not you have used
display command

SEARCHING A
FILE
Find The first and simplest search command is find This will search from the beginning of

a file, looking for the first occurrence of a specified piece of text in any of the text fields

6 1284

Examining a File

For example

f ind "a f r i ca "

When you press ENTER there will be a slight pause and then the first record containing
the word afnca in any of its text fields will be displayed Note that this search is
independent of whether the text is in upper or lower case and will therefore find Africa!
AFRICA' or 'afnca

If the first record that is found containing the text is not the one that you want, you can Continue
find the next occurrence by typing

cont i nue

The continue command will repeat the previous search, looking for the next occurrence
of the text in any text field of the following records

It is possible that you may have to repeat a search several times before finding the record
you require. Press F5 and Archive will put the previous command back in the command
line Press ENTER and the command will be executed.

Another method of locating a particular record is to use the search command This allows Searth
you to find a record by specifying the contents of one or more specific fields, for example

search continent$="EUROPE" and language$="FRENCH"

will find the first record in the file which matches both conditions You must type in the
full field name.

Unlike the find command, search will only test the fields you specify and will differentiate
between upper and lower case letters Use the upper()or lower() case functions to make
the search case independent, for example

search lowerCcont inen t$)="europe"

Again the continue command can be used to find the next occurrence of the text.

In many cases, you may want to look at a sub group of the records within a file Suppose, Select
for example, you only want to look at the details of countries in Europe You can use
the select command to pick out from the file all those records which satisfy a certain
condition. The file will then behave as though only those selected records are present
Try this command on the "gazet" file to see how it works. First type

print countO

which will tell you how many records there are in the file Then type

se lec t continent$="EUROPE"

pri nt count ()

and you will see how many records have been selected The records that are removed
from the file are still hefd in the computer's memory and you can restore them to the
file at any time by using the reset command Type.

reset

and print the value of countf) again, to check that the file has been restored to its original
state.

When you use the print command from the keyboard, any file shown on the screen
will be erased. This is because, in general, display and print use areas of the screen
which overlap After using print you must type display again to restore the display.

The file records may not always be in the order you need You can sort the file by the OUMI UNu A MLt
contents of numeric or text fields Only the first eight characters of text are taken into
account by order

Suppose, for example, you want to sort the records of the "gazet" alphabetically by capital
city You can do this by using the order command as follows

order capital$;a

The "a" following the semicolon specifies that you want to sort the file in ascending order
Replace it by "d" if you want the file sorted in descending order. The capitals field becomes
the sort key for the file You can specify a sort key composed of up to four fields by

12'84 1

Examining a Fie

giving a list of fields after the order command For each of the keys you must specify
whether the sort is to be in ascending or descending order The following command,
for example, will sort the file into descending order by population and ascending order
by capita!

order pop ;d ,cap i ta L ;a

Note that a semicolon separates each field name from the a' or 'd" that specifies
ascending or descending order, but that each pair (field name and letter) is separated
from the next by a comma

When more than one field is specified for sorting purposes the records are initially sorted
according to the contents of the first field in the list If two or more records have the
same contents for this field, they are ordered according to the next field in the list. If
records exist which are equal in respect of the contents of both of these two fields, they
are ordered according to the contents of the third field, and so on

LUCAI b When a file has been sorted, you can use the locate command to make any particular
record the current record in the file Its action is to find the first record whose first sort
field is greater than or equal to the given expression This record becomes the current
record in the file

For example, if the "gazet" file has been sorted as described in the last example, the
command

L o c a t e "100"

locates the first country in the sorted file which has a population of 100 million If there
is no such country Archive will locate the first country with a population less than 100
million (remember that the file was sorted in descending order)

Locate is followed by an expression which may be either text or numeric, but must be
of the same type as the field used to sort the file (See the Reference chapter)

You can locate a record with respect to the contents of more than one sort field by using
locate with multiple expressions, separated by commas For example,

Let a="1QO"

Let b$="D"

L o c a t e a,b$

will find the first country with a population of 100 million or less, and with a capita! whose
name either starts with "D" or is after "D" in the alphabet In this example Archive will
locate Bangladesh, which has a population of 761 million and whose capital is Dacca.

The only restriction on the number of expressions that you can use with locate is the
number of fields used to sort the file

You cannot use continue after locate Repeating a locate with the same condition will
always locate the same record

Locate is the fastest way of locating a record in a large, sorted file Because of the
uncertainty in the record that is located you may have to make a further check on the
record to make sure it is what you want

uLUblNvj A i ILt When you have finished looking at a file you must tell Archive. You can do this by typing

c Lose

This will only act on files and will leave any program or screen layout intact You can
close all your files and clear out your data and display area by typing

new

This will clear Archive to its initial state after loading

This only acts on the data files, leaving any program, or screen layout, intact

Alternatively, if you have finished using Archive, you can go back to SuperBASIC by
using quit This command closes all open files automatically before leaving Archive.

Remember that you should never remove a cartridge from a Microdrive while it contains
open files.

8 12/84

CHAPTER 5
MODIFYING

Before typing in examples in this chapter, type new first to ensure that Archive is cleared M I I LEI
and ready for a fresh start.

The open command prepares a file for both reading and writing

If you open a file with the open command, instead of look you will be able to write to
the file to change its contents as well as read it This means that any additions, deletions
or modifications will make a permanent change to the copy of the file when it is closed
Type

open "gazet"

ff you have opened a file for reading with look then you must not use any commands
which will attempt to modify the data If you do, Archive will report an error. The commands
described in this chapter modify data files and so should only be used with a file opened
with open.

Display the first record of the file with.

f i r s t

di splay

When you have finished modifications to the file you must close the file (using close LLUbINu I rib ilLu
or new) to ensure that all the changes are recorded

If you do not close a file properly (for example, if you just turn off the computer when
you have finished) the file may be changed and your most recent changes will not be
recorded. Always make sure that there are no open files on a cartridge before you
remove it from the Microdrive. Do not switch off the computer without first closing
all open files and removing the cartridges from the Microdrives,

The insert command is used to add one or more records to the current file When you IIMotn I
use insert you will be asked to type in the contents of each field of the new record. Type'

inser t

The display area will now show

Logi ca L name main
count ry$
cont i nent$
c a p i t a l s
cur rencyS
languages^
pop
area
gdp

You can now type in the contents of each field. You can step from one field to the next
by pressing ENTER or TABULATE or you can step back to the previous field by holding
down SHIFT and pressing TABULATE. You can make as many changes as you like
to the fields until you are satisfied. The new record can be inserted into the file by pressing
F5 Press F4 to leave insert. Try typing:

S C O T L A N D
E U R O P E
E D I N B U R G H
POUND S T E R L I N G
E N G L I S H
10
30
50

12/84 9

Mod tying a Fie

The display area should now show

Logica L name m a i n
countryS SCOTLAND
continents EUROPE
c a p i t a l s EDINBURGH
currency* POUND STERLING
languagesS ENGLISH
pop 10
area 30
gdp 50

When you are satisfied that you have typed in the new information correctly press F5
to insert the new record into the file The fields you have just typed in will then be blanked
out ready for you to insert a new record Press F4 when you have finished inserting

You can also end the entry for each field and move to the next one by pressing ENTER
The new record is added to the file automatically when you press ENTER after the last
value

If the file has been sorted the new record is inserted at the correct position to maintain
the order

DELETE You can use the delete command to remove a record from the file delete removes the
current record (the one shown by display) from the file All you have to do to remove
a particular record is to display it, and, having made certain that it is the correct one, type

de le te

CHANGING
A RECORD It is also simple to modify the contents of any or all of the f elds within an existing record

There are two methods

Alter Select the record you want to change (use display and find) then type alter Alter works
in the same way as insert except each field shows its old contents You can step over
those fields you do not want to change (use TABULATE or ENTER) Type in a new
value or use the cursor keys to modify an old one Press F5 to replace the record

As with insert the record is replaced automatically if you press ENTER after the last
field in the record

Update Select the record you want to change then change the contents of the field variables
until the displayed record is as required Type update to change the record

For example, suppose that you decide that Iceland should be tn Europe instead of the
Arctic Find the record by typing

fi nd " Iceland"

d i s p l a y

Use the let command to change the contents of the continents field

let con t i nen ts = "Europe"

Finally put this change into the record by typing update

In both of the above methods the new record will be inserted in the correct position
if the file has been sorted Otherwise the replacement record is inserted in an unspecified
position in the file

The alter command is simpler to use, but always affects the current record The update
command can be useful when you are using multiple files

Remember that you must close the file with the close, the new or the quit command,
before switching off the computer

10 12/84

CHAPTER 6
CREATING A

If you have been following the examples up to this point you will have been using Archive I" IL t
only to look at the file provided for you This chapter will show you how to create your
own file with your own choice of file names

If necessary, type new to clear anything in the computer's memory and to close any
open files Make sure that the formatted cartridge on which you are going to create
the file is in Microdrive 2

Suppose you want to use ARCHIVE to make a catalogue of your books To do this,
you will have to create a new file called books" The first thing to do when creating a
file is to decide what it is going to contain, that is, what fields you will use in each record
In this case you will obviously need to record the author, title and subject, you may also
like to include other details, such as the type (fiction or non fiction), ISBN (International
Standard Book Number), shelf location a brief description and so on In this example
we shall simply use three text fields to contain the author, title and subject and one numeric
field which will be used to hold the ISBN

You create a file with the create command You must specify the name of the file to OHbAI t
be created and the names of the fields to be used in each record The $ sign indicates
that the fiefd contains text When you have finished defining the fields of a record you
end the create command with endcreate You can create a simple book catalogue fife,
as described above, by typing in the following sequence

c r e a t e "books"
a u t h o r S
1 1 1 l e $
s u b j ect$
i sbn
endc r e a t e

Note that you do not have to type in the final endcreate command You can do so if
you want, but you can end the creation of the file simply by pressing ENTER on a blank
input line You must, however, include endcreate if you use create in an Archive program

When you have created a file it is open tor both reading and writing, but it contains AUUIIMu HhUUnUo
no records Records can be added using insert Type

inser t

and the display area will show

l o g i c a l name : m a i n
a u t h o r S :
tit le$:
s u b j e c t s :
i sbn :

All you have to do is to type in the contents of each field For example, type

B L o g g s , J
A Bon ng M a n u a I
C a n n o n M a k i n g
1234567

the display area should show

L o g i c a l name : m a i n
author! : B l o g g s , J
t i t l e S : A B o r i n g M a n u a l
s u b j e c t s : C a n n o n M a k i n g
i s b n : 1234567

Insert the record into the look" file by pressing F5 The field value will be cleared ready
for inserting another record.

12/84 17

Creating a Fie

Remember that you can also end the entry for each field and move to the next one
by pressing ENTER and that pressing ENTER after the last value will add the record
to the file

When you have finished press F1, and remember to use close or quit to save the file first

12 12/84

CHAPTER 7
SCREEN

When you use the display command on a file that you have created, the records are LMTv/U I w
shown using the standard Archive screen layout

DEFINING A
You can design your own screen layout better suited to the information in your data oUntblM LAYUU I
file Open an existing file and type in

d i s p L a y

You select screen editing with the sedtt command - type in

sedi t

The display area shows the current screen layout, which will be the one that Archive
creates automatically If there is no screen layout in the computer's memory the display
area may be blank

You will see that the values of the fields of any file are not included The spaces where
these values are normally shown are marked by rows of dots You should think of a
screen layout as a background against which the values of a number of variables are
shown in specific positions Archive shows a screen layout into two stages - first it draws
the background text and then it shows the values of the variables at the marked positions
on the screen

You are initially at the mam level of the command and you have three options

type background text into the screen
press ESC to leave sedrt
press F3 to use a screen editing command

To design a screen layout, press F3 and then C to clear the screen and make a fresh
start Press ENTER to confirm your choice, any other key will return you to the main
level of sedit.

Choose paper and ink colours by pressing either P or I and pressing any key to switch
between the four available colours Press ESC to return to the main level to enter
background text

Background text might be explanatory, such as

Andrew Young's World Gazeteer

Or it might consist of a new name for one of the fields in your file

Population (millions)

You can move the cursor to any point in the display area by using the four cursor keys
Anything that you type will immediately appear in the display area at the position of
the cursor and will become part of the background of the layout The only exception
is if the cursor is positioned within an area of the screen reserved for the display of a
variable Archive shows the name of the variable m the work area at the bottom of the
screen You cannot type background text into this area unless you first free the area
as described later.

The four screen edit commands enable you to produce attractive and colourful formats
for displaying your data Clearing the screen has already been explained You may need
to experiment to completely master the remaining three so make sure you are using
a copy of your data file which is expendable

SCREEN EDIT
COMMANDS

Suppose you want to show the value of the variable countryS at a particular position in the Mark Variable (V)
screen Move the cursor to that point and press F3 and then the V key Archive asks
you to type in the name of the variable You type

countryS

Note that this name does not appear on the screen - you are just marking the point
where the value is to be shown When you press ENTER Archive asks you to show

12 8J 13

Screen Layouts

how much space is to be reserved for showing the value You press any key except
ENTER to mark the space with a row of dots CTRL and the left cursor key can be
used to delete reserved space When you have reserved enough space you press
ENTER and Archive takes you back to the main level of sedit

If you move the cursor into one of the reserved areas (marked by dots) Archive shows
the name of the variable for which space is reserved in the work area

If you reserve space for a variable in a region which overlaps any area that is already
reserved you are given the option of cancelling the old area You can then use the
option again to allocate space for a new variable

Ink (I) Suppose you want to change the ink colour Move the cursor to the point where you
want the new colour text to start and press F3 and then the I key Archive shows the
four available colours in the control area The one that is selected will be the one that
is highlighted Press any key to change the selected colour and then press ENTER
to record your choice Any subsequent text that you type will appear in the new colour
until the ink command is used again

Paper (P) Changing the paper colour works in the same way - except that you press F3 and
then the P key

If you want a colour change to affect only part of a line, you should move the cursor
to the start of the region and select the paper and ink colours that you require You should
then move the cursor to the end of the region and make a second selection of paper
and ink colours, returning them to their original values

ACTIVATING A
SCREEN LAYOUT Once you have designed a screen layout and have left sedit the screen layout will be

active This means that the values of all the variables in the screen layout will be displayed
automatically every time Archive completes a command or a program If for example
you type the command next Archive moves to the next record of the current file and
shows those fields that are included in the screen layout Any active screen is deactivated
each time you use the els command

If a screen layout is not active you can activate it with the screen command This displays
the background text of the screen layout but does not show the current values of the
variables

SAVING AND
LOADING SCREENS You can save your screen design on a Microdrive cartridge using the ssave command

ssave " f i Lename"

where filename" is a name of your choice The screen layout is saved exactly as it
appears

You can reload the screen layout by typing in the command

s Load " f i lename"

When you load a screen layout it is automatically displayed on the screen and made
active

Archive will not automatically update an active screen layout from within a program
Suppose you want to show all the records of the current file, one after another, and tried
to do so by typing the one-line program

f i r s t : Let x=0: w h i l e x < c o u n t () : n e x t : L e t x = x+1:endwhi Le

(The while and endwhile commands cause the section of program that they enclose
to be performed repeatedly, while the condition following while is true For correct
operation every while command must have a matching endwhile)

This program would fail to do what you want since Archive only updates the contents
of the screen layout at the end of the program

14 12/84

Screen Layouts

THE SPRINT
You can, however, force a display of the values of the variables in an active screen from COMMAND
within a program using the sprint command The following one-line program will show
all the records, as required

f i r s t : L e t x = Q : w h i Le x<count C) : s p r t n t : n e x t : Let x = x + 1 : e n d w h i L e

If there is no active screen sprint has no effect

THE DISPLAY
Remember that the display command uses the standard layout It will always replace COMMAND
any screen layout with its own simple list of the fields of the current record of the current
file You must therefore ssave your screen layout before you next use display If you
do not your screen layout will be replaced and you will not be able to get it back again
except by redesigning it with sedit

CHAPTER 8

r ll\J\/tUUntO To use the examples m this chapter, first type new to clear the computer then type look
"gazet" to open the example file on your data cartridge, which is assumed to be in
Microdrive 2

The commands and functions of Archive together form a programming language which
you can use to write programs that will manipulate your files You will find that Archive
programs are simple to write

An Archive program is made up of one or more separate sections Each section is
known as a procedure which is simply a named section of program You can refer to
a procedure by its name, like the procedures which you write and use in SuperBASIC
In Archive you can run a procedure by typing its name at the keyboard When you
write a procedure you are effectively adding a new command to Archive

No procedure may contain more than 255 lines and each line must not contain more
than 160 characters

CREATING A
PROCEDURE You use the program editor whenever you want to write or change a procedure This

editor allows you to change, delete or add to the text of procedures

The program editor is described in detail in Chapter 9 but in this chapter we will look
briefly at some of its features so that we can write a few short procedures We shall assume
that initially there are no procedures in the computer's memory

Type

edit

to enter the program editor The control area changes showing that you should type
in the name of the procedure Entering the editor will always allow you to create a new
procedure if none are defined or loaded

The first thing to do, therefore is to decide what the new procedure should do Let us
start with a very simple task, to make life easier by renaming the display command
We will save typing by giving it the name 'd'

Just type

d

The left hand side of the display area now shows the name, and the right hand side
a listing of the procedure The procedure, as yet contains no commands, the proc and
endproc which mark the beginning and end of the procedure were automatically added
by Archive

The body of the procedure must be added, that is sequence of actions it is to perform

The control area shows that you can add lines of text to the new procedure In terms
of the current example this text is the display command Type

disp lay

and Archive will insert the new text into the procedure below the highlighted line If you
have followed this example the display will contain

d proc d
d isp lay
endproc

You could add more lines of text - each line would be inserted below the highlighted line

In this case, however the procedure is complete so you can leave the edit command
by pressing ESC twice

All you have to do to use the procedure is type its name, foilowed by ENTER This new
procedure will perform the same function as typing the command display in full

LISTING AND
PRINTING

PROCEDURES Whenever you call the edit command you are shown a list of the names of all the defined
procedures present in the computer's memory

16 12y84

Procedures

You can list any one of these procedures from within edit by pressing the TABULATE
key to move down the list or the SHIFT and TABULATE keys together to move up the
list until the particular procedure name is highlighted The procedure is automatically
listed at the right hand side of the screen If the procedure is too long to fit in the display
area, you will be shown the first part and you can then scroll up and down through
the procedure using the up and down cursor keys When you have finished you can
leave the edit command by pressing ESC

If you want a printed listing of your procedures you can use the Hist command Type

Hist

and all the procedures currently in the computer's memory will be listed on a printer

WARNING: Do not use this command unless a printer is attached since this will cause
the program to "hang"

SAVING AND
LOADING

If you want to keep the procedures that you have defined, you can use the save PROCEDURES
command This stores all defined procedures in a single named file on Microdrive
cartridge If you want to save the new display procedures that you have just defined
in a file called "myprocs" you should type in

s a v e "myprocs"

At any later time you can bring these procedures back into the computer's memory
by typing

Load "myprocs"

The load command deletes any existing procedures in memory before loading the new
ones from the Microdrive cartridge If you want to add the new procedures to those
already in memory, you can use the merge command. For example

merge "myprocs"

This works like load, except that the existing procedures are not deleted If a new
procedure has the same name as an existing one, the new one will replace the old
version

EXAMINING FILE
Renaming commonly used commands with single-character names is one way of making RECORDS
life easier for yourself. An alternative would be to write a longer procedure to replace
several commands by single key presses Try using the edit command to define the
following procedure It allows you to open and examine any of your data files, providing,
of course, that the file you wish to use is not already loaded

If you have already defined a procedure, typing

edit

will not automatically give you the option to create a new procedure. From within edit
you must press F3 and then the N key to start a new procedure.

Don't worry if you make a few mistakes while typing in the example - you will learn /
how to correct them in the next chapter

12/84 17

Procedures

proc v u f i L e
els
input "whi ch fi Le' ";fite$
Look fUe$
ch sp Lay
Let key$="z"
whi Le key$<>"q"

spri nt
Let k e y $ = L o w e r (g e t k e y ())
i f key$ - " f " : f i r s t : end i f
i-f key$="L" : L a s t :endt f
i f key$="n" :nex t rend i f
i f key$="b" :back :end i f
endwhi Le

c Lose
endproc

Remember that you leave edit by pressing ESC twice

You can use the procedure by typing

vuf i Le

It will first clear the display area and then prompt you to type in a file name such as
'gazet" If "gazet" is already loaded, however, you wit! receive an error message To recover,
type new and load and run the procedure again When you have entered the name
of one of your data ftles the procedure will open that file in read-only mode and display
its first record It will then wait for you to press a key and will respond to the keys f,
I, n, b or q The first four of these will cause the appropriate display action (first, last,
next or back) and pressing the q (quit) key will close the file and end the procedure

Since this is the first program of any great length that we have written, a few comments
might prove helpful First note how the example is indented to clarify the structure of
the procedure There is no need for you to type it like this, the indents are added
automatically as you write, fist or print the procedure

The main part of the procedure (waiting for a key to be pressed and performing the
appropriate action) is enclosed between while and endwhile commands This repetitive
loop will only be left when the condition following while is false in this case, when you
press the q key

The if command used several times within this loop, also requires that each if has a
matching endif to mark the end of the sequence of instructions to be executed if the
condition is true. If and endi* are separate commands and can be used on different
Itnes We could, for example, have written the first of the if statements in this procedure as1

if key$="f"
f i rst
endi f

You may include several lines of statements between if and endif; they will all be executed
provided the condition following if is true In the vufile procedure these statements are
sufficiently short that each can be written on a single line, using the colon to separate

-the individual statements

As you can see, a sprint command is used within the mam loop of this procedure to
make sure that each new record is shown on the screen Remember that, although
the display commands (first, last etc.) always move to the correct record, the data in
the display area is not automatically changed until the end of the procedure. If we had
not included the sprint command, no information would have been shown in the display
area until you pressed the q key to leave the procedure In that case all you wouid see
would be the result of the last of any sequence of keypresses that you have made

18 12/64

CHAPTER 9

This chapter describes the program editor We shall include a few simple examples but CUI I IIM V3
the best way to learn is by using them yourself Start by typing new to clear the computer's
memory

When you have read this chapter you could try writing a few simple programs of your
own or you could try modifying the procedures you typed in while working on the last
chapter If you want to use longer examples you could use the editor to type in all or
part of the programs in the following chapters

THE PROGRAM
You enter the main level of the program editor with the edit tlJI lUn

As an example we can create a procedure and add a couple of statements to it From
the main level of edit press F3 and N to create a new procedure Type in test when
prompted for the name of the procedure

Press ESC twice to leave the editor without adding any statements Then use the edft
command again If you have no other procedures loaded, the screen will show

test proc test
ertdproc

If the procedures you created in the last chapter are still loaded then test is highlighted
on the left as the current procedure among these other procedures Press F4 to insert
lines of text The line containing proc will be highlighted

Now type

print " this is a tes t " ! ENTER]
print " there are two s ta tements" I ENTER 11 ENTER I

Pressing ENTER twice in succession takes you out of insert When you have finished
the screen will look like

test proc test
print "this is a test"
print "there are two statements"
endproc

The line containing the second print statement is highlighted

Remember that until you press ENTER you can use the line editor to correct any text
that you type However, once you have pressed ENTER the line is inserted into the
procedure To get it out again to edit it you must press F5 Pressing ENTER will then
replace the old line with the new line

You are not allowed to edit the endproc statement at the end of the procedure You are
also not allowed to edit the word proc but you may edit the rest of the contents of this
line You can, therefore, rename a procedure by using the line editor to delete the old
name and replace it with a new one The list of procedures at the left of the screen
is rearranged automatically to keep the procedures in alphabetical order

There are four separate editing commands which you will have noticed in the command Editing Commands
section when creating a new procedure You can select one by pressing F3 and then
typing the first letter of its name

You type in the name of the procedure you want to create If you type in the name of New Procedure (N)
an existing procedure, you will not be allowed to create a second procedure but will
be offered the option of editing the existing procedure

When you press ENTER at the end of the name the new procedure becomes the current
one, listed at the right of the screen You are presented with an empty procedure -
that is, one containing only the proc and endproc statements

This command deletes the current procedure from your program You must first select Delete Procedure (D)
the procedure you want to delete by using the SHIFT and TABULATE keys as described
earlier, to make it the current procedure You then select the command by pressing F3
and then the D key

You must press ENTER to confirm that you really do want to delete the procedure If
you change your mind at this stage you can press any other key to go back to edit
without deleting the procedure

12/84 19

Editing

8e careful when you use this command since there is no way to restore a deleted
procedure, except by typing it in again.

Cut (C) This command removes one or more fines of text from the current procedure The text
that is removed can be inserted in another position, or even in another procedure, by
means of the paste command

Before you select the command you should use the up and down cursor keys to make
the current line either the first or the last line of the section you want to remove You
can then select the command by pressing F3 and then the C key

If you then press ENTER the current line will be removed from the procedure Alternatively
you can use the up or the down cursor key to move the cursor to the other end of a
section of text that you want to remove The region of text that will be removed is marked
by highlighting When you have marked the text you want to remove you should press
ENTER Archive will immediately remove the marked text

Paste (P) This command inserts the text removed by the fast use of the cut command into the
current procedure below the current line The text can be inserted in another position,
or even in another procedure

Before you select the command you should, if necessary use the SHIFT and TABULATE
keys to select the procedure in which you want to insert the text You should also use
the up and down cursor keys to highlight the line immediately above the position where
you want to insert the text

Archive immediately inserts the text underneath the current line When you have used
paste to insert the text, the paste buffer is empty You can not, therefore, insert the same
text in more than one position

20 12/84

CHAPTER 10
PROGRAMMING

This chapter will describe the development of an actual working example and each new 111 Anvlll VU
technique will be described as it is needed

Suppose you are involved in running a club or society which charges a subscription
and produces a newsletter You will need to send a copy of each issue to every paid up
member You will also need to send a reminder to each member when his or her
subscription falls due

This example allows you to construct a mailing list and then print a set of address labels
on request The address label includes a reminder when a subscription is due The
example assumes that you send out six issues of the newsletter per year and that a
person's subscription falls due when he or she has received six issues It could easily
be adapted to any situation where you regularly send out some form of circular letter
to a number of people on a mailing list

In this example we shall make as much use as possible of the existing facilities and A MAILIlNu Lib I
introduce some new ones If you need help with a feature or command you have not
yet encountered, or one that seems to do things you dont understand, you may now
find it quicker to look for help in the reference section or use the help function by pressing
F1 We use the insert and alter commands for all additions and changes to the file
records We shall, however need to write special routines to print out the address labels

We shall have to cater for the following set of requirements

Add a new record to the file
Delete a record
Modify a record
Record subscription payments
Produce the address labels.
Leave the program

We shall write a procedure to handle each of these tasks and link them together by
another procedure which will allow you to select any of these options

In this application it is quite clear what fields each record must contain The name and
address are essential plus one field to record the number of issues the person has
received We can create the necessary file immediately, as shown below

create "mai I"
titles
fnameS
surnames
st reet$
townS
countyS
postcode!
i ssues
endcreate

We have used three string fields for the persons name, to hold the title (Dr, Mr, Mrs etc),
the first name and the surname respectively We could probably have managed with
just a single field

There are four string fields for the address nominally reserved for the street address,
the town, county and postcode You do not always have to use them in this way, but
can treat them as four general fields to hold the address Four fields should normally
be quite sufficient

There is only one numeric field, to hold the information about how many issues remain
to be sent.

Now that we have the file, we can use it to test the various procedures as we write them
It is a good idea to test each procedure as far as possible as you go along You can
then spot each mistake as it occurs and correct it immediately If you leave all the testing
to the end it will be much more complicated as several things may be going wrong
at the same time, Keep things as simple as possible while you are still testing your
procedures. Try to make sure that each procedure works correctly before you move on
to the next one That way you will find that your final program will usually work as soon
as you have written the last procedure

12/64 2l

Programming

Insertion We do not need to write a procedure to add a record We can use insert Remember
that you must use sprint to force the display of the contents of the record from within
a procedure You can use insert immediately to add a few records to the file so that
you can test the other procedures on a real file

Deletions At some time you will want to remove the records of people who have not renewed
their subscriptions We shall write a procedure, wipe, which allows you to scan through
the file, examining the records of all people who have not renewed, and to decide which
should be deleted

We shall use the field variable issues to hold the number of issues that a person is entitled
to receive Alt records for which the value of issues is zero are therefore candidates for
deletion

proc wipe
rem ***** delete non-paying subscribers *****
cLs
di splay
select issues =0
al I

spn nt
print at 10,0; "DELETE (y/n)' ";
let ok$ =lower(getkey())
print ok$
if ok$ ="y"

delete
print "DELETED"; tab 15
else
print tab 15
endi f

enda 11
reset
endproc

Since a deleted record cannot be recovered, the full contents of the record are displayed
and you are asked to confirm that you really want to delete it We use the getkeyQ function
which waits for a key to be pressed and then returns the ASCII code of that key Note
that !ower() converts the code to the lower case character so that you can type the letter
in either upper or lower case.

Once you are satisfied you have correctly entered this procedure, you may try it out
on your file, (provided, of course, that you have entered some test records) First, leave
edit by pressing ESC (twice if necessary) and save your procedure in a file called "Maillist"

Type

save "Mai I li st"

The procedure called wipe is now stored and can be called whenever "Maillist" is loaded

After entering each of the following procedures, repeat these steps, each time storing
the new procedure in 'Maillist"

Payments You will normally want to record a batch of subscription payments from a list of names
and addresses. You will therefore need to get the record of a particular person The
quickest way is to write a separate procedure, getrec, to locate a particular record and
then incorporate it in a pay procedure.

The getrec procedure asks for a text string (n$) and then locates the first record in the
file which contains that text. If you reply by just pressing ENTER, n$ is set to the empty
string and no search is made This will, however, indicate that you have finished recording
payments

22 12/84

Programming

From the edit level, press F3 and N to start entering getrec

proc g e t r e c
rem ***** Locate a p a r t i c u l a r record *****
els
let ok$ ="n"
input "who9 "; n$
if n$ <>""

find nS
w h i l e ok$ <>"/" and foundO

print title$; " "; fnameSCD; " "; surnames
print streets
print "OK (y/n)' ";
let ok$ =Lower(getkeyO)
els
if ok$ <>"y"

continue
endi f

endwhi le
if not foundO

print n$; " not found"
endi f

endi f
endproc

The search uses the find command, so that the text is found in any string field You
can therefore identify a record by name or by address. Of course, the first record which
matches may not be the one you want, so we have to be able to continue the search
This is the purpose of the while endwhile loop This prints out the name and first line
of the address, to identify the record, and asks you if that is the right record. If you do
not respond by pressing the Y key, it continues the search The loop ends either when
you answer by pressing the Y key or when the text is not found in any of the remaining
records Note that the function found() returns a true (non-zero) value if the search is
successful

Since ok$ could initially be "y" (from a previous successful search) we must give it some
other value at the beginning of the procedure, before entering the loop This makes sure
that the loop will be used at least once

We can now write the pay procedure-

proc pay
rem ***** record subscription payment *****
els
let n$ ="x"
w h i l e n$ <>""

getrec
if ok$ = "y"

let issues =issues +6
update
endi f

endwh i Le
endproc

The loop in this procedure continues until n$ is an empty string This allows you to record
several payments without having to select the pay option for each one. When you have
finished, just press ENTER in response to the "who9" prompt. If the value of okS is 'V"
after the call to getrec then the payment is recorded by marking it as valid for a further
six issues

Again we have to set the initial value of n$ to some appropriate value (anything except
the empty string) to make sure that the procedure is not affected by a previous operation

The procedure to allow you to change the contents of a record is now very easy Again Changes
you must be able to select a particular record to change, so the general structure can
be identical to pay

12/84 23

Programming

proc change
rem ***** alter record *****
Let n$ ="x"
cLs
w h i l e n$ <>""

getrec
if ok$ ="y"

alter
e l s
endi f

endwhile
endproc

PARAMETERS We shall now take a short break from the development of the program to describe the
use of parameters with procedures You can use a parameter to pass a value to a
procedure, rather than using the value of a variable We shall show you a few examples
of how they can be used You do not need to save these procedures in 'maillist" and
you may delete them before moving on to the section of the program which deals with
labels

Try the following simple example Using the line editor, you add the parameter to the
line containing the procedure name

proc test; a
print 5*a

endproc

This defines a procedure called test which requires one parameter, 'a" Notice that the
parameter is separated from the name of the procedure by a semicolon Whenever you
use the procedure you must always supply a value for the parameter For example, you
could type

test; 3

which will print the value 15 - the number (3) has been passed to the procedure as
the value of the variable a

You may specify any number of parameters for a procedure, provided you separate
them by commas For example

proc t r ia l ; a ,b , c
print a * b * c

endproc

which you can call by

t r ia l ; 3 ,4 ,5

The values you supply do not have to be literal values, but could be variables, as shown
below

Let x = 2
Let y = 5
Let z = 7
t r ial ; x , y , z

Note that the names of the variables do not have to be the same as the names used
within the procedure We can distinguish between the forma/ parameters (eg a b,c) in
the definition of the procedure, and the actual parameters which are the actual values
that are passed to the procedure

You can also pass the results of expressions

t r iaL ; x *2 ,z /y , (z -y) *x

You are not restricted to using numeric variables but can also pass strings (or string
expressions) as parameters, provided you specify string variables in the definition of the
procedure. For example

24 12/84

Programming

proc try; a $
print a$

endproc

let t$ = "message"
try; tS

The only requirement is that the number and types of parameters supplied must match
the list of formal parameters in the definition of the procedure

The reason for the brief interlude about parameters is that they give a neat way of writing Address Labels
the procedure to print an address label For the purposes of testing we shall first write
the procedure to show the addresses on the display and later convert it to send the
output to the printer We shall assume that the labels are eight lines of print-out in length.
If this is not right for your printer and label combination you will have to change the
number of lines of space in the procedure so that it matches your requirement Remember
to start saving your procedures in "Maillist" again

First we shall write a procedure that displays a single line the contents of which are
passed via a parameter ,

proc doline; x$
pri nt x$
endproc

We can now use this procedure to display eight lines of text for the address label

proc dolabel
rem ***** print labels *****
if issues

if issues =1
do line; "REMINDER - Subscription Now Due"
else
dotine; ""
endi f

doline; ""
doline; titles +" "+fname$ (1)+". "+surname$
doline; streets
doline; town$
doline; countyS
doline; postcodes
doline; ""
let issues =issues - 1
update
endi f

endproc

The procedure includes a reminder in the address label if the person is about to receive
his or her last issue. Each time a label is printed, that person's issue count is reduced
by one If this number has reached zero then the label is not printed

You can begin to see how useful parameters can be - without them this procedure
would be much longer. Look how easy it is to combine the title, initial and surname for
the first line of the address.

Perhaps you are wondering why we went to the trouble of defining doline when we
could have just used print statements throughout dolabel. The reason is that the routine
in its present form shows the addresses on the display screen We can convert it to
send its output to the printer merely by changing one line in doline, instead of having
to change every print statement in dolabei All we need to do is change doline to read-

proc doline; x$
L p r i n t x $
endproc

12/84 25

Programming

Finally we can write the procedure to print all the address labels

proc despatch
cLs
a l t

do Label
enda LI

endproc

Leaving the Program The final option is to leave the program when you have finished This procedure can
be very simple - ail it has to do is to make sure that the file is dosed properly before
returning control to the keyboard We have also added a short sign off message to make
it clear that the program has ended

proc bye
c L o s e
print "bye"
stop endproc

bHKUnO It is quite likely that sooner or later you will make an error while using this program
You may, for example accidentally press the ESC key or you may type in some text
when a number is expected This type of mistake is detected by Archive and normally
results in the display of an error message and a return from your program to the keyboard

You can use the error command to mark a procedure to be treated specially if any error
is detected Any error occurring in the marked procedure or any procedure that it calls
results in an immediate premature, return

The normal method of handling errors is switched off for the marked procedure and
it is left to you to decide how to deal with it You can find out the number of the last
error that occurred by using the errnum() function You can use it to read the error
number more than once as the value is only cleared to zero by the next use of the
error command If no errors have occurred since the start of the program, or since the
last time error was executed then errnum() will return a value of zero

This method, although not easy to understand at first gives you a very powerful and
flexible control of how to deal with errors The following example shows a typical way
of using error It gives you an error resistant method of inputting a number

proc dotest
input x
endproc

proc test
Let n =1
whi Le n

error dotest
Let n = errnumO
if n

print "You made error number " ;n ;", try again"
endi f

endwhiLe
endproc

The first procedure simply waits for your input to the variable x The second procedure
handles any error during the execution of the input procedure If any error occurs within
dotest it will be terminated prematurely and the error number will be set This number
is then read by errnum{) and if it is non-zero, the error message is printed (this error
message could, of course, be anything you like) Since these statements are enclosed
in a while endwhile loop any error will cause them to be executed again The error
number is cleared by error ready for the next try You can not leave test until you have
typed in a valid number

This example reports the number of the error that was detected On most occasions
you will not be concerned about which error occurred The main use of errnum() is
to differentiate between there being no error and there being a detected error of any
type A list of error numbers and possible explanations is included in the Reference
chapter

We can now write a procedure which will allow you to select any one of the six options
with a single keypress It is sufficiently simple that no explanation is necessary

26 12 64

Programming

proc choose
rem ***** choose an option *****
cLs
print
print " Add Despatch Pay Change Wipe Quit";
print "' ";
Let choices - lower(get keyO)
print choiceS
if choices ~"a" insert : endif
if choicel ="d" despatch : endif
if choices ="p" pay : endif
if choices ="c" change : endif
if choices ="w" wipe : endif
if choiceS ="q" bye : endif
endproc

All that remains to be done to complete our program is to write a start-up procedure
which opens the file and calls choose We must include choose in a loop so that you
are offered the options again, each time you complete your previous selection

You will see that the while endwhile loop in the following procedure will never end Such
a loop will only come to an end when the expression following while has a zero value
In the above procedure the expression always has the value 1, so the loop will continue
indefinitely The only way of leaving this loop is to choose the Quit option The stop
command in bye immediately returns control to the keyboard

proc s tar t
***** rem start procedure *****
cLs
open "newmai (. .dbf "
w h i l e 1

error choose
Let n =errnumO
if n

print "Mistake - Press any key to continue"
Let jn$ =getkey()

endi f
endwhi Le

endproc

Within this loop is a sequence of statements which handles any errors, using a similar
method to that described in the previous section. If you make a mistake the program
will not continue until you press a key This allows you to look at what you have just
done so that you can find out how you made the error

THE RUN
The main procedure in the mailing list program is called 'start" This is so that you can UUmMAINU
use the run command when using the program We have already used this command
when we used the "loader" program to load the "gazet" data file

Save this final procedure in "maillist" When you want to run the program you will need
to load the procedures into the computer's memory and then execute the main procedure,
which wilt call all the others One way is to use the load command and then type m
the name of the main procedure, for example.

Load "mai L L i st"
s tar t

The run command will load a named program and then automatically execute the
procedure called "start1 (if it exists) You can run the program exactly as in the previous
example just by typing

run "mai L L i st"

The remaining two sections of this chapter include some general purpose procedures
which you may find useful

Most variables that appear in procedures are global. This means that they are recognised LUC/AL VAHlADLbo
throughout the program. They may be used or changed in any procedure and not just
the procedure in which they are first assigned a value

T2 84 27

Programming

The variables used as formal parameters in a procedure are local variables and they
are not recognised outside the procedure in which they appear

The following example may help to make the distinction clear Before going on, type
new to clear the computer's memory First we create a procedure which uses two local
variables a and b$ as well as assigning values to two normal (global) variables u and v$

proc demo; a,b$
pri nt a,b$
Let u=3
Let v$="text"
print u;v$
endproc

Then we use demo

demo 5;"words"

All four values are printed showing that all four variables are recognised inside demo
Typing

pn nt u; v$ '

shows that both of these variables are also recognised outside the procedure However,
typing

print a,b$

results in an error because a and b$ are not recognised outside demo All formal
parameters are local variables, but you can also declare other variables to be local, as
in the following example

proc dumbo
print "inside dumbo"
print p; q; r
endproc

proc dummy
L o c a L q,r
Let p = 2
let q = 3
Let r = 4
pri nt "ins ide dummy"
print p; q; r
dumbo
endproc

If you attempt to use dummy by typing

dummy

you will find that the values of p, q and r are all recognised {and therefore printed) in
dummy, but dumbo does not know the values of q and r, which are local to dummy

The values of local variables are not defined anywhere except in the procedure in which
they are declared - not even in procedures called from the declaring procedure The
variable p is giobal and is recognised everywhere

You may be wondering why local variables are necessary To illustrate their usefulness,
suppose you write a program containing several procedures that you, or someone else,
originally write for use in other programs it is quite possible that two or more of these
procedures might use variables with the same name for quite different purposes If these
variables were global then one procedure could alter a value so that it would be wrong
for another In such a situation you would have to check all the procedures that you
use and, if necessary, change the names of the variables If, however, the variables were
local it would not matter if they had the same name Provided they were in different
procedures, changing one would have no effect on the other.

Furthermore, it does not matter if a procedure calls another which uses the same name
for a variable - provided at least one of them is local For example, the procedure choose
in the section on errors, earlier in this chapter, declared the variable choices to be local
This means that there is no need to check whether any of the many procedures called
by choose also use choices - the called procedures cannot change the value of choices
in choose

28 12/84

Programming

Displaying a prompt and waiting for a key to be pressed is one of the most commonly PROMPTS
needed actions, so it is worth writing a general-purpose procedure The procedure must
be able to display a wide range of messages A simple way of allowing the procedure
to print any message is to pass the message to the procedure in the form of a parameter

proc prompt; m$
pri nt m$ + " : ";
Let x$ = lower(getkeyO)
pri nt x$
endproc

The message to be displayed ts passed to the procedure as a parameter in the local
variable m$. The function getkeyf) waits for a key to be pressed and returns the ASCII
code for the key In this procedure the ASCII code is converted to lower case by the
function lower(), so that the result is independent of upper or lower case Finally the
resulting value is assigned to the variable xS This is a global variable, so that the key
that was actually pressed is available to any other procedure in the program

A useful procedure is pause It uses prompt to print a message and then simply waits PAUSE
until a key is pressed. Since you are not usually interested in knowing which key was
actually pressed, it uses a local variable, y$, to preserve the original contents of x$

proc pause
rem ***** wait for any key *****
Local y$
Let y$ =x$
print
prompt; "press any key to continue"
Let x$ =y$
endproc

DATA ENTRY
Accepting text as typed input is quite simple Any collection of characters is a valid text Text
string (even if it does not make sense) and will not cause an system error You will not
normally need to take any special precautions when accepting text input. It will usually
be sufficient to use a line such as the following, which asks you to type in your name

input "PLease type your name: ";name$

Note that a space is included as the last character of the prompt text, this small point
makes a lot of difference to the appearance of your program when you use it

You can input several items with one input statement. All you have to do is to include
all the prompts and variable names, separated by semicolons

input "Your first name7 "; fname$;"Your surname' ";sname$;

This last input statement also ends with a semicolon - this stops the cursor moving
to the following itne after you have typed your input

When you use the input command to enter text to a string variable the computer will Numbers
accept anything that you type, without complaint If, however, you try the same thing
with input to a numeric variable you will get an error message if you type anything except
a valid number Assuming that you do not want to leave your program every time your
finger slips while you are typing in a number, you must make sure that your program
can cope with such errors.

The most useful way is to make use of the error command, which was described earlier
The following procedure, for example, will accept any valid number within a specified
range. It even provides the display of any prompt message you want to appear.

12/84 29

Programming

proc getnum; m$,min,max
rent ***** get number in range *****
local wrong
let wrong=1
whi Le wrong

print m$; "? ";
error readnuffl
let wrong=errnumO
i f not wrong

if num<min or nu)ti>max
let wrong=1
print "Allowed range is ";min;" to ";max
endi f

endi f
if wrong

print "Try again"
endi f

endwhile
endproc :

Since error must be followed by the name of a procedure, we define readnum to input
a value for the variable num

proc readnum
input num
endproc

Suppose you want a procedure that checks that a number is within the range 1 to 10
You can do this using getnum in the following way

proc check
getnum; "Numeric va lue7",1,10

endproc

CHAPTER 11
USING

This chapter extends the explanation of how to use the Archive programming language 'WUI II LU
by describing how to work with two or more open files When you have more than one CM CO
file open at the same time you must be able to identify which file you want to use for I ILCw
any particular operation You must give each file a unique logical file name when you i f\f\ir\p.\
open or create it and then refer to it by that name in all commands that refer to the file LUblOAL

Archive automatically supplies the logical file name "main" when you open a single file rlLt
It is called a logical file name to distinguish it from the physical file name - the name M AlUlpO
you give to the file when you save it INnlVICO

Since a program refers to a file by its logical file name you can write a program that
will work with several different files

Logical file names are essential for multiple file operations since you can only open a
second file by using both its physical file name and its logical fife name Note that the
logical file name is not saved with the file when it is closed and must be specified each
time the file is opened

Two or more data files could contain fields with the same name When this happens
you can identify the file to which the field belongs by adding the logical file name to
the field name For example, if the field countryS appears in two files whose logical file
names are "main" and 'b" you could refer to each of them respectively as "main countryS'
and "bcountry$'

CHANGING THE
RECORDS OF A

The first example demonstrates how to add, delete or rename fields within an existing file FILE

Suppose that you want to make some changes to the "gazet" file, to create a new file
containing only European countries The "continents" field becomes irrelevant and we
need not include it We shall also rename the "pop" field as "population1

The most convenient way of changing the file is to create a second file containing the
fields you want and then to copy the required records from the old file to the new one
Let us call the new file europe" The following procedure will do the rest of the work

proc s ta r t
rent ***** create europe f i l e *****
create "europe" logical "e"

count ry$
capitals
languages*
currencyS
popuI at ion
gdp
area
endcreate

Look "gazet" logical "g"
select continent$="EUROPE"
all "g"

print at 0,0;g.country$;tab 30
Let e.country$=g.country$
Let e.capital$=g.capita1$
Let e . language$=g.Languages
Let e.currency$=g.currency$
let e.popuLation=g.pop
Let e.gdp=g.gdp
let e.area=g.area
append "e"
enda L L

close "e"
close "g"
pri nt
print "DONE"
endproc

1284 31

Using Multiple Files

THE CURRENT FILE You can see, from this example, that you can use the same name for a field in both
files - they can be distinguished by including the logical file name If you do not include
the logical file name then it will be assumed that the current file is to be used The last
file to be opened automatically becomes the current file In this example the current
file will be "gazet1 (with logical file name "g") so we could make use of this by simply
writing the g before the field name in the previous program

If you do not include the logigal file name in any case where it is optional, Archive will
assume that the command refers to the current file It is usually safer to include the logical
file name explicitly, to avoid any possibility of confusion

You can, at any time specify the current file by means of the use command If you
included the command

use "e"

in the above example then "europe" would be the current file unttl you changed it again
either by opening another file or by means of the use command

olUUfx UUIM I HUL Now for a more complex example in a stock control system you will need to

Find information on a particular stock item
Obtain a report on the current stock levels of all items
Record sales and modify the stock records accordingly
Order new supplies to maintain adequate stock levels
Record deliveries of stock

You will obviously need a file to hold the details of all items held in stock and it is convenient
to have a second file to hold details of all your suppliers You wifl need to be able to
access either file from the other - for example you may want to know all the possible
suppliers of a particular item, or to find out what items are supplied by a particular
company

In order to keep the application as simple as possible we shall not use the menu-driven
approach of the examples in the previous two chapters We shall write it as a series
of separate commands which can be used - like the standard commands - by typing
their names

Since the procedures will be strongly dependent on the file structure we use, we must
first give some thought to their appearance

The Stock File The stock file must contain full details of the stock situation for each item The following
list explains all the fields we shall use

Field Name Use Example

stocknoS The internal stock code A101
descr ip t ions Item description W i d g e t , La rge
qty Number in stock 500
s e L t p r Selling price 1.25
reorder lev Reorder when stock 200

level falls below this value
buy qty How many to order 400

We can create the file by

create "stock" L o g i c a l "sto"
stocknoS
descri p t i o n $
qty
reorder Lev
seL Lpr
buyqty
endcreate

The Supplier File This file holds the names, addresses and telephone numbers of the companies that
supply the goods you sell It will be useful also to include the name of a contact person
in the company In order to be able to access this information efficiently we shall include
a code for each company We shall use the following fields

32 12/84

Using Multiple Res

Field Name Use Example

conameS The company's name Wonder Widgets pLc
s t r e e t s First line of address 27 Belmont House
towns Second line of address LIVERPOOL
countyS Third line of address Herseyside
postcodes Last line of address L31 2HK
c o n t a c t s Name of a contact Andrew Cummins
t e L $ Telephone number 051-5327133
codes Your code for the a

company

We can create the file by

create "supplier" L o g i c a l "sup"
conameS
streets
townS L

countyS
postcodes
contacts
tel$
codeS
endcreate

This file forms the link between the previous two files It uses the following fields The Orders File

Field Name Use Example

s tocknoS Your stock code A101
codeS Your code for the a

supplier
scode$ The supplier's code 123-456

for the item
pr i ce The supplier's selling 0.87

price
de l i ve ry The suppliers delivery 28

time, in days

Each record in this file links one record in the stock file with one record in the supplier
file The above example shows that Wonder Widgets (supplier code "a") can supply you
with large widgets (stock code "A101") In addition, we include details of the price, delivery
time and the supplier's own stock code These items are useful when you order more
stock

Using this file allows you to cater for the cases where one supplier supplies more than
one stock item (equal values for codeS, but different values for stocknoS) and where
one stock item is obtainable from several suppliers (equal stocknoS but different code$)

Create the file with,

c r e a t e "orders" logical "ord"
s tocknoS
code$
scodeS
pri ce
de L i very
endcreate

Having created these files, we now need some procedures to handle the information Enquiries
they will contain You will find that the most frequently needed facility is to find information
about a particular stock item in response to customer enquiries You will need to find
the information as quickly as possible, but may need to find a particular record from
either the part number or the description We shall therefore use the find command
so that you can give any valid text to start the search

12/84 33

Using Multiple Files

The procedure must be able to ask for you to confirm that the record is the one you
require. We shall delegate this task to a separate procedure, so we can use it in different
situations if necessary.

proc confirm
print : print "Confirm (y/n)";
Let yes=Lower(getkey())="y"
els
endproc

It leaves the variable yes containing 1 if you press the Y key - otherwise the value
is zero. Note the use of the = sign for assignment and also in a logical condition

proc i nqui re
rem ***** inquire stock item *****
pri nt
input "Stock item? "; name$
use "sto"
find nameS
Let yes=0
whi Le foundO and not yes

di spLay
spH nt
confi rm
if not yes
continue
endi f

endwhi Le
i f not found ()

print
print nameS; " does not exist"
endi f

endproc

This procedure merely locates the correct record. A more usable procedure for
interrogating the stock file is query:

proc query
i nqui re
c Lear
endproc

This uses another procedure, clear, which waits until you press a key, clears the screen
and then prints a list of the commands you can use. We shall leave this procedure until
we have written the procedures it must list. Remember to leave edit from time to time
to save these procedures as you enter them.

Stock Report We can also write a simple procedure to produce a general stock report.

proc report
rem ***** stock report *****
c L s
print tab 2; "ITEM"; tab 11; "CODE";
print tab 20; "QUANTITY"; tab 31; "PRICE";
print tab 40; "STOCK VALUE";
print
Let totaL=0
use "sto"
a L L

print description$(to 10);tab 11;sto .stocknoS;
tab 20;qty;

print tab 31;"£";setLpr; tab 40;"£";seLLpr*qty
Let totat=total+selLpr*qty
enda L L

print
print "TotaL stock value =£"; total
clear
endproc

34 12'84

Using Multiple Files

All we need to do to record a sale is to subtract the number of items sold from the Recording Sales
relevant stock record. It is advisable to include some form of confirmation that we are
dealing with the right stock item and that the stock is sufficient to meet the order

proc quantity
rem ***** print items in stock *****
i nqui re
print
input "How many7 "; num
pri nt
els
print num;" * ";sto.stocknoS;" (";sto.description$;")"
endproc

proc sale
rem ***** process sale *****
quant i ty
i f num<=sto -qty
print "Order value:- £"; num*sto.seIIpr
confirm '
if yes

let sto.qty=sto.qty-num
update
sprint: rem *** show the modified record ***
endi f

e Lse
print "Not enough stock"
endi f

c lear
endproc

Recording Incoming
The following procedure allows you to record the delivery of stock Again it requests Stock
confirmation of the details you type in before accepting them and updating the relevant
stock record

proc delivery
rem ***** in case stock on delivery *****
quant i ty
confirm
pri nt
if yes

print "Accepted"
let sto.qty=sto.qty+num
update
spri nt
else
print "Delivery not recorded"
endi f

c Lear
endproc

So far our procedures have only referred to the stock file When we want to order more Ordering New Stock
stock we shall have to refer to the supplier and orders files for the name and address
of the company, the price, and so on

Assuming that we have identified the item in the stock file (with inquire) we select, from
the orders file, those records that have the correct stock code These records contain
the codes for all the companies that can supply the item Since the records also contain
the price and delivery time for each supplier, we can decide whether we want the
cheapest item or the shortest delivery time

We use locate as a fast way of finding the required supplier record This means that
the supplier file must be ordered (with respect to the supplier code, code$) before we
use doorder

12/84 35

Using Multiple Res

proc doorder
rem *****order new stock *****
i nqui re
use "ord"
select sto.stockno$=ord.stocknoS
print
print "fast or cheap (f/c)";
if lower(getkeyO)="f"

fast
else : cheap
endi f

Let ycode$=scode$
reset
use "sup"
Locate comp$
doform
print
print "Expected delivery is ";del;" days"
c Lear >
endproc

The procedure cheap finds the supplier with the lowest price, and fast works in the same
way to find the supplier with the shortest delivery time,

proc cheap
rem ***** find cheapest *****
use "ord"
let pri=price
Let comp$=code$
Let del=delivery
a l l

if price<pri
let pri=pn'ce
let compl=code$
let del=delivery
endi f

endalL
endproc

proc fast
rem ***** fastest delivery *****
use "ord"
let del=delivery
Let comp$=code$
Let p r i=pr i ce
all

if delivery<del
Let del=delivery
Let comp$=code$
Let pri=price
endi f

enda IL
endproc

The procedure doform produces the actual order form. You should modify it to your
own requirements. We shall use a simpie version which shows the order details on the
screen.

proc doform
rem ***** produce order form *****
cLs
print
print sup.conameS
print sup.streets
print sup.countyS
print sup.postcodeS
pr i nt
print "P lease supply "; s to.buyqty;

36 12/84

Using Multiple Fies

p r i n t " * part number ";
p r i n t ycode$
print "("; sto .description$; ") ";
print "at £"; pri; " each."
print
print "Total value: £"; sto.buyqty*pri
endproc

The final command that we need is one to close all the files when we have finished
using them

proc bye
conf i rm
if yes

els
print : print "bye"
close "sto"
close "sup"
close "ord"
cLs
endi f

endproc

We can now write a short procedure to run the application It must open all three files
with the correct logical file names, clear the display and show you the additional
commands that you have Note that, in normal use, the stock file is the only one whose
records will need to be changed. The other two files are opened as read only files. It
also orders the supplier file so that we can locate a company by its reference code.

proc start
c Is
print at 5,5; "STOCK CONTROL DEMONSTRATION"
print
open "stock" logical "sto"
look "supplier" logical "sup"
look "orders" Logical "ord"
use "sup"
order codeS; a
c Lear
endproc

Finally we can write clear, which simply clears the screen and shows a list of the extra
commands available

proc c Lear
rem ***** c l e a r s c r e e n and ge t c o m m a n d * * * * * '
local x$
print
print "Press any key to continue ";
let x $ = g e t k e y C)
e l s
pri nt
p r i n t "Query Report D e l i v e r y Doorder Sale Bye": p r i n t
print "Type in your choice"
endproc

12/84 37

CHAPTER 12
QL ARCHIVE
REFERENCE

VAnlnDLho Variable names may be up to thirteen characters in length and must not start with a
digit (0 to 9} They may contain any combination of upper or lower case alphabetic
characters, or digits Other characters are not allowed, except for $ and . which have
special meanings

If a variable name ends with a $ it is a string variable Strings may be up to 255 characters
in length If the name does not end with a $ the variable is numeric A variable name
may refer to the contents of a record in a file and is then known as a field variable Field
variables are normally assumed to refer to the current file but may be made to refer
to another open file by including a logical file name separated by a . from the variables
name Such a field variable is written as

iogica!_file_name field^name

For example main continents If a variable name includes a dot then it must refer to
a field in an open file If there is no dot an attempt is made to match the name to an
existing variable in the following sequence

1 a field of the current file
2 a local variable (a parameter in the current procedure if any)
3 a global variable

An error message is given if no match is found

oYNTAX The term syntax refers to the exact structure of a command or function The syntax of
a command specifies the parameters that the command needs in what order they must
appear, and the symbols (if any) used to separate them

This section describes the notation used to express the syntax of Archive's programming
language

EXPRESSIONS An express/on is a combination of literal values, variables, functions and operators which
results in a single value A numeric expression results in a numeric value and a string
expression results in a text value Examples are

3 * y * sin (x) + len (a$) [numeric)

"abc" + a$ + rept (" - ", 5) [string]

An expression may, as in the above examples be composed of several sub-expressions
In such a case you may not mix sub expressions of different types They must all be
string expressions or all numeric

Syntax Conventions The syntax definitions are similar to those used to define the syntax of SuperBASIC, i e

Symbol Meaning

/tales denotes a syntactic entity
[] encloses an optional item
** encloses items that may be repeated

or
} j comment

Syntactic Entities slit literal string
sexp string expression
nexp numeric expression
exp expression, either string or numeric
ptm print item
var variable name, either string or numeric
Ifn logical file name
fnm physical file name {up to 8 characters)
pnm procedure name

A literal string is text enclosed in quotes, for example text' or "text"

A string expression is a literal string or a combination of literal strings, string variables
and string functions that results in a text value for example

"fred"+a$+chr(72)

38 12/84

Reference

A numeric expression is either a number, or a combination of numbers, numeric variables
and operators (+ , -, *, /, etc) that results in a numeric value for example

(3+x)/sin{y)

A print item is one of four possibilities at, lab, ink, paper A full description of a print
item in our syntax notation is

print item = | at n exp, n exp
tab n exp
ink n exp
paper n exp

Logical fife names and procedure names have the same restrictions as variable names
Physical file names must also not exceed eight characters

As an example of a syntax definition, consider the syntax of the order command In
our notation it appears as

order spec = var, a | d
order order spec * \ , order spec \ *

Order therefore needs to be followed by at least one order specif/cation which itself
consists of a variable separated by a colon from a letter which must be either a or d
!n addition you can also include up to three further order specifications provided each
pair is separated by commas Clearly the syntax notation provides a much more compact
description

Note that the syntax notation does not tell you the meaning or purpose of the symbols
so you will have to read the rest of the description for each command The syntax only
gives you a formal description of the number and kind of items that go to make up
a valid command In addition the syntax notation does not tell you the maximum number
of repetitions allowed for the repeated items Order will accept up to four pairs of a variable
and a letter

ARCHIVE DATA
FILES

A field is the space reserved to hold either a string or a number A FJGld

In Archive, each field is identified by a fteid variable name Whether a particular field
can hold a string or a number is dependent on the name given to the field at the time
it was created - string fields have a name ending with a $ An Archive string field may
hold up to 255 characters A numeric field has a name that does not end with a $ sign
All numbers are stored in the same amount of space, regardless of their value The
possible range for a number is the same as the valid numeric range for the arithmetic
operators

A record is a collection of fields, whose contents are related in some way The fields A Record
of a record might for example, be used to hold the name, the address and the telephone
number of a particular person In Archive the records are of variable length so that each
record only takes up as much room as is necessary to hold the information contained
in its fields There may be up to 255 fields in an Archive record

A data file is made up from a number of related records To continue the above example A File
a data file could consist of a collection of name, address and telephone number records
for many different people The number of records in an Archive data file is limited to
roughly 15 000 In practice, you are limited to the capacity of one Microdrive cartridge,
which will hold about 1000 records of 100 characters A file is the basic unit that you
can save on, or load from, a Microdrive cartridge Each file has a name to identify it
In Archive you give a physical name to the file when it is created, but you can change
the logical name at any time

Opening and
When you want to read from or write to a data file you must first open it Generally Closing Files
speaking, opening a data file transfers a copy of the file from the Microdrive cartridge
into memory although, in the case of a long file, tt is possible that only part of the file
will be present in memory at any one time

You can open a data file in read only mode with look which as its name suggests, means
that you can not change its contents You also have the option of opening a data file
in update mode with open so that you are allowed both to read and to change its contents

12/84 39

Reference

Every time you open a data file, Archive reserves space for the field variables needed
by a record within the file The field variables always contain the values of the current
record

When you close a data file with close or quit any changes that you have made are
copied into the file stored on the Microdrive cartridge The copy held in memory is
discarded Closing a file is the only way of ensuring that the copy on the Microdrive
cartridge contains your latest version Since an open ftle uses part of the computers
memory, you should not leave files open if you are not using them

When you leave Archive with the quit command, all open files are closed automatically

Do not turn off the computer, or remove a cartridge from a Microdrive, while the
cartridge contains open files

Logical File Names Each open data file has an associated logical file name, given to it when the file is opened
If you do not specify a logical file name when you open the file it is automatically given
the logical file name 'main'

The logical file name ts used to identify a particular file when you are using several files
at once

rnUL/bUUnhb A procedure is a named section of program starting with a procedure declaration of
the form

proc pnm[, var * [, var}*}

and ending with

endproc

It may be referred to by name from any other program or procedure including itself
It acts as though its code had been inserted at the point from which it ts called

In Archive the proc and endproc commands cannot be entered directly at the keyboard
but are added automatically when you use the program editor to create a procedure

THE PROGRAM
EDITOR The program editor is entered using the edit command

If there are no procedures present in memory, you will be immediately offered the option
of creating a new procedure Otherwise you are given a list of all the procedures in
memory on the left hand side of the display area The first procedure is highlighted and
is listed in full on the right hand side of the display The first line of the procedure is
highlighted to mark the current procedure and the current line

Once in edit you have five options

Select a procedure
Press TABULATE to move down the list of procedures, press SHIFT and TABULATE
to move up the list The listing on the screen always shows the current procedure

Select a line
Use the up and down cursor keys to select a line within the current procedure The
current line is highlighted

Press F3 for the menu of editing commands
There are four commands, which are selected by pressing the key corresponding to
the first letter

Delete Press ENTER to delete the procedure highlighted on the left of the display
Press any other key to leave the command without deleting the procedure

New Type in the name of the new procedure and press ENTER If a procedure
of that name already exists you will be offered the opportunity to edit it

Cut Removes text from the current procedure and transfers it to the paste buffer
Before calling this command use the up or down cursor keys to make the first
(or last) line of the region to be removed the current line Then use the up and
down cursor keys to mark the region of text to be removed Press ENTER to
remove the text into the paste buffer

Paste Copy the contents of the paste buffer into the current procedure below the
current line Paste wiil clear the paste buffer

40 12/84

Reference

Insert text
Press F4 to insert one or more lines of text below the current line in the current procedure
Type trie text and press ENTER Pressing ENTER without any preceeding text will leave
the insert option

Edit text
Press F5 to edit the current line of the current procedure The line of text is copied into
the input Sine and can be edited with the line editor Press ENTER to replace the old
line with the new line

THE SCREEN
The screen editor is entered with the sedit command It allows you to design a new bUI IUH
screen layout or modify an existing one Once you have designed a layout you can save
it on a Microdrive cartridge with the ssave command and load it with the sload command

A screen layout is composed of two parts the fixed background text and the variable
values that are displayed in it The screen command shows the background text and
the sprint command adds the current values of the variables it contains

Sedit has two options

type text into the screen background
press F3 to use a screen editing command

There are four screen editing commands available after prising F3

C - clear the screen
V - mark a region to show a variable
I - set the ink colour
P - set the paper colour

A screen layout is made active by

sload
screen

When a particular screen is active tt will show the current values of its variables after
spnnt or when control returns to the keyboard after executing a program (or a command)
A screen layout is made inactive by clearing the screen with els If there is no active
screen sprint has no effect You may only have one screen layout in the computers
memory at any one time

The display command creates and uses its own screen layout It will therefore replace
any other screen layout with its own design

The following commands are available THE COMMANDS

Scans through the logically present records of the file in the fastest possible time ALL

Syntax all [Ifn } endall

This scan will not, in general be in any particular sequence The optional logical file
name will force it to refer to a specified open file If the logical file name is not given
then it will scan the current file

The all loop is primarily designed for examining the file records rather than for changing
them Do not use update within an all loop unless you are sure that the length of the
record will remain unchanged You may, for example change the value of a number,
or convert a text field to upper case If in doubt use a while loop - using the value
of eof() to detect the end of the file For example

first
while not eof()

update

next
endwhile

Alters the current screen layout to display the current values of the variables ALTER

Syntax alter

12/84 41

Reference

You can change the contents of any one or more fields of the current file whose values
are shown in the screen layout Note that it is not necessary for all the field variables
to be shown You can not change a field that is not shown. If none of the field variables
appear in the screen, Archive forces a display of the file

First select the field to change by pressing TABULATE or ENTER until the cursor is
at the correct field (variables that are not fields of the file are skipped) You can then
type a new value or use the line editor to modify the existing value Press TABULATE
or ENTER to move to the next field (Pressing SHIFT and TABULATE together moves
back to the previous field)

When you have made all the changes you want, press F5 to replace the old record
with the new one The record is replaced automatically if you press ENTER If the file
is ordered the new version of the record is inserted in sequence

APPEND Adds a record to the specified file, or to the current file if the logical file name is not given

Syntax append [Ifn j

The fields of the record take the current values of the field variables If the file is ordered,
the insertion is in sequence

BACK Moves backwards one record in the specified file, or in the current file if the logical file
name is not given

Syntax back [Ifn]

BACKUP Makes a copy of the specified file You should make copies of all your files, to protect
against accidental damage or erasure

Syntax backup oldfnm as newfnm

CLOSE Closes the specified file, or the current file if no logical file name is specified

Syntax close [Ifn}

CLS Clears the display area and switches off any display screen. See screen, sload, sprint

Syntax els

CONTINUE Continues the previous search or find, from the record following the current record in
the current file

Syntax continue

CREATE Creates a named open file whose records contain the fields given by the list of variables
specified in the command You have the option of specifying a logical file name - if
you do not the file is created with the logical file name "mam"

Syntax create fnm [logical: Ifn } : var * \ var\ * \ endcreate

DELETE Deletes the current record from the specified file, or from the current file if no logical
file name is given

Syntax delete [Ifn \

Warning: Use this command with care since you can not recover the deleted record.

DIR Displays a list of files on a Microdrive cartridge

Syntax dir [drive }

You may specify the Microdrive to be either mdvl or mdv2 If you do not include the
Microdrive name Archive will automatically list the files on the cartridge in Microdrive 2

Before showing the list of files, Archive displays the volume name of the cartridge (the
name you gave when you formatted it)

42

Shows the logical file name of the current file and a list of the field names and the values
of the field variables for the current record If the file is sorted, it also shows the sort
fields and their sort priority

Syntax display

The command replaces any existing user-defined screen layout with this list which
becomes the active screen layout

Syntax dump (, var} *[, var]* DUMP

Prints the specified fields of the selected records of the current file in tabular form sen
output If you do not give a list of field variable names, all the fields are printed

You can divert the output to a Microdrive file with spoolon

Calls the procedure editor to create a new procedure or to edit an existing procedure EDIT

Syntax edit

See all ENDALL

See create ENDCREATE

Syntax error pnm[, exp *\ , exp }*} ERROR

Marks a procedure for the purposes of error-handling Any error which occurs during
the execution of this procedure, or any other procedure which it calls causes a premature
return from the marked procedure The procedure can determine the nature of the error
by using the errnum() function to read the error number This error number is cleared
each time that error is executed

Saves the named fields of the selected records of the current Archive file on a Microdrive EXPORT
cartridge in a form suitable for import to QL Abacus or QL Easel

Syntax export fnm [; var] * [, var] * [quill]

If you do not specify a list of field variable names, all the fields are exported If you include
the optional parameter quill, (separated by at least one space from the last variable name)
the file is exported in a form suitable for import by QL Quill

The export file is named fnm and, unless you specify your own file name extension,
Archive uses the extension EXP

See the Information section for a full discussion of import and export.

Rewinds the file to the beginning and searches for the first record containing a match FIND
to the specified string in any string field The match is independent of upper or lower
case text

Syntax find sexp

You can continue the search with the continue command and determine whether the
search was successful by examining the value returned by the found() function

Finds the first record of the specified file or the current file if no logical file name is FIRST
specified

Syntax first [Ifn \

Formats the cartridge in Microdrive 2 (the right hand drive) It gives the cartridge the FORMAT
name you specified This name is reported when you subsequently use dir to show
a directory of the files on that cartridge

Syntax format "you specified"

12/84 43

IF Allows a specified condition to control subsequent processing

Syntax, if nexp : [: else : .] : endif

Without else
If the expression is non-zero, the following statements are executed If the expression
is zero execution transfers to the statement following endif.

With else
If the numeric expression is non zero, the statements between if and else are
executed Otherwise the statements between else and endif are executed In either
case execution continues with the statements following endif

IMPORT Reads a We, namel, exported from QL Abacus or QL Easel and produces an Archive
data file name2 As with open and look you have the option of specifying a logical file
name for the data file

Syntax import namel as name2 (logical lfn\

where namel = fnm
name2 = fnm

See the Information section for a full description of import and export

INK Sets the foreground colour for all following text to the colour specified by the value of
the expression

Syntax ink nexp

The colours are 0 and 1 black
2 and 3 red
4 and 5 green
6 and 7 white

If the expression evaluates to more than 7, the value taken is the remainder after division
by 8, for example ink 9 is equivalent to ink I, both setting the print colour to black. If
ink is used within a print command it will only change the print colour for the duration
of that command

INPUT Requests input from the keyboard to the variables listed in the command Each variable
in an input list may be preceded by a initial string which will be displayed as a prompt
for the input All input items must be separated from each other by semicolons If the
list has a final semicolon, the cursor will not move to a new line after the input

Syntax input f var \ slit | ptm *{ ; var \ slit \ ptm] *] [;]

The list of input items may include the cursor-positioning items

at line,cotumn
tab column

where line = n exp,
column = n exp

The first of these positions the cursor at the specified line and column position, and
tab moves the cursor to the specified column within the current line If the cursor is already
to the right of the specified column, tab will have no effect,

These two items may not be used outside an input or a print command

You may also use ink and paper as input items If used within an input command they
will only affect the ink and paper colours to the end of the input, when the colours will
return to their original settings

INSERT Adds a new record to a file

Syntax insert

Uses the current screen layout to display the current values of the variables You can
type a new value for any one or more fields of the current file whose values are shown
in the screen layout Note that it is riot necessary for all the field variables to be shown
You cannot type a value for a field that is not shown If none of the field variables appear
in the screen, Archive forces a display of the file

44 12/84

First select a field by pressing TABULATE or ENTER until the cursor is at the correct
field (values that are not fields of the file are skipped) You can then type a new value
Press TABULATEor ENTER to move to the next field (Pressing SHIFT and TABULATE
together moves back to the previous field)

When you have typed all the values you want you should press F5 to add the new record
!o the file The record will also be added to the file if you press ENTER when the cursor
is in !he las! field Any field that you have not given a value will be zero (if it is a numeric
field) or an empty string (if it is a text field) If the file is ordered, the new record is inserted
in sequence, otherwise the insertion takes place at an unspecified position

Erases the specified file from the Microdrive cartridge KILL

Syntax kill fnm

Warning: Use this command with care since you cannot recover the erased file.

Finds the last record of the specified file, or the current file if you do not specify a logical LAST
file name

Syntax last | !fn J

Used to assign a value to a variable (as in SuperBASIC) LET

Syntax let var = exp

Lists all the procedures currently in memory on a printer LLIST

Syntax Hist

Loads the specified procedure file from a Microdrive cartridge into memory LOAD

Syntax load f object J fnm

If you include the optional object Archive will expect the file to be in binary rather than LOCAL
ASCII form, see save

Within a procedure, forces the following list of variables to be local variables These
variables exist only within the procedure in which they are declared and are undefined
in any other procedure Their values are destroyed on exit from the procedure

Syntax local var * f , var} *

Finds, in an ordered file, the first record whose field contents match the expression(s) LOCATE

Syntax locate exp * f ,exp] *

The record is located much more quickly than if you used find, but the file must first
have been sorted Each expression must explicitly refer to the contents of a particular
sort field In the case of a string field the match is case-dependent

If you have ordered the file with respect to more than one field, you can specify several
expressions (one for each sort field) The expressions are separated by commas and
must refer to the fields used to order the file They must be in the same sequence as
in (he preceding order command For example

order animatS ; a , weight ; a
locate "Elephant" , 2000

will find the first record in which the field animal$ contains the text "Elephant" and a
weight that equals (or exceeds) 2000

If there is not an exact match locate will still find a record This record will be the first
one whose field contents "exceed" - in the sense of the ordering (ie "d" comes after
"e" if the file is sorted in descending order) - the specified values

Opens the named file for read access only If the logical fife name is not specified, it LOOK
is given the default value 'mam"

Syntax look fnm [logical Ifn j

12/84 45

LPRINT Displays the values of the following list of items on a printer attached to SER1, in the
same way as for Hist.

Syntax Iprint [exp \ ptm *[; exp \ ptm*\ [;}

MERGE Adds the procedures of the specified program file to the procedures already in the
computer's memory If the file contains a procedure with the same name as one already
in memory, the new procedure replaces the old one

Syntax merge f object] fnm

If you include the optional object Archive will export the file to be a binary rather than
ASCII format See Save

MODE Changes the form of the display.

Syntax mode var,var

The first variable may have a value of 0 or 1 A value of 0 joins the control, display and
work areas into a single region A value of 1 separates them back into three distinct areas

The second variable may have a value of 4 6 or 8 and switches the display between
showing 40, 64 or 80 characters per line.

The initial setting, when you load Archive for use with a monitor, is equivalent to

mode 1,8

NEW Deletes all the data from the computer's memory, ready for a fresh start Any open files
are closed (The command does not delete files stored on a Microdrive cartridge)

Syntax new

NEXT Moves to the next record in the specified file, or in the current file if you do not specify
a logical file name

Syntax next [Ifn]

OPEN Opens the specified file for both reading and writing The file is given a logical file name
"mam" if you do not specify one

Syntax open fnm [logical Ifn }

ORDER Orders the records of the We according to the contents of the specified fields

Syntax order order^spec * [, order^_spec J *

where orafe/_spec = var; a | d

The first field specified in the list is the primary sort field Records which have equat
contents of their primary sort field are further sorted according to the contents of the
next field in the list (if it is specified) and so on For each specified field an ordering
direction must be given This must be either a or d to specify ascending or descending
order respectively.

Order only takes account of the first 8 characters of a text field and you may not specify
more than four fields to order the file

PAPER Sets the background colour for all following text to the colour specified by the value
of the expression

Syntax paper nexp

The colours are

0 and 1 black
2 and 3 red
4 and 5 green
6 and 7 white

46 12/84

Reference

If the expression evaluates to more than 7, the value taken is the remainder after division
by 8, i e paper 11 js equivalent to paper 3 both setting the colour to red

If paper is used within a print command it will only change the background colour
for the duration of that command

Makes the record whose record number is given by the expression the current record POSITION

Syntax position nexp

Displays the values of the following list of items - which must be separated by semicolons PRINT
- on the screen If the list has a final semicolon, the cursor will not move to a new
line after the display See also Ipnnt

Syntax print [exp \ ptm]*[; exp \ ptm J *J [;]

Closes all files and returns to SuperBASIC QUIT

Syntax quit

When used within a procedure, it marks the rest of the line as containing a comment REM
Any following text on that line is ignored when the procedure is executed

Syntax rem

This command restores all the records in the current file which were removed by an RESET
earlier use of select It destroys any ordering of the file

Syntax reset

Used within a procedure to cause an immediate termination of the procedure by returning RETURN
to the calling procedure

Syntax return

Loads the specified procedure file into memory and starts execution of the procedure RUN
called start

Syntax run [object] fnm

If you include the optional object Archive will expect the file to be in binary rather than SAVE
ASCII form see save

Saves all procedures currently in memory as a single named We on a Microdrive cartridge.

Syntax save | object] fnm

If you include the optional object, Archive will save the file in binary rather than ASCII,
format This means that Archive does not have to convert the program into ASCII
characters before saving it and is therefore much faster You can load, run or merge
such a program by adding the optional object to the appropriate command These
operations will also work more rapidly since no conversion is necessary Such files have
an extension of pro, rather than the normal prg

You may also save such an object program in a form that is protected against examination
or modification Include, instead of object the optional protect A program saved in this
way can only be loaded, run or merged - using the optional object with the appropriate
command

A protected program cannot be listed, edited or saved If you merge a protected program
with any other program then the combination will be similarly protected The only way
to clear the protected status is with the new command

Saving a protected version does not affect the copy of the program in the computer's
memory You can still list, edit or save the program in the normal way

Displays the formatted screen layout previously sloaded It does nothing if there is no SCREEN
screen layout present It does not display any of the variables in the screen

Syntax screen

12/84 47

SEARCH Searches the current file from the beginning until a record is found in which the specified
expression is true This record becomes the current record

Syntax search nexp

SEDIT Calls the screen editor to enable you to define a new screen layout See Chapter 7

SELECT Scans the whole file selecting only those records for which the specified expression is
true The file then behaves as if only the selected records are present

Syntax select n exp

You can restore all the discarded records with the reset command

SINPUT Waits for input to the variables in the following Itst, using the order specified in the list.
All the variables in the list must be currently displayed in an active screen layout

Syntax sinput var *[, var]*

SLOAD Loads a previously defined and saved display screen layout It also displays this screen
layout and activates the display of any variables within the screen

Syntax sload fnm

The displayed values are then updated automatically whenever control returns from a
procedure to the keyboard interpreter

SPOOLOFF Direct all following Iprmt and Hist output to the printer This cancels the effect of spoolon

Syntax spooloff

SPOOLON Directs all following Ipnnt, Hist and dump output to the specified file - or to the screen
- instead of to the printer

Syntax spoolon <fnm> { export | dump]
or
spoolon screen

If you are directing output to a file, it is directed via the currently installed printer driver
so that it contains all the special codes that your printer needs

If you include the optional export, Archive ensures that the file contains only printable
ASCII codes, carnage returns and line feeds The resulting file is suitable for importing
into Quill

The optional dump allows the text to be transmitted to the file without being processed
by the printer driver In this case all ASCII codes (including control codes) are passed
straight into the file

Unless you specify a file name extension Archive assumes an extension of lis (exp
or dmp if you include the optional export or dump)

The alternative form of the command - spoolon screen - directs the output to the
monitor screen instead of the printer

SPRINT Used within a procedure to force a display of the fields of the current record

Syntax sprint

There must be an active screen layout (the screen layout is made active by a previous
use of screen sload or display) If there is no active screen layout, the command will
have no effect

SSAVE Saves, as a named Me on a Microdrive cartridge, the current display area as a defined
screen layout

Syntax ssave fnm

It saves the text of the screen and a list of the variables in the display together with
their positions

STOP Terminates the execution of alf procedures and returns control to the keyboard

Syntax stop

48 12/84

Switches the trace mode on and off TRACE

Syntax trace

Type

t r a c e

to turn on the trace In trace mode each line of the program is displayed in the work
area of the screen, as it is executed Press the space bar and keep it held down to
pause The trace will continue when you release the space bar To turn the trace off
again, type

t race

Replaces the current record in the specified file (or the current file if no logical file name UPDATE
is given) with a record containing the current values of the field variables

Syntax update [Ifn }

Makes the specified file the current file USE

Syntax use Ifn

Repeatedly executes the statements between while and endwhile for as long as the WHILE
value of the expression is non-zero (true)

Syntax while nexp : . endwhile

Think of a function as a kind of recipe which converts one or more initial values, known FUNCTIONo
as the function's arguments, into a different value, which is said to be the value that is
returned by the function

The functions provided by Archive may take three, two, one or no arguments The
arguments for a function are placed in brackets after its name You must not leave a
space between the name and the opening bracket, but spaces are allowed between
items within the brackets If a function takes more than one argument, the arguments
are separated by commas All functions must be followed by the brackets, even if they
take no arguments The presence of the brackets is a useful reminder that you are referring
to a function They allow you to distinguish between a variable and a function, even
if they have the same name

The following functions are provided

ABS(n exp) Returns the absolute value of the argument, i e ignores any minus sign

ATN(nexp) Returns the angle, in radians whose tangent is nexp

CHR(nexp) This function returns the ASCII character whose code is nexp A
character with an ASCII code less than 32 is only sent to the printer
rf preceded by an ASCII null For example

Ipnnt chr(0)+chr(13)

passes the ASCII character for a carriage return to a printer This is
useful if your printer needs control code sequences to produce special
effects - refer to your printer manual for any special codes that it needs

You can, for example, send an A" to the screen with

print chr(65)

CODE(sexp) This returns the ASCII value of the first character found in the specified
text

COS(n exp) Returns the cosine of the given (radian) angle

COUNT(| Ifn}) Returns the count of the number of records in the current file

DATE(nexp) Returns today's date as a text string in one of three forms

nexp date string
0 YYYY/MM/DD'

1 "DD/MM/YYYY'

2 "MM/DD/YYYY1

12/84 49

Reference

You must first have set the system clock as described in the
SuperBASIC Keyword Guide

DAYS(sexp) Returns a number of days, from the first of January 1583 to a date
given as a text expression of the form 'YYYY/MM/DD' The conversion
assumes the Gregorian (modern) calendar is being used The formula
is therefore only valid for dates after 1582

DEC(value,dp,width)
value =(n exp)
dp = (n exp)
width = (nexp)

Converts the given numeric value to the equivalent text string, in decimal
format with dp decimal places The text is justified right in a field ot
width characters For example

dec(1 23e1,3,10) returns the text" 12 300" (with 4 leading spaces)

DEG(n exp) Takes an angle, measured in radians, and converts it to the same angle
in degrees

EOF(j Ifn]) Returns a value indicating whether you have attempted to read past
the end of the current file, or the specified file if a file identifier is given
The value returned is 1 if you have attempted to read past the end
of the file, otherwise it is zero

ERRNUM() Returns the number of the last error which occurred (an error number
of zero indicates no errors) The error number is the same as that
displayed together with the error message when Archive reports a
detected error

EXP(nexp) Returns the value of e (approximately 2718) raised to the power of
(n exp) The returned value witl be in error if n exp is greater than +88
since the result will then exceed the numeric range of Archive

FIELDN(nexp|, lfn\)
Returns the name of the specified field in the current record of the
specified file (or the current file tf no logical file name is given) Note
that fieldn(O) returns the name of the first field

FIELDT(nexp [, Ifn])
Returns the type of the specified field in the current record of the
specified file (or the current file if no logical file name is given) Note
that fieldt(O) returns the type of the first field

It returns the value 0 if the field is numeric, otherwise it returns 1

FIELDV(nexp[, Ifn])
Returns the value of the specified field in the current record of the
specified file (or the current file if no logical file name is given) Note
that fieldv(O) returns the value of the first field

FOUND() Returns one if a record is found by use of search or find, otherwise
returns zero

GEN(value,width)
value =nexp
width =n exp

Converts the given numeric value to the equivalent text string, in general
format The text is justified rtght in a field of width characters For
example

gen(1 23e1,10)

returns the text " 123" (with 6 leading spaces)

GETKEYQ Waits for a key to be pressed and returns a single text character which
corresponds to the key that was pressed

INKEYQ Returns the single text character corresponding to any key that was
being pressed at the time the function is called It does not wait for
a keypress but will return a null string (' ') if no key is pressed

50 12/84

Heterence

\NSJR(matn,sub)
main - sexp
sub = sexp

This finds the first occurrence of sub within mam and returns the position
of the first character of sub in main ft will return a value of zero if no
match is found The match is case dependent

inst rO'January", "Jan") (returns 1j
instr("January","an") (returns 2}
instr("January","AN") (returns 0]

INT(nexp) Returns the integer value of the number, by truncating at the decimal
point The truncation always operates towards zero Thus,

int(3.7) (returns 3)
mt (-4.8) (returns -4]

LEN(sexp) Returns the number of characters in the specified text

LN(nexp) Returns the natural, or base e, logarithm of nexp An error results if
n exp is negative or zero, since logarithms are not defined in this range

LOWER(sexp) Converts the specified text to lower case

MEMORY() Returns the number of unused bytes of memory remaining

MONTH(/7 exp) Returns as text, the name of a month

For example month(3) returns the text "March"

If an argument larger than 12 is used it is replaced by the remainder
after division by 12 so that for example month(13) and month(1) will
both give the result 'January"

N\JM(value, width)
value = n exp
width = nexp

Converts the given numeric value to the equivalent text string, in integer
format The text is justified right in a field of width characters For
example

num(1 23e1,10) returns the text 12" (with 8 leading spaces)

NUMFLD(f Ifn)) Returns the number of fields in the records of the specified file (or the
current file if you do not give a logical file name)

Pl() Returns the value of the mathematical constant TT

RAD(n exp) Takes an angle measured in degrees and converts it to the same angle
m radians

RECNUM([Ifn }) Returns the number (counting from zero at the first record) of the current
record of the specified file (or the current file if you do not give a logical
file name)

REPT(sexp,n exp)
This function returns a string consisting of a number of copies of the
first character of the given text The resulting text may be up to 255
characters in length For example,

pnnt rept("*",5) (will print five asterisks}
print rept("abc",3) (prints "aaa"j

SGN(nexp) Returns +1, -1 or 0, depending on whether the argument is positive,
negative or zero

SIN(n exp) Returns the value of the sine of the specified (radian) angle

SQR(nexp) Returns the square root of the argument, which must not be negative

STR(rt,?ype,c/p) n=nexp
type = n exp
dp = n exp

Converts a number, n, to the equivalent text string

12/84 51

The second parameter type indicates the form of the converted string
as follows,

0 decimal (floating point)
1 exponential or scientific, notation
2 integer
3 general format

The third parameter dp indicates the number of figures after the
decimal point in the converted string It should always be specified
although its value is ignored for integer and general formats

For example

let a$=str(12.3456,0,2) [gives a$ the value 1235")
let a$ str (12.3456,1,A) (gives a$ the value "1 2346e1')

TAN(nexp) Returns the tangent of the specified (radian) angle

TIME() Returns, as text the time of day in the format HH MM S3" You must
first have set the system clock, as described in the SuperBASIC Keyword
Guide

UPPER{sexp) Converts the specified string to upper case

VAL(sexp) Converts the text to its equivalent numeric value It will only convert text
composed of valid numeric characters and the conversion will stop at
the first character that can not be interpreted as a digit For example,
val("11ABC") will return the numeric value 11 and val('ABC") will return
00

VALUE(sex/rj) Returns the value of the variable whose name is given by sexp - for
example

let a$=' ' ten ' '
let tengt h = 15
p r i n t va lue (a$+ ' ' gth ' ')

will print the value 15

Note that value(fieldn(y)} is exactly equivalent to fieldv(y)

trinUnO When ARCHIVE detects an error in a command typed at the keyboard or in a procedure,
it displays an error number and a short error message Examples of errors that would
be detected are

attempting to divide by zero
if not matched with an endif
supplying a procedure with the wrong number of parameters

If the error comes from keyboard input the text of the statement remains visible in the
work area You can press F5 to recall the text so that you can use the line editor to
correct the error You can then press ENTER to execute the corrected statement

If the error comes from a program statement ARCHIVE shows the name of the procedure
and the line in which the error occurred You can then use the program editor to correct
the error

When you use the error command in your programs, ARCHIVE will not report any error
that it detects in a procedure marked with error You are free to deal with any such error
in any way that you want (including ignoring it) You can find which error has occurred
by examining the value returned by errnumf) This number is the same as the one
ARCHIVE gives when it prints an error message

The following list shows ARCHIVES error numbers together with the corresponding
messages Where possible, the list includes a short example of a statement that would
give the error The error messages are not designed to pinpoint the precise error, but
are intended to give you an idea of what type of error to look for

Those error messages for which there is no short example are marked with an asterisk
They are dealt with in the notes which follow the Irst

52 12/84

Reference

No. Message Example

0 no error
1 command not recognized apend
2 end of statement expected Let x=3 let y=4
3 variable name expected let 31=x
4 unrecognized print item print create
5 wrong data type * (1)
6 numeric expression expected let x="fred"
7 string expression expected let x$=4
8 variable not found let x=qq (qq undefined)
9 variable undefined print qq
10 missing separator print at 5
11 name too long let thi svery longname=4
12 dupl i cate name create:n$:n$:endcreate
13 string literal expected * (2)
14 mi ssing endproc * (3)
15 bad proc statement * (3)
16 premature end of statement create"test":endcreate
17 program structure fault * (4)
18 too many numbers * (5)
50 missing closing quote let x$="fred
51 missing exponent after "E" let x=1.2E
52 number too big let x=1.2E100
53 unknown symbol let x=%
70 evaluator syntax error let x=3 +
71 mismatched parenthesis let x=(3+5)/7)
73 type mismatch let xJ="fred"+3
74 wrong number of arguments let x$=str(1,2)
75 string too long let x$=rept ("*", 256)
76 divide by zero let a=0: let x=5/a
77 bad function arguments let x$=sqr(-4)
78 string subscript error let x$="fred" (to 97)
80 out of memory * (6)
90 no room to open a f i Le * (7)
91 incomplete f i le transfer * (8)
93 out of range print at 100,100;37
94 f i le not open append (without first opening a file)
100 cannot open f i l e I ook"xxx" (non-existent)
101 write to read only file Look "names": insert
103 wrong file type s load"names" (data file)
104 bad f i le name save"3test"
105 errorreadingfile *{9)

1) The most likely cause of error 5 - "wrong data type' - is that you have inputted Notes
text when a number is expected, eg. in response to an input statement such
as

input x

2) Error 13 - "string literal expected" - can occur, for example, during the import
of a file that you have constructed yourself (without using any of the export
commands in the QL programs) It means that Archive has found a number, or
a numeric or text expression, where it was expecting to find a literal text value
In most situations where Archive finds numeric data when expecting text, or vice
versa, it will give error 7 or error 8

3) Errors 14 - "missing endproc" - and 15 - "bad proc statement" - should never
occur in normal use They indicate that Archive has detected a missing endproc
or an error in the structure of a proc statement in a procedure They are only likely
to occur if you construct a program file with an editor other than the one mcfuded
in Archive

4) Error 17 - "program structure fault" - usually indicates that an all, if or while
is not paired with a corresponding endall, endif or endwhile in a procedure You

12/84 53

can also generate this error by including an endproc inside another program
structure, or by using return directly from the keyboard

5) Error 18 - 'loo many numbers" - indicates that you are trying to input more
numbers than will fit into the memory reserved for input The error may occur either
in a line of input from the keyboard, or while loading a program that includes a
procedure with many numbers in one of its lines The exact limit depends on
circumstances - a typical limit would be 15 to 20 numbers, so you are unlikely
to get this error

6) Error 80 - 'but of memory" - should only be given if you use a very large program
The size of an ordinary data file is not limited by the amount of memory in the
computer since only part of a large file is in memory at any one time If Archive
gives you this error you will have to reduce the size of your program before
continuing You can, if necessary, break your program into several sections, in
different files, and use merge to load each section as it is needed This technique
will, however normally need a considerable amount of programming skill

7) Error 90 - 'no room to open a file" - occurs when the area of memory Archive
reserves to store internal information about the files currently in memory becomes
full This may happen even if there is still memory available {i e if the value returned
by memory() is still not close to zero)

8) Error 91 - 'incomplete file transfer" - means that the loading or saving of a file
has failed for some reason This may mean thai the data has been corrupted
or that the cartridge or the Microdrive has been damaged

9) Error 105 - "error reading file" - means that some of the data in a file is in the
wrong format, the wrong order, or has been corrupted This is only likely to occur
if you construct your own import file - or your own program file without using
the Archive program editor (advanced uses)

54 12/84

QL
QL Easel

©1984 PSION LIMITED
by Dick de Grandis-Harnson (Psion Limited)

CHAPTER 1
ABOUT

QL Easef is fully interactive, which means that you see the results of everything you do V*tm C/AOCLa
immediately From the moment you start you can just type in a series of numbers and
see them displayed as a graph, as you type them in. You never need to worry about
building up tables of values, Easel takes care of that kind of thing for you, and keeps
them where they should be - out of sight

You can add text to the graph just as simply as you enter data and, once it is there,
you can edit it or move it around (easily of course!) until you are satisfied with the result

Easel is organised in a series of levels and exhibits a pyramidal structure The top level,
which is immediately available when you start, allows you to do the most commonly
needed operations, for example, entering data or text The full power of Easel becomes
apparent as you become more familiar with it and dig more deeply into the pyramid

Despite this power Easel still remains simple to use at all levels You do not need to
remember lots of numbers and commands, since you are guided through each process
by a carefully designed sequence of prompts which explain what you can do at each
stage In particular, Easef has a design by example facility which allows you to select
or design anything from a single line or bar to a whole graph, simply by choosing from
a set of pictures With this facility you need never be in any doubt as to what the final
appearance of your graph will be

If, at any time, you are not sure what to do, remember that you can ask for Help by
pressing F1 Also remember that you can cancel any partially completed operation by
pressing ESC

12/84 1

WETTING
STARTED

LOADING QL EASEL Load QL Easel as described m the Introduction to the QL Programs When loaded Easel
will display the following message

LOADING QL EASEL

version x.xx
Copyright © 1984 PSION SYSTEMS

business graphi cs

where x xx is the version number, eg 1 04

Easel will, from time to time, read more information from the Easel cartridge You must
not take the cartridge out of Microdrive 1 until you have finished using Easel and
returned to SuperBASIC.

APPEARANCE When you have loaded Easel the display should look like that shown in Figure 21 The
display is divided into three mam areas, known as the status area, the display area and
the control area

Figure 2 1 The main display

The Status Area The format tells you how the values you type in will be shown. There are eight different
display formats (numbered 0 to 7) to choose from, pre-defined to give an assortment
of bar line and pie chart displays Initially, the format is set to give you a bar graph display
(format 0)

You are also told the name of the set of data (or figures) for your graph If you have
more than one graph there will be a named set of figures for each graph The current
set of figures is the set that is changed when you type in numbers

In addition you are told the sfyte which will be used Easel can show a set of figures
in one of three different representations as—a bar graph, a line graph or a pie chart
Easet initially selects a bar graph representation and uses bar number 0 (there are 16
different bar designs ready for you to use)

2 12/84

The amount of memory available at any time is displayed in the status area together
with error messages when necessary

Getting Started

Figure 2 2 The status area Figure 23 The display area

All graphs produced by Easel are shown in the display area The Display Area

Initially there is an empty bar graph in the display area marked with a grid of horizontal
and vertical lines The horizontal lines correspond to the values shown on the vertical
axis (Axis 2) and the vertical lines divide the graph into cells Each cell marks the position
where one value of a set of figures will be plotted

Each cell has a celt label, along the horizontal axis {Axis 1) Easel automatically supplies
the text Jan 'Feb" and so on, up to 'Dec' for cell labels but you can change the text
to anything you want

Think of each set of figures as a row of cells each containing one of the values to be
plotted

Figure 24 The control area Figure 25 The crosswires

The control area shows the normal options Help (F1), to turn the prompts on and off The Control Area
(F2), to select a command (F3) and to cancel an incomplete selection (ESC) In addition,
there are four options that are specific to Easel These are

move the crosswires,
type in a number,
type in text
type in a formula

Press the right cursor key and hold it down briefly You will see the vertical crosswire THE CROSSWIRES
moving across the screen from left to right The left and right arrow keys move it across
the screen

The up and down cursor keys move the horizontal crosswire

12/84 3

Gelling Slarted

You can indicate any point in (he display area by moving the intersection of the crosswires
to !hat point

In addition, the vertical crosswire marks the position in the graph where a number that
you type in will be plotted

If the crosswires are not visible press any cursor key, press either the left or the right
cursor key to display the vertical crosswire, and either the up or down cursor key to
show the horizontal crosswire Note that you can only do this from the main display
and not from the command menu

If you press a cursor key and release ft immediately the crosswire will move a short
distance in the appropriate direction but if you hold the key down the crosswire will
move more rapidly across the display area

NUMBbRb Type in a number (and then press ENTER) It will be displayed immediately on the graph,
at the current position of the vertical crosswire The crosswire will move one cell to the
right ready for the next number

Each time you type in a number that exceeds the range of values shown along the
vertical axis, Easel will redraw the graph with a scale that allows the new value to be
shown

If you press TABULATE, you will find that each press of the key makes the vertical
crosswire move to the right by one cell Hold down SHIFT and press TABULATE, and
the vertical crosswire moves left by one cell The position of the vertical crosswire marks
the current cell -- the cell that will show the next number you type in

If you put an incorrect value into your graph you can correct it by moving the vertical
crosswire to the cell where the mistake appears and typing in the correct value

If you spot a mistake before you press ENTER you can correct rt by using the line editor
Alternatively you can cancel the number by pressing ESC and then typing in the correct
value

Whether you move the crosswire with TABULATE or with the cursor keys, the next value
you type in will always be shown in the cell containing the vertical crosswire

I CA I You can add text to your graph by typing a double or single quotation mark (' or ')
as the first character of your input

The crosswires will appear (tf they were not already visible) and any following text that
you type in will be written in the display area starting at the intersection of the crosswires
and in the input line Press ENTER when you have finished

If the text is not in the exact position you want move it using the cursor keys The crosswires
will move across the screen carrying the text with them When the text is in the position
you want press ENTER and the crosswires will disappear

rUHMULAt A formula can be used to create a new set of figures, or to change an existing set

Easel interprets any keyboard input that does not start with a numeric digit or quotation
marks as a formula For example, we can change the current set of figures (which, as
you can see from the status area, has the name "figures')

figures = figures + 2 ENTER

The new graph is similar to the old one, except that each value has been increased
by 2 If you want to return to the original graph you can type in another formula

figures = figures - 2 ENTER

A formula always starts with the name of a set of figures This name could be the name
of an existing set or it could be a new name In either case the contents of that data
set are defined by the expression to the right of the equals sign in the formula It is
important to realise that the formula will affect all the values in the set, rather than just
one value

Irlt UUMMAINL/O The commands allow you to use some of the more sophisticated aspects of Easel Press
F3 to select a command The contents of the control area will change to show a list
Of the available commands - the command menu

4 1P/R4

Getting Started

Figure 26 The command menu

When the command menu is displayed you can select a command by typing its first letter

For example, the Quit command leaves Easel and returns to SuperBASIC Select it by
pressing F3 and then Q Easel gives you the option to press ESC to stay in Easel {in
case you selected the command by mistake) If you decide you really do want to leave
Easel, you press ENTER

You cannot type in a number to a cell or type in a formula when the command menu
is visible Also, you cannot move the crosswires, except when given this option as part
of a command

At the end of a command, Easel remains in the command menu and you must press
ESC to go back to the main display

You can delete a value from the graph Use the TABULATE key (or the SHIFT and DELETING A VALUE
TABULATE keys) to position the vertical crosswtre on the number you want to rub out
and then press F4 If your graph is showing more than one set of figures, pressing F4
deletes all values shown in that cell It has no effect on sets of figures that are not shown
[f you delete the values from a cell that has no label, then that cell will not be included
in the graph when it is next redrawn

Easel will only delete a cell that has no label and no value If you want to delete a cell
you should delete its contents and also delete any label that it has The cell will not be
included next time the graph is redrawn with the View command

You can insert a new value to the right of the one marked by the vertical crosswire Press INSERTING A VALUE
F5 and a gap is opened up, ready for you to type in a new number The new cell will
not have a label, but you can add one

Inserting and deleting values from pie charts is slightly different and is explained in Chapter
9

12/84 5

CHAPTER 3
DESIGNING

M DMri This chapter shows how you can modify the appearance of your graph by using a different
design of bar

All the options to modify the various features of the graph work in the same way Learning
how to change your graph to use a new bar design explains the methods you will use
to change any other aspect of the graph

We assume that you have typed in a few numbers and have a bar graph shown on
(he screen

oELuGTINu A BAR You use the Change command to select a different bar F3 and then the C key You
are offered many options - to change an Axis Text, and so on Select the Bar option
by pressing the B key

There are two routes to using a new style of bar—selection by number or by example

Selection by Number When you have selected the Bar option, the input line shows the text

COMMANOChange to BAR ?

and Easel waits for you to type in a number There are 16 different bars, numbered 0
to 15 and you can select any one of them by typing its number, followed by ENTER

This is a very quick method of changing the bar you use, provided you know (he number
of the one you want

Selection by Example If you do not know the number of the bar, or you want to use your own design, press
ENTER, instead of typing a number Try this method by typing in

[FJC BfENTEHI

(You do not have to press F3 if you are still in the command menu) The display changes
to show examples of all the available bar styles, together with their associated numbers

The selected bar is surrounded by a box You use the left and right cursor keys to move
this box from bar to bar until it is positioned on the one you want When you press ENTER
the bar you have chosen will be used

Figure 31 Selecting a bar

6 12/84

When you use the option to select by example you will notice that there is one bar present Dnn Dtu'CaN
in the second row, which shows a question mark in place of its number You select this
bar if you want to make your own design.

Position the selection box on this bar and then press ENTER. The design by example
continues by presenting you with a blank bar design and a list of options.

Figure 32 Designing a bar

The first option highlighted is bar colour and allows you to choose the bar colour from Bar Colour
the palette shown across the top of the display. You can accept the option by pressing
ENTER or select another option by using the up and down cursor keys.

If you accept the bar fill option a box is drawn around the first colour in the palette and
the specimen bar is filled with that colour You can move from colour to colour by pressing
the (eft or right cursor keys. Make your selection by pressing ENTER when the bar is
filled with the colour you want Easel draws the bar against a background of the current
graph paper.

The next option in the list, to select a border colour for the bar is then highlighted Border Colour
automatically Again you can either select this option by pressing ENTER, or move on
to one of the other options. If you select this option you can choose the border colour
for the bar in the same way as you chose the main fill colour (If the width of the border
is currently set to zero you will not, of course, see the colour in your bar design.) You
should press ENTER when you are satisfied with the result.

The third option is to select the width of the border In this case you are asked to type Border Width
in a number to represent the width of the border as a percentage of half the width of
the bar.

You are finally given the option of deciding whether you are satisfied with the design
as shown. If you are you should press ENTER, when the new design will be added
to the list of bar designs and it will automatically be used for display of the current set
of figures If you are not satisfied with the design you can go back to one of the other
options, using the up and down cursor keys, and try a new combination. At any time
before you accept the design you can terminate the command by pressing ESC and
you will leave the command without creating a new bar design.

12/84 7

CHAPTER 4
UOIIilUI I CA I Each time you edit some text or add new text, it is shown in the colour and direction-

horizontal or vertical—that you last set with the Text option of the Change command

Easel recognises three basic types of text

Ordinary Text (including the Title)
Axis Names
Cell Labels

UnL/IIMAH Y I tX I Ordinary text - i e all text except for the axis names and cell labels - behaves as though
i! were pasted on the screen It is always printed over the top of the graph or chart and
remains on the screen until you delete it, regardless of any other changes you make

The Edit command has options to edit the 3 types of text listed above, and a fourth
option relating to the Key The Key option is only relevant when you have more than
one set of figures in your graph It is described in the next chapter

Press the T key to select the Text option You then use the cursor keys to move the
intersection of the crosswires close to the text which you want to change It is not necessary
to position the crosswires exactly press any key and the crosswires will attach themselves
to the nearest piece of text A copy of the text also appears in the input line

You can delete tne text by pressing F4, or modify the text using the line editor If you
choose to delete the text this will also end the command

When you are completely satisfied with the wording of the text you should press ENTER
Easel then gives you the opportunity to reposition the text Press ENTER when you are
satisfied with the position

Easel treats a graph title in the same way as any other text The only difference is that
Easel supplies the text Title" centred above the graph, when you load it from its Microdrive
cartridge

AXIb NAMcO Axis names only appear on bar and line graphs and are not shown when you select
a pie chart representation

Select the Axis option of the Edit command to edit either of the two axis names Press
V or H to select the vertical or horizontal axis You can then edit delete or move the
text, as described for the Text option Easel redraws the text in the current ink and paper
colours

vtLL LnbbLo The cells of the graph are provided with labels which are initially set to show the months
from January to December These labels are shown along the horizontal axis of a bar
or line graph In a pie chart they are used to label the segments of the chart

You use the Labels option of the Edit command to change the cell labels When you
do so the crosswires will attach themselves to the nearest label which will then be
displayed in full Cell labels can be up to ten characters long but normally only the first
few characters are shown The text ts also copied into the input line You can then delete
the label by pressing F4, or edit it with the line editor Press ENTER to finish editing
Although the labels initially have their own text colour, when you edit any label all the
labels are shown in the current text colour You cannot move a cell label

I CA I VA/LUUn AINU You use the Text option of the Change command to alter the colour of the text and its
DIRECTION background You can also select whether the text is vertical or horizontal

Easel uses the new text colour and direction for all new text that you add to the graph
- and for any old text that you edit

A convenient way of changing the colour of text is first to change the text colour and
then to use the Edit command - described in the following section - on the existing
text without actually changing its wording or position

Select the Text option of the Change command Easel offers you a list of text design
options in a similar way to designing a bar by example You can step through the options
with the up and down cursor keys and select the highlighted option by pressing ENTER

8 12/84

The first option is to select the ink colour You use the left and right cursor keys to select Ink Colour
the colour and press ENTER when the text is shown in the colour you want The following
option is highlighted automatically ready for selection by pressing ENTER

This second option is to select a background paper colour You selec! the colour with Paper Colour
the left and right cursor keys press ENTER to confirm your selection and move to the
next option

The third option is to select a transparent background for the text If you select this option
Easel ignores your selection of paper colour and allows the background graph to be
seen around the text Each time you select this option the background switches between
the chosen background colour and a transparent background

The fourth option is to select the direction in which the text is printed Each time you Text Direction
select this option Easel switches the text between horizontal and vertical

Finally you are given the option of deciding if you are satisfied with the appearance
of the text At this stage you can press ENTER to keep your selection of text style and
return to the command menu Alternatively you can use the up or down cursor keys
to go back and make further changes

12/84 9

CHAPTER 5
SEVERAL
SETS OF
I IvlUilCd So far we have only described how to create and display a single set of figures On

many occasions you may want to display two or more sets of data on the same graph,
for example to compare the sales figures for two successive years This chapter describes
the techniques you can use to produce, modify and display graphs containing several
sets of figures

I nt L/UnnbN I No matter how many sets of figures you have in your graph you can only modify one
FIGURES set at a time Tne set '̂ you can aclc'to or cnan9e IS known as the current figures,

and its name is shown in the status area Initially you have one set of figures called "figures'
If a set of figures is current it will be displayed on the screen

I Ht HtNAMt Suppose that you have typed in a set of numbers to "figures" and want to change the
COMMAND name to "sa^es' You do ̂ is with the Rename command Press F3 and then the R key

Easel asks you to type the old name of the set of figures and mark the end of the name
by pressing ENTER You then type in the new name To change the name of 'figures"
to the new name "sales" you should type

fF3] R figuresIENTERIsales fENTERl

The set of figures that you have renamed becomes the current figures

I Ht NtWUAIA There are two methods that you can use to produce new subsequent sets of figures
COMMAND ^nese are by usmg the Newdata command or by using a formula The two methods

are described in this and the following section

Suppose you have created a set of figures called '5sales" as described above, containing
monthly sales figures, and that you now want to include a display of the monthly costs
You can do this by pressing F3 and then the N key, to select the Newdata command
You then type in a name for the new set of figures, ending by pressing ENTER

To create a new set of figures called 'costs' you therefore type

[MlN costs IENTERI

Easel immediately gives you a new, blank graph (assuming you are in a bar or a line
format) with the vertical crosswire set on the first column The status area shows that
the current figures are the new set, with name "costs" All you have to do is type in the
new numbers which are immediately displayed on the graph as normal

If you want to create a third set of figures, you can use the Newdata command again,
exactly as has been described, giving the new set of figures a different name You can
create as many sets as you like, the only limit is the amount of available memory

UoINu A rUnlvlULA On occasions you may wish to produce a new set of figures related in some way to
one or more existing sets

Suppose you have already entered sets of figures for 'sales" and 'costs" and want to
generate a graph showing the resulting profits All you have to do is type in a formula
which describes the new set of figures, for example

p r o f i t s = s a t e s - c o s t s

This creates a new set of figures with the name "profits" each value being the difference
between the corresponding values of the "sales" and "costs" figures "Profits" will become
the current figures and the graph will be displayed immediately

You can also use a formula without having to refer to existing sets of figures You could,
for example, write a formula such as

wave = 10 * sin(cel t /2)

10 12/84

Using Text

This formula creates and displays a new set of figures with the name "wave" whose values
are calculated using the sin Q function In this formula we have also used "cell" This
gives the cell number counting from 1 at the left hand side of the graph To see how
this works, type in the formula

a = c e l l

and look at the graph that is drawn When you use tell in a formula, the number of
values in the set of figures is made equal to the number of columns currently being
shown on the graph

There is another reserved word in Easel - "cellmax" It has a value equal to the number
of cells currently shown on the screen You can use "cetlmax" to adjust the scale of the
horizontal axis in a formula For example, the formula

curve = s in(2*pi O*(ceU - 1 > / (c e L Lmax - 1))

draws one complete cycle of a sine curve, regardless of how many cells are shown on
the screen

When you use the Newdata command the set of figures that you create becomes the I ht ULUUAIA
current set Remember that this is the set that can be added to or changed by typing POMMAMD
m numbers If you want to make some changes to an existing set of figures that is not uvJIVIIVinlNU
the current set you can do so by using the Olddata command When you select this
command you are asked to type in the name of an existing set of figures, and that set
becomes the current figures

Suppose that you have the three sets of figures called 'sales'! "costs' and "profits" and
that "profits' is the current set of figures If you want to change or adcj to the 'costs"
figures you should select it with the Olddata command The costs figures will then be
shown on the graph and you can modify the data by typing in replacement numbers

Note that any change you make in the "costs" figures will not automatically change the
'profits' graph (This is a job for Abacus)

You can see the effect of displaying all of your figures on a single graph with the View VIEWING THE DATA
command

Try selecting this command As you see, Easel suggests that all the sets of figures should
be shown on the graph and you can accept this suggestion by pressing ENTER Easel
then suggests the display format to be used and again you can accept the suggestion
by pressing ENTER The graph is drawn immediately containing all the data that you
have defined - together with a key box which shows the name of each set of figures
and the way that it ts represented (the key is not shown if you only have one set of figures
on the graph)

If you have defined a large number of sets of figures the graph will be very crowded
and make very little sense In general it is a good idea to display only a small number
of sets of figures on any one graph to make the best visual impact This does not mean
that you should only define a small number of sets of figures, since the View command
allows you to select which sets of figures you want to see

You do this by not accepting the 'all figures' suggestion that Easel gives in the View
command Instead of just pressing ENTER at this point, you can type in a list of the
names of those sets of figures which you want to be displayed, separating the items
in the list by commas When you have typed in all the names of the sets of figures that
you want to be displayed press ENTER

You can also select a different format for the display instead of accepting the suggestion
made by Easel Instead of just pressing ENTER to accept the suggested format you
can type in a number between 0 and 7 Easel is provided with eight pre defined formats
providing various styles of bar charts tines or pie diagrams You can type in a question
mark to see a menu of all possible formats Try using the View command to display
three or four sets of figures in a number of the different formats available

One of the options in the Edit command is to move the key The key is replaced by THE KEY
its outline, and you are then offered the option of either deleting the key - by pressing
F4 - or moving the key by means of the cursor keys If you choose the move option
the cursor keys move a box equal in size to the key around the display area When
you press ENTER the graph will be redrawn with the key in its new position

12/84 11

You may at some time want to restore the display of a key which you had deleted earlier
You can do this by using the Edit command and selecting the Key option The outline
of the key will appear You can move the key to a new location Pressing ENTER will
redraw the graph, including a display of the key

The only change that you can make to the contents of the key box is to change the
colour of the text that it includes This text is always drawn in the colour last set by using
the Change command The symbols shown in the key box will, of course always match
the symbols which you use to display the graphs

12 12/84

CHAPTER 6
GRAPH
FORMATS

Ease! is provided with 8 display formats (numbered 0 to 7) and you can use one of UrIAINullMu rUHMAI
these numbers to specify which format should be used each time you use the View
command In addition to using different styles of background and bar colour, these formats
give you a range of display styles

You can also use the Format option of the Change command to select one of the 8
formats Easel puts the text

COMMAND Change to format 7

in the input line and you can select a particular format by typing in a number between
0 and 7 (followed by ENTER) If you press ENTER, then Easel shows you the appearance
of all 8 formats and again asks you for the format number

You can redesign the entire appearance of any or all of the eight different formats provided ntUtolulNINu A

by EASEL PQRMAT

You will normally have some idea of how you want your graph to appear In this case
you would select the format that ts closest to the one you want and then modify it until
it matches your requirements

Use the options of the Edit command to change the text of the cell labels and the axis
names You use the Change command to modify the text and bar styles

If you want a line graph you can use format 3, or you can use the Line option of the
Change command Pie charts are described in Chapter 8

The Graph paper option of the Change command allows you to select the paper colour Graph Paper
and the colour of the grid markings You can select a graph paper from an existing
set of 7 styles, or you can design a new one The method of design is exactly as described
for the Bar option of Change

The Axis option of the Change command allows you to select the axis style for your Axis
graph You can select an axis from an existing set of 10 styles, or you can design a
new one The method of design is exactly as described for the Bar and Graph paper
options of Change

The Axis design option allows you to select a colour for the axis line, whether or not
the axis line is drawn, the colour of the numbers labelling the vertical axis and the axis
limits

EASEL normally chooses the limits for the range of values shown on the vertical axis
It chooses a range that allows you to see all the values in your graphs If you select
the option to change the axis limits you are offered one of three possibilities

Press the A key to select automatic limits In this option Easel selects a suitable range,
depending on the values in your graphs The range might not include the zero point
if, for example, all the values are large and positive

Press the Z key to select automatic limits which always include zero This is the type
of axis limits that Easel uses if you do not make your own choice

Press the M key if you want to make your own choice of limits Easel asks you to type
in the lower limit and then the upper limit (mark the end of each value by pressing
ENTER) Note that Easel will override your selection if it does not cover the full range
of values in your graphs

In all cases the two limits are adjusted so that the intervals in the scale are sensible ones
Note that the specimen axis, shown at the right of the screen, does not necessarily show
the exact range that wtl! be used in the resulting graph It is a representative axis and
is only intended to illustrate the general type of axis that you have chosen

12/84 13

CHAPTER 7
LINE

fiDADUC
V^rlMr nO AS you may have seen when you experimented with the different display formats, the

sets of figures can also be represented by line graphs or by pie charts This allows you
to display a given set of the figures in many different ways so that you can choose the
method most appropriate for your needs

Format 3 uses lines to display the sets of figures Each value may be marked by a symbol
and the values are joined by lines of various thicknesses and colours You can also use
"filled" lines where the space between the line and the zero level is completely filled
with colour

You may find filled lines useful for showing 'critical values', such as a break even level,
as a background to your graph

Since bars and lines are both displayed on the same type of grtd you can mix bars
and lines in any combination Titles axis labels general text and the key box all behave
in exactly the same way for both bars and lines

OuLcl/l INu A LINt If you select the Line option of the Change command you cart change the representation
CTVI C of a set of figures to use a line graph First make the graph you want to change to be
ul LC {ne current figures (eg With Olddata) Then select the Line option of the Change

command

There are 16 pre defined line styles and Easel first asks you to type in the number of
the fine you want Type in the number and press ENTER, or just press ENTER to see
the selection available Select a line by pressing the left or right cursor key When the
box encloses the line you want, press ENTER Easel immediately draws the set of figures
with the Ime style that you have selected

Select the line shown with a Question mark instead of a number if you want to design
your own style of line

Easel gives you a list of options for your line and you use them exactly as was described
for the Bar option, in Chapter 3 Press ENTER to select the highlighted option or use
the up and down cursor keys to step to the option you want

Line Colour selects the line colour Select the colour with the left and right cursor keys and press
ENTER to move to the next option

Symbols allows you to choose whether to mark each point on the line with a symbol Each time
you select this option the symbols are switched between on and off

Symbol Colour selects the symbol colour in the same way as you select the line colour You can step
over this option if you have chosen not to use symbols

FlIlGd Lines switches between a normal line and a line which is filled with the line colour to the
horizontal axis Each time you select this option Easel switches between the two types
of line

Line Thickness allows you to choose the thickness of the line Type in a number between 0 (thinnest)
and 100 (thickest) and press ENTER You can step over this option if you have selected
a line filled to the axis

Easel offers you a final option to check that you are satisfied with the result Press ENTER
to see the graph with your style of line, or use the up or down cursor keys to go back
to modify your selections

Figure 71 was created in format 2 (stacked bars) with one set of figures changed from
a bar to a line representation

iMUIvlbnIU bN I HY If you select a format which uses a line graph for your current figures you can enter
FOR LINES your clata In exactlv tne same way as described for bar charts - simply type them in

The only real difference between line and bar representations appears when you are
typing numbers into a set of figures represented by a line In order to allow you to type
new numbers - or change existing ones - without redrawing the whole graph for each
number Easel does not use the true line colour

14 12/84

Figure 71 Stacked bars and lines

While you are typing in the numbers, the graph is drawn using a thin white line - or
a filled line - depending on the line style you have chosen The colour of the line changes
as it passes over any bars, lines or text Easel warns you in the status area that the line
colour is not being shown correctly

When you have finished typing in numbers, use the View command to see your graph
with the correct colour and thickness of line

Graph Formats

Note that you can only show one set of figures at a time in pie chart format, and that
any negative values are ignored. Easel will warn you if data has been omitted.

Since you can only have one set of figures in a pie chart, the View command offers
you the option of viewing the current set of figures - instead of the usual "all Figures"
You can type in a replacement name. If you type in a list of names (separated by commas)
Easel will display the first set of figures in the list, ignoring the rest.

tN 1 hnllMo To illustrate entry into a pie chart, use the Change command to change to format 7,
Ml JMRpDC which is a pie chart format. Then use the Newdata command to create a new, empty
IVUlvlDCno sej of figures caiie^ fOr example, 'bests'! Easel draws a filled circle, labelled with the

first cell label which, unless you have changed it, is "Jan".

Type a number and press ENTER. Easel redraws the circle, but this time the number
you typed in is shown under the label. The diagram is a pie chart with only one value.
Type in a few more numbers, exactly as if you were typing numbers into a bar chart.

During data entry into a pie chart the next cell to receive data will be indicated by having
its label highlighted. If this is not possible it will be indicated by a special highlighted
display box at the bottom left of the display area. In Figure 8.1 this is the label "PORTUGAL!

Figure 81 A pie chart

Since the chart must be redrawn each time you add or change a value, you may find
it more convenient to enter the numbers in one of the other formats changing to pie
chart format later

CELL LABELS You move from cell to cell with the TABULATE or SHIFT + TABULATE keys, just as
in a bar chart. Remember that as always the option is not available from the command
menu.

Press F5 to add another cell after the one whose label is highlighted. Easel gives each
new cell the label "unnamed1! Type a number into the cell as normal. You can edit the

16 12/84

Pe Charts

cell label with the Label option of the Edit command The cell that you can edit is
highlighted, and you can step from label to label with the TABULATE and SHIFT keys

As in bar charts and line graphs you must delete both the cell label (use the label option
of Edit, and press F4) and the number in the cell (step to the cell with TABULATE and
press F4) before Easel deletes the whole cell Easel deletes a blank cell when you next
use the View command

You can add, delete and move text and titles exactly as described for lines and bars TEXT
m Chapters 2 and 4 You use the horizontal and vertical crosswires in the normal way
for adding, editing or moving ordinary text

The Text and Format options of the Change command work in exactly the same way I Ht OHANub
with a pie chart as in any other format COMMAND

Graph paper, bars, lines and graph axes have no meaning for a pie chart and Easel
does not allow you to use these options

The Segment option can only be used in the pie chart format It allows you to change
the colour of a segment of the chart First select the segment whose colour you want
to change (Press TABULATE until rts label is highlighted) Then select the Segment option
of the Change command

Easel draws the palette of possible colours in the display area Press the left or right
cursor key to select the colour you want and then press ENTER Easel redraws the
pie chart with the segment in your chosen colour

12/84 17

CHAPTER 9
PERMANENT

COPIES OF
YOUR

GRAPHS
r nIN I INu If you have a dot matrix printer that is compatible with the Epson FX80 (for example

the Brother HR-15 or the Canon PW1Q80A) you can make printed copies of your graphs
immediately

The print command makes a printed copy of the graph shown on the screen Press
the P key to select the print command Before printing Easel reads the printer driver
from the file gpnnt prt' from the cartridge in Microdrive 1

Press the S key to dump the screen into a Microdrive file, you must type in the name
of the file to use followed by ENTER This file can then be subsequently processed
for example by a SuperBASIC program and sent to a printer not supported by Easel
Note that this file is very large and normally no more than three can be stored on a
Microdrive cartridge

Press the I key to install a different printer driver Several other printer drivers are supplied
on the Easel crtndge, they are in files with the extension prt. Some of these are colour
printers, for example the Integrex 132 and the Okimate 80 Type in the name of the printer
driver you want and press ENTER

The new printer driver is not installed permanently and Easel will revert to the Epson
FX80 the next time Easel is loaded The default printer driver is contained in the file
gpnnt prt' and so you can make the installation of a new printer permanent by simply
renaming the files First copy the original 'gpnnt prt' to another file, for example
'FX80 prt' and delete the original file Then copy !he file containing the driver you require
to the file 'print prt1 Note that the original Easel cartridge is write protected so you must
use the copy you made

You can use a baud rate different from the initial 9600 baud assumed by the QL For
example, if you wanted to set 4800 baud start Easel by typing

BAUD 4800

LRUN mdv1_boot

instead of having the Easel cartridge in Microdrive 1 when you press F1 or F2

Alternatively you could make the change of baud rate permanent by adding an extra
line to the 'boot program First load and renumber the program by typing

LOAD mdv1_boot

RENUM 10,10

Then add, for example, the line

5 BAUD 4800

Delete the old copy of the program and save the new version on the Easel cartridge, type

SAVE mdv1_boot

Again this change must be made to a copy of the Easel cartridge

PHOTOGRAPHY The simplest, and fastest way of obtaining a permanent copy of one of your graphs
is to take a photograph of the screen You must, however, take a little care if you want
to obtain good results

One of the most common causes of a poor photograph of a television screen is using
too short an exposure time The picture is made up of 625 separate lines, displayed
one after another It takes a 25th of a second to display all the lines in the picture and
if you use an exposure time of about this length, or shorter, the picture will be unevenly
lit It is best to use an exposure time of around a quarter of a second - this means
that you must support the camera on a tripod An average colour film (for prints or
transparencies) with a speed of, say, 100 ASA will need an aperture of around F56
Use a long focal length lens (about 100mm) if you have one as this will reduce the
distortion caused by the curved surface of a TV screen

18 12/84

12/84 19

Try to take the photograph in a darkened room, to avoid reflections of the surroundings
on the surface of the screen It is surprising how strongly such reflections show up on
the photograph, even if you do not notice any when you look through the camera
viewfinder

Press F2 to remove the control area and give you a larger graph You can also press
SHIFT and, while holding it down, press F2 to erase the text in the status area

Before taking the picture make sure that all text, cell labels, axis names and the key
appear exactly as you want them

CHAPTER 10
QL EASEL

REFERENCE
THE FUNCTION

f\t TO lrt addition to the standard use of F1, F2 and F3, function keys 4 and 5 are used as follows

PF4] delete
text
labels
numbers
the key
user defined objects

Note user-defined objects are bars lines, graph paper and axes

[F5l insert a cell

I rib UUMMAIMUb The commands give access to the deeper levels of Easel and allow you to use many
of the more advanced facilities The following commands are provided

CHANGE The Change command allows you to modify the appearance of any feature of the graph

You are offered the following options

Axis to select the axis markings You can alter the colour of the axes and
of the numbers labelling the y-axts You may also select whether or
not the axis lines are to be drawn Easel will not allow you to select
this option in format 7 (a pie chart)

The option to change the axis limits allows you to choose between
automatic or manual limits Press the A key for automatic limits or the
Z key for automatic limits which always include zero

Alternatively, press the M key to select manual limits In this case you
must type values for both limits Easel may modify your choices of limits
to ensure that the whole of your graph is shown, with simple numeric
values on the scale

Bar to select or define the style of bar used to represent the current set
of figures You may choose one of 16 previously defined bars by its
number, or by example The design by example option allows you to
select a bar or to design a new one Easel will not allow you to select
this option in format 7 (a pie chart)

Format to redefine the appearance of the entire graph You may choose one
of 8 defined formats by its number or by example

Graph paper to select one of 7 different graph papers, or to replace one with your
own design You can select both the background colour and the colour
of the grid markings Easel will not allow you to select this option in
format 7 (a pie chart)

Line to select one of 16 defined line styles, or design your own line You
can choose the line colour and thickness, and the colour of the symbol
used for each point on the line, or select a filled line, where the space
between the line and the zero level on the graph is colour filled Easel
will not allow you to select this option in format 7 (a pie chart)

Segment to select the colour of a particular pie chart segment Easel will only
allow you to select this option in format 7 (a pie chart)

Text to select the colour used for both the text and its background You can
select a transparent background so that the underlying graph will show
through You can also select whether the text is to be drawn horizontally
or vertically

Any existing text will retain its original colour and direction, but new
text will appear in the selected style, until you change it again (The
text in a key box is always drawn in the current text colour)

20 12/84

The Defaults command allows you to select a number of features, such as whether you DEFAULTS
use a 40, 64 or 80 character display You can select an item by pressing the key
corresponding to its first letter in the list of options shown

The Edit command allows you to modify or move text, labels and the key EDIT

You are asked to choose between the following four options

Text the crosswires lock on to the nearest piece of text and you can use
the line editor to change the wording Press ENTER and you are offered
the option of moving the text to a new position Press ENTER when
you are satisfied with the position

Labels the crosswires lock on to the nearest cell label and you can then edit
the text of the label as in the Text option Press ENTER when you have
finished Cell labels can not be moved

Key you are immediately offered the option of moving the key box with the
cursor keys Press ENTER when the outline of the key box is in the
position you want The key box is then redrawn in its new position

Axis you are asked to press either the V or the H key to select the vertical
or the horizontal axis name The crosswires lock on the chosen name
and you can edit the text and then reposition it

After editing, all text is shown in the colour and direction set by the last use of the Text
option of the Change command The only exceptions are the axis names which are
fixed in direction

This command allows you to modify Easel files, previously saved on a Microdrive cartridge, FILES
or to transfer data files to another of the Psion QL programs

You are offered the following options

Backup used to make a backup copy of an Easel file You are asked for the
name of the file to be copied and the name you want to give to the
new copy Making copies of your files is strongly recommended, to
protect yourself against accidental loss of, or damage to, the cartridge,
and against making a mistake which causes your application to be
corrupted or deleted

Delete deletes a named file from a Microdrive cartridge

Warning - this command is not reversible and should be used with
great care

Export exports a named file The file contains all the sets of figures currently
in the computer's memory It is saved in a form suitable for being read
by QL Abacus or QL Archive Import and export are described in the
Appendix

If you do not specify a file name extension for an exported file Easel
will supply an extension of exp

Import imports a named file and allows Easel to read data files exported from
QL Abacus or QL Archive and display them in graphical form

If you do not specify a file name extension for an imported file Easel
will assume an extension of exp.

Format formats the cartridge in Microdrive 2, or another named Microdrive
Accept Easel's suggestion to format mdv2 or type in another Microdrive
specifier eg mdv3 Easel asks you to confirm your selection of this
option

Warning - all information on the cartridge is erased when you format it

This command allows you to use a special symbol to represent a particular number HIGHLIGHT
in a set of figures, or all negative values in a bar chart The value to be highlighted is
the one at the current position of the intersection of the crosswires or the one whose
label is highlighted in a pie chart

12/84 21

Reference

Easel first asks you to press either the V key to highlight a particular value, or to press
N to highlight all negative values You are not allowed to select this second option for
a pie chart

If you choose to highlight a value Easel asks you to select the value Press TABULATE
(or SHIFT and TABULATE) to select the cell you want to highlight and then press ENTER
In the case of a bar graph you are shown the selection of defined bars, and can choose
one - or design a new one In a pie diagram the selected segment is detached from
the remainder of the pie

If you select the option to highlight negative values Easel immediately asks you to select
or design a bar

Figure 101 A highlghted pie sector

KILL Deletes one or more sets of figures from the graph and destroys the data When you
select this command you are asked to type in a list of the names of the figures you
want to delete separated by commas and ending with ENTER If you just press ENTER,
Easel will delete the current figures You can, if you like, type in the text all figures

LOAD Loads a previously saved graph from a Microdrive cartridge Easel asks you to type
in the name of the file to be loaded All the Design options are loaded with the data
so that the graph of the loaded data has exactly the same appearance as it had when
it was saved

If you do not specify a file name extension, Easel assumes an extension of grf

NEWDATA Allows you to create a new set of figures which becomes the 'current figures' You are
asked to type in the name of the new set (no quotation marks are needed) When you
press ENTER you are returned in data entry mode, ready to type in some values

OLDDATA The Olddata command allows you to make an existing set of figures the current figures'
You are asked to type in the name of the old set (no quotation marks are needed) When
you press ENTER you are returned to data entry mode, ready to change or add to
the values

22 12/84

Reference

Prints the graph that is currently displayed on the screen PRINT

The command offers three options Press the P key to print the graph, using the current
graphics printer driver

Press the S key for a screen dump to a Microdrive file In the Screen dump option Easel
asks you to type in a name for the file

Press the I key tf you want to install a different graphics printer driver Easel will wait
for you to type in the name of one of the printer driver files (with an assumed extension
of prt) supplied on the Easel cartridge See Chapter 9 for further information

You use this command to leave Easel and return to SuperBASIC You are offered the QUIT
options to press ENTER to confirm your choice and return to SuperBASIC, or to press
ESC to cancel the command and return to Easel's command menu

This command allows you to rename an existing set of figures Easel asks you to type RENAME
tn the old name, suggesting the current set of figures, and then the new name Press
ENTER at the end of each name

If you do not specify a file name extension for the old file Easel assumes an extension
of grf. The new file is given the same extension as the old one, unless you also type
in an extension for the second name

Saves all the sets of figures currently in the computer's memory on a Microdrive cartridge SAVE
You are asked to type in a name under which the figures will be saved If you do not
specify a file name extension, Easel assumes an extension of grf.

All the properties of the graph, eg the bar colours and style of axes are saved with
the figures

You use this command to redisplay your graph, showing all, or a selected few, of your VIEW
sets of figures Easel suggests that all sets of figures are to be displayed and you can
either accept this suggestion, by pressing ENTER or type in a list of the names of those
sets that you want to be displayed You should separate the names in the list by commas
and end the list by pressing ENTER

In the pie chart format Easel suggests only the name of the current set of figures If
you type in a list of names in this format Easel shows a pie chart of the first name in
the list and ignores the remaining names

You are then offered a suggested format number for the display You can accept the
suggested format (which is the last one you were using) by pressing ENTER, or you
can type in your own choice of format number, followed by ENTER

This command erases all text, all sets of figures and all user-defined objects (bars, lines ZAP
and so on) It also restores the original month labels for the cells It does not, however
restore the original appearance of the graph formats, but leaves any changes that you
may have made

Think of a function as a kind of recipe which converts a number of initial values, known FUNCTIONS
as the function's arguments, into a different value which is said to be the value that is
returned by the function

The functions provided by Easel take one or no arguments The argument for a function
is placed in brackets after its name You must not leave a space between the name and
the opening bracket, but spaces are allowed within the brackets All function names must
be followed by the brackets, even if they take no arguments The presence of the brackets
is a useful reminder that you are referring to a function They allow you to distinguish
between the name of a set of figures and a function, even if they have the same name

The following functions are provided

ABS(n) Returns the absolute value, that is the numerical value irrespective of
its sign, of the argument For example, abs(5) and abs(-5) both return
the value 5

ATN(n) Returns the angle, in radians whose tangent is n

COS(n) Returns the cosine of the given (radian) angle

12/84 23

Reference

EXP(n) Returns (he value of e (approximately 2 718) raised to the power n The
returned value will be in error if n lies outside the range from -87 to
+88, since the result will then exceed the numeric range of Easel

INT(n) Returns the integer value of the number, by truncating at the decimal
point The truncation always operates towards smaller numbers Thus,

int (3.7) returns 3
int C-4.8) returns -5

LN(n) Returns the natural, or base e, logarithm of n An error results if n is
negative or zero.

Pl() Returns (he value of the mathematical constant n

SGN(n) Returns +1, -1, or 0, depending on whether the argument is positive,
negative or zero

SIN(n) Returns the value of the sine of the specified (radian) angle

SQR(n) Returns the square root of the number n, which must not be negative

TAN{n) Returns the tangent of the specified (radian) angle

24 12/84

QL
Information

©1984 PSION LIMITED
by Dick de Grandis-Hamson (Psion Limited)

QL PROGRAfi
-IMPORT AN
CYpfJRT

You can transfer information between the four QL programs with the import and export *-Ar \sft I
commands

Stored information in QL Abacus, QL Archive and QL Easel is similar and can always
be represented as a table Transferring information between them is very simple In Abacus
and Easel the import and export commands are file command options In Archive they
are two separate commands

Let us first consider import and export between Abacus, Archive and Easel The export
file structure produced by the three programs is identical in structure and can be imported
by any

For example suppose we have an Abacus grid containing the following information

A B C D
1 | cashflow January February March
2 j sales 1000 1050 1100
3 | costs 500 530 560
4 | profits 500 520 540

Abacus grid tor export

If this data was imported into Easel, it would be interpreted as three sets of figures, called
costs, sales and profits Easel uses the month names as the cell name labels for the
graphs The information would be

cell labels January February March
sales graph 1000 1050 1100
costs graph 500 530 560
profits graph 500 520 540

Imported into Easel

Easel does no! use the first piece of text cashflow When you export a set of figures
from Easel it automatically inserts the text, labels, in this position to maintain compatibility

If we were to import the same set of figures into Archive the result would be a data
file containing three records, each of which would have four fields with the field names
cashflows (a text field), sales, costs and profits (numeric fields) The file would be

Fields Recordl Record? Record3
cashflows January February March
sales 1000 1050 1100
costs 500 530 560
profits 500 520 540

Imported inlo Archive

To allow data to be exchanged between the three programs it is necessary to remember nULtO
a few rules

1 When you export the contents of a grid from Abacus the section of the grid being
exported must have text in the first cell of each row (or each column if exporting in
column order)

2 If the first cell of any row (or column) is empty then that row (or column) is not exported

3 There must be data in the cell immediately following the text cell in each exported
row (or column) The type of this data determines the type used for the data in the
rest of the row (or column) Each row (or column) must contain eilher all numeric
or all string data

4 You can export files from Abacus or Archive which contain several sets of text data
Easel can only export a file containing one set of text data - the cell labels

5 If you import a file containing more than one set of text data into Easel, it uses the
first as cell labels and ignores the rest

12/84 1

MLb OI nUU I Unh The export fife structure consists of a series of records each terminated by < CR > (ASCII
code 13} and < LF> (ASCII code 10) The import commands will, however accept either
of these characters or the two together, in either order The end of file is marked by a
CTRL Z character (ASCII code 26)

Each record consists of a series of values separated by commas The values are either
text (which must be enclosed in quotes) or numbers

The first value in each record must be text and if its name ends with a dollar sign all
the following values must be text

The export file produced by exporting the original set of example data from Abacus
is as follows

" c a s h f l o w s " , " s a l e s " . " c o s t s " , " p r o f i t s " < L F >
"January",1000,500,500<LF>
"February",1050,530,520<LF>
"Ma reh",1100,560,540<LF>

An export file

An export file can be generated from SuperBASIC The following program will generate
an export file, called example exp, for the standard data

100 O P E N _ N E U # 4 , m d v 2 _ e x a m p t e _ e x p
120 PRINT #4,'"cashflows","sales","costs"."prof its'"
130 P R I N T #4,'"January",1000,500,500'
140 P R I N T #4,'"February",1050,530,520'
150 P R I N T #4,'"March",1100,560,540'
160 P R I N T #4, CHRSC26)
170 C L O S E #4

SuperBASIC will automatically add a line feed character (ASCII code 10) at the end of
each record

EXPORT TO QUILL QL Ouitt works with formatted text and so files exported to Quill must contain formatted
text rather than the normal export file structure Quill will accept any text containing form
feeds (ASCII code 12) and line feeds (ASCI! code 10) and the printable ASCII characters
Line feeds are interpreted as an end of paragraph marker and form feeds as an end
of page Any other characters in the file are ignored

Abacus and Archive can produce special files for import by Quill Archive can export
to Quill by producing 'Formatted report! produced by Ipnnt To export the report you
divert the printed output to a Microdrive file using the export option of the spoolon
command (See chapter 12 of the Archive Guide)

2 13/84

QL
PROGRAMS
PRINTERS

The master QL program cartridge is write protected and so cannot be put through r ill 111 I L>n«J
the printer install process. The cartridge should first be backed up and the subsequent
copy installed.

Each of the four Psion QL programs can print text on almost any make of printer that
has an RS 232-C interface

The printer can be set to use either continuous or single sheet paper. If using single
sheet paper the printer will stop at the end of the sheet and a message will appear
on the display prompting for more paper Press ENTER to continue or ESC to abandon
the document

PRIMTFR HRIVFR^The printer is controlled by a special program called the printer driver whtch can be ' HUN I En un\ vtno
modified to use whatever printer you wish

A non-printable character, other than a line feed and carriage return, must be preceded
by an ASCII code 0 (NULL) to indicate to the printer driver that it must be output For
example, the Epson FX-80 command to print in bold characters is ASCII code 27 (ESC)
and E. ESC is a non-printable character and must therefore be preceded by a NULL
You can send the codes from Archive with the instruction

Iprint ch r (O) + ch r (27) + "E"

In Abacus the same task can be performed by putting

c h r (O) + c h r (2 7) + "E"

into a cell at the point where bold printing is to start

Adapting QL Quill, QL Abacus and QL Archive to suit other printers is called installing
the software and is done using the SuperBASIC install program The install program
(install bas), installation data for various printers (install dat) and the installation data
for the current printer (pnnter_dat) are on the QL Quill and QL Abacus program
cartridges You can use the program to install a printer for QL Archive even though the
archive cartridge does not contain the installation program or the installation data

The Abacus, Archive and Quill programs themselves use only the information in
printer_dat

For example to install Quill to work with an Epson FX 80, fitted with an RS-232-C interface, ^~J(l4"n ^thlAL
put the Quill cartridge in Microdrive 1, but do not run it While in SuperBASIC type PRINTER

Iron mdv1_ins taLL_bas

and the installation program will run The program requires the 'install dat' to be on
the cartridge in Microdrive 1 so it shouldn't be deleted.

You must first select the Microdrive in which the printer will be installed In this case press
1, followed by ENTER, to install Microdrive 1 Then press ENTER to select a serial printer
(connected to the computer via serial port serl or ser 2)

The program then reads the installation data and displays a list of !he names of printers
for which a customised driver driver is supplied

You select a printer from the list with the up or down cursor keys until the required printer
is highlighted and then press F5 to install it You must confirm the installation by pressing
ENTER, any other key wifl cancel the installation and return to the list of printer names

When the installation is complete you will be returned to SuperBASIC When Quill is next
loaded it will be set up to use the printer you selected, including bold characters,
underlining, subscripts and superscripts

You can remove a printer from the list by pressing F3, and save all the printer drivers
in the list by pressing F4 Since both of these options make irreversible changes to the
printer drive information they must be confirmed by pressing ENTER

12/84

Ul Htn otnlAL If your printer is not included in the list displayed by the install program you have two

PRINTERS °Ptlons

Do nothing Leave the installation program by pressing ESC All four programs are set up with a
simple printing facility which should be able to print ordinary text on almost any printer

install it Add a new name to the list of printer names There are three ways of doing this

1 Use the down cursor key to select the item called 'OTHER Press either F1 or F2
to create a new rtem, ready tor you to set it up for your printer

2 Select an existing printer name and press F1 to create a new printer with the same
values as the old one Use this option if your printer is similar to a printer already
in the list

3 Select an existing printer and press F2 This does not make a new copy, but allows
the vaiues of an existing printer to be changed Do not use this option unless you
are sure of the changes you intend to make

In each case you are shown a list of printer parameters to alter Press the up and down
cursor keys to select an item and the left and right cursor keys to change it

There are two types of item in the list

- those with a variety of possible values such as the DRIVER NAME, and END OF
LINE CODE

- and those with a limited range of values, such as the PARITY

The values of each type are changed in different ways The diagram below shows the
values given to the DEFAULT printer At the right of the diagram are other possible values
(for those with limited range)

Default Other options

DRIVER NAME DEFAULT
PORT serl ser2
BAUD RATE 9600 75, 300, 600, 1200, 2400, 4800
PARITY NONE SPACE, MARK, ODD EVEN
LINES/PAGE 66 0 to 255
CHARACTERS/LINE 80 0 to 255
CONTINUOUS FORMS YES NO
END OF LINE CODE CR, LF
PREAMBLE CODE NONE
POSTAMBLE CODE NONE
BOLD ON NONE
BOLD OFF NONE
UNDERLINE ON NONE
UNDERLINE OFF NONE
SUBSCRIPT ON NONE
SUBSCRIPT OFF NONE
SUPERSCRIPT ON NONE
SUPERSCRIPT OFF NONE
TRANSLATE1 NONE
TRANSLATE2 NONE
TRANSLATES NONE
TRANSLATE4 NONE
TRANSLATES NONE
TRANSLATE6 NONE
TRANSLATE/ NONE
TRANSLATES NONE
TRANSLATE9 NONE
TRANSLATE10 NONE

For each of the items that has a limited number of options, the value changes each
time the left or the right cursor key is pressed

12/844

For the other items pressing one of these cursor keys erases the existing value you
then type in your own value and press ENTER All these items, except for the DRIVER
NAME will accept lists of up to ten codes separted by commas Each code can be
typed in several ways
1 A number between 0 and 255
2 A hexadecimal number preceded by a dollar sign, between $0 and $FF
3 Any single character preceded by a quote symbol (" or)
4 A standard ASCII control code mnemonic, in upper or lower case

NUL SOH STX ETX EOT ENQ ACK BEL
BS HT IF VT FF CR SO SI
OLE DC1 DC2 DCS DC4 NAK SYN ETB
CAN EM SUB ESC FS GS RS US

5 The text DEF (or def) causes the printer to use a default action making the printer
backspace to produce the desired effect It should only be used for emphasis
and underlining These items must be set in pairs, for example if UNDERLINE
ON is set to DEF then so must UNDERLINE OFF The printer must be able to
respond to the ASCII backspace code

Alternatively you may just press ENTER to select NONE You are free to mix !he different
methods in any way you choose

The DRIVER NAME contains the name of the manufacturer, or of the model, of the printer
It is the name by which you can identify the printer driver The name must not be more
than 16 characters long To change this item press the left or right cursor key type in
the name you want and press ENTER

The PORT is either serl or ser2 and selects one of the two standards serial ports

The BAUD RATE determines the speed at which characters are via a serial interface,
in terms of the number of bits that are transmitted per second 110 baud is approximately
equivalent to 10 characters per second, 300 baud to 30 characters per second, and
so on The baud rate of the printer driver must match that of the serial interface of your
printer

The PARITY item depends on the way your printer handles the most significant bit (binary
digit) in the data sent from the computer All ASCII codes lie between 0 and 127 and
can be represented by a 7-digit binary number Many serial printers expect a character
to be sent as a seven bit value Other printers may expect eight bit values, accepting
codes between 0 and 255 The extra codes, between 128 and 255, may be printed
as graphics or as accented characters Your printer may interpret the eighth bit of an
8-bit code as a parity bit, used to check if there has been an error during transmission
of a character Your printer may use EVEN parity (the parity bit is set to 0 or 1, so that
the total number of 1s in each character code is even) or ODD parity (the total number
of 1's is odd) If your printer does not check the parity you can select SPACE (the eighth
bit is always 0) or MARK (the eight bit is always 1) A setting of NONE allows the full
eight bits to be sent to the printer

LINES/PAGE and CHARACTERS/LINE specify the maximum number of lines of text
(including the blank lines if you are printing double - or triple - spaced text) on each
page, and the maximum number of characters on any one line The values used in
the printer drivers supplied are suitable for use with A4 stationery

CONTINUOUS FORMS specifies whether your printer uses continuous stationery (YES)
or separate sheets (NO) If you are printing on single sheets of paper, the printer will
stop at the end of each page A message appears on the screen, asking you to insert
a fresh sheet of paper Press ENTER to start printing again, or press ESC to abort the
print out

The END OF LINE CODE is the code sequence to be sent to the printer to indicate
the end of a line Most printers will accept a carriage return followed by a line feed
Select a line feed as the end of line marker if you want to print a SuperBASIC program
to a file

The PREAMBLE and POSTAMBLE CODES may be needed if your printer requires an
initialisation sequence before you first use it You may, for example, want to set the printer
margin positions or select a particular character set You may also want to restore these
settings to their original values when you have finished using one of the QL programs
The preamble and postamble items allow you to specify a sequence of up to 10
characters to be sent to the printer for these two purposes

12/84 5

The BOLD ON and OFF items contain the codes to turn bold (emphasised) printing
on and off If your printer cannot print emphasised characters you can use the DEF
value, described earlier, provided the printer will respond to a backspace character

UNDERLINE ON and OFF turn underlining on and off, provided your printer has an
automatic underlining facility If your printer cannot print underlined characters you can
use the DEF value, described earlier provided the printer will respond to a backspace
character

Use the SUBSCRIPT ON/OFF and SUPERSCRIPT ON/OFF items for the sequence of
codes needed by your printer to turn subscript and superscript printing on and off

Each of TRANSLATE1 to TRANSLATED accepts up to ten characters The first character
specified is translated into the following sequence of characters before being sent to
the printer The first character must not be a control character (its ASCII code must be
in the range 32 to 255) The translation can contain any character The result must appear
as a single character when printed

As an example let us create a second printer driver for the Epson FX-80 Start by loading
and running the installation program from SuperBASIC Select the driver named OTHER
and press either F1 or F2 The initial values displayed are listed below, the column at
the right showing the values needed for the FX-80

Default Other options

DRIVER NAME OTHER
PORT serl ser2
BAUD RATE 9600 9600
PARITY NONE NONE
LINES/PAGE 66 66
CHARACTERS/LINE 80 80
CONTINUOUS FORMS NO YES
END OF LINE CODE CR, LF CR, LF
PREAMBLE CODE NONE esc,@,ESC,R,NUL
POSTAMBLE CODE NONE NONE
EMPHASIZE ON NONE ESC E
EMPHASIZE OFF NONE ESC.F
UNDERLINE ON NONE ESC - 1
UNDERLINE OFF NONE ESC - 0
SUBSCRIPT ON NONE ESC.S1
SUBSCRIPT OFF NONE ESCJ
SUPERSCRIPT ON NONE ESC.S.O
SUPERSCRIPT OFF NONE ESCT
TRANSLATEI NONE £ ESC.R ETX,#,ESC,R,NULL
TRANSLATE2 NONE NONE
TRANSLATES NONE NONE
TRANSLATE4 NONE NONE
TRANSLATES NONE NONE
TRANSLATES NONE NONE
TRANSLATE? NONE NONE
TRANSLATES NONE NONE
TRANSLATE9 NONE NONE
TRANSLATED NONE NONE

First change the driver name press the right cursor key to erase the existing text, and type

FX-80 ["ENTERl

If you make a mistake you can repeat the process

Press the down cursor key until the CONTINUOUS FORMS entry is highlighted There
are only two options, select YES by pressing the right or left cursor key

A suitable PREAMBLE sequence for the Epson FX-80 is ESC which initialises the printer
and clears its print buffer The printer should also be set to use the American character
set (to print both the hash symbol, #, and the pound sign - see later) The FX-80
code to do this is ESC R NUL

12/846

Use the cursor keys to select the PREAMBLE and press the right (or left) cursor key
to erase the current value The following three options all produce the same result and
initialise the printer.

ESC r "a ,ESC,"R,NUL
27,64,27,82,0
$1B,$40,$1B,$52,$D

You could use this item to set other printer properties, such as the line spacing or italic
characters If your printer doesn't require any initialisation then you can leave the initial
setting at NONE

The FX-80 doesn't need a POSTAMBLE so the setting can be kept at NONE

EMPHASIZE ON and EMPHASIZE OFF codes for the Epson FX-80 are ESC E and
ESC F respectively You can set them by typing

esc,"E
esc, "F

The remaining codes can be set by typing

Item You type

UNDERLINE ON esc,"-,"1
OFF esc,"-,"0

SUBSCRIPT ON esc,"S,"1
OFF esc,"T

SUPERSCRIPT ON esc , "S, "0

OFF esc,"T

TRANSLATE1 £ , e s c , R , E T X , # , E S C , R . N U L

In the above example TRANSLATE 1 enables the Epson FX-80 to print a pound sign,
which is only available in the English chracter set. The QL pound sign is translated to:

Switch to the English character set
print a hash symbol (which appears as a pound sign)
switch back to the American chracter set

When you have finished editing the printer codes you can install the printer by pressing
F5. Alternatively you can return to the list of printers, ready to make mode changes.

Put a QL Quill or QL Abacus cartridge in Microdrive 1 and a QL Archive cartridge in INSTALL FOR
Microdrive 2. Load and run install bas from Microdrive 1 but then press 2, followed QI ARpUIWC
by ENTER, to indicate that you want to install a printer to Microdrive 2 "̂- /"iwnlVC

Follow the installation procedure as normal. The installation data will be read from
Microdrive 1 but the printer will be installed to the cartridge in Microdrive 2.

The installation program allows the installation of a printer connected to the QL via ports rnnnLLtL
other than sen or ser2 You would use this option if, for example, you have added an PRIMTPRQ
optional parallel interface Load and run install bas as described earlier After you have rnllV I uno
selected installation to Microdrive 1 or 2, press the space bar to select the parallel port
option

The list of printers appears as before but when you press Fl or F2 the list of parameters
appears as shown in the following table

12/84

Default Other options

DRIVER NAME DEFAULT
PORT NONE
LINES/PAGE 66 0 to 255
CHARACTERS/LINE 80 0 to 255
CONTINUOUS FORMS YES NO
END OF LINE CODE CR, LF
PREAMBLE CODE NONE
POSTAMBLE CODE NONE
EMPHASIZE ON NONE
EMPHASIZE OFF NONE
UNDERLINE ON NONE
UNDERLINE OFF NONE
SUBSCRIPT ON NONE
SUBSCRIPT OFF NONE
SUPERSCRIPT ON NONE
SUPERSCRIPT OFF NONE
TRANSLATE1 NONE
TRANSLATE2 NONE
TRANSLATES NONE
TRANSLATE4 NONE
TRANSLATES NONE
TRANSLATES NONE
TRANSLATE? NONE
TRANSLATES NONE
TRANSLATE9 NONE
TRANSLATE10 NONE

You are not given the option to select the baud rate or parity since they are only relevant
for a serial interface via sen or ser2 The PORT section is also different Change this
item by pressing either the left or right cursor key and then typing any valid device name
of up to sixteen characters Refer to the Devices section of QL Concepts, or the manual
accompanying an add on interface

Apart from these differences, the remainder of the installation is exactly She same as
described for a serial interface

THc UUNVbH I Version 20 of the install bas program has been modified to offer a wide range of printer
UTILITY opt|ons This means that it is not compatible with install dat files created with version

1 A conversion program, convert bas, is supplied to convert version 1 install dat
files so that they are readable by the version 2 0 installation program

First copy convert bas to another cartridge Put the cartridge containing the copy of
convert bas in Microdrive 1 and a cartridge containing your version 1 install dat file
in Microdrive 2 Run the program by typing

Irun mdv1_convert_bas

The program reads the install dat file in Microdrive 2 and writes the new version to
Microdrive 1 Note that the new version will replace any install dat file on this cartridge
You can then, if necessary, copy the new install dat file to another cartridge

QL PROGRAM
The program config bas allows you to specify alternative default devices for the QL •"• V/N/IMl IO
programs and to modify the sort order in the Order commands of Abacus and Archive.

As supplied, the programs expect to use Microdrive 2 for storing data, and Help
information and the installed printer driver are on Microdrive 1 You may wish to modify
these to make use of additional Microdnves, disk drives, and so on

You may also wish to modify the order in which Archive records, or rows of an Abacus
grid are sorted This might be useful, for example, if you want to sort text which includes
accented characters from a foreign language.

You can run config bas from any Microdrive, and modify a QL program on a cartridge USINu UUNRu
in either Microdrive 1 or Microdrive 2 Suppose you want to run config bas from
Microdrive 2 to modify a copy of a QL program in Microdrive 1 Run the program by
typing

Irun mdvZ_conf i g_bas

When prompted, type the name of the program you want to modify (Quill, Abacus, Easel
or Archive) and press ENTER Then enter the value 1 when asked which drive contains
the program.

The program waits for you to press the space bar after you have made sure that the
program cartridge is in the correct Microdrive When you have done so the program
shows you the main menu of options which are

Select new default devices
Modify the sort order
Leave the program

To select the option to modify the sort order press ENTER When prompted press the Sort Order
space bar

The largest area of the screen shows a block of 256 characters which define the sort
order The position in the block, reading from left to right and top to bottom, determines
the character being sorted, the contents at that position shows how the character will
be tested by the Order command The right hand side of the screen shows more
information about the character marked by the cursor Move the cursor from character
to character with the cursor keys

The block of characters at the bottom of the screen is used for modifying the order
It also has a cursor, which you move with SHIFT and the cursor keys This block only
shows half of the full set of characters - press F1 to switch between the two halves

The best way of describing how to modify the sort order is by means of examples. As
supplied, the lower case characters will be sorted to come after all the upper case ones,
that is, "a" will come after "Z' Suppose you want to make the order independent of
upper or lower case so that, for example "A" and "a" are not distinguished

To make "a" be sorted as though it were 'A", move the cursor in the mam block of
characters to the letter "a" and press the 'A" key (make sure you type an upper case
character) The "a" in the upper block changes to 'A" and the information on the right
of the screen shows that the character "a' will now be regarded as equivalent to 'A'
for the purpose of sorting

Repeat this process for each lower case letter, making "b" equivalent to "B 'c" to "C",
and so on

An alternative way of changing a character is to move the cursor in the tower block of
characters, using SHIFT and the cursor keys, until it marks the character you require
and then press F2 This method is particularly useful for the characters, such as foreign
accented characters, that are not marked on the keys This method is used in the following
example

Suppose you want to reverse the normal sort order for the upper case letters, leaving
the rest of the ordering unchanged To do this you must change the part of the main
block that reads ' A B C X Y Z" so that it reads "Z Y X C B A" Move the mam
cursor to "A" and the lower cursor to "Z" and press F2 to enter the new character The
character "A" will then sort as though it were "Z" Repeat this for each upper case letter,
changing "B" to 'Y ' , 'C" to "X", and so on

12/64 9

When you have completed specifying the sort order, press F5 to save the new order
in the QL program reptacing the old one Press ESC to return to the main menu

Device Selection As supplied, the QL programs use Microdrive 1 for system information (the installed printer
driver for example) and for Help They all use Microdrive 2 for their data

From the main menu press the space bar to choose new default devices Press the
space bar again when prompted

After reading the current settings from your program cartridge, the program shows you
these values and waits for you to type in your new choices Press ENTER to keep an
old value or type in your new selection and press ENTER

Having made your selection you may save your new devices reselect the devices or
cancel this option and return to the main menu

If you save your device selection, the QL program will use these devices until you use
config bas to change them again

10

QL PROGRAM
Except for Easel the valid range for numbers in the QL programs is Arithmetic

+ 29*1039 to + 17*1038

All calculations are accurate to sixteen significant digits but only a maximum of fourteen
characters can be displayed

In easel the range of valid numbers (s

+ 10 35 to + 10 x 10+3B

The following arithmetic operators are provided in Abacus, Archive and Easel

Operator Function

+ Addition on numbers or
concatenation on strings

Subtraction
Multiplication

/ Division
Ratse to a power
Equal

> Greater than
< Lesser than
< = Lesser than or equal to
> = Greater than or equal to
< > Not equal to

There is no automatic coercion between data types Therefore, operands must be of
the same type The result is always a number, 1 if the comparison is true and 0 if it is false

Functions and operators have the following precedence

Operation Precedence

Subscripting and slicing 12
All functions 11

10
Unary minus 9
*,/ 8
+ ,- 6
= ,>,<,<=,>=, <> 5
not 4
and 3
or 2

FORMAT
r Hv/wCZUUrit Formatting a cartridge will result in overwriting any data that was previously stored on

the cartridge This data cannot be recovered so ensure that you only format blank
cartridges or cartridges that have no useful information on them

Ftrst decide on a name for the cartridge using not more than ten characters With the
QL switched on and displaying the flashing cursor, place the cartridge to be formatted
in Microdrive 1 Let us assume that the cartridge name is to be 'data Then type

FORMAT mdv1_data

Do not confuse the underscore symbol () with the minus sign (-), since they are on
the same key The underscore symbol is the upper one and so SHIFT must be held
down while the key ts pressed

Press ENTER and the left hand Microdrive light will glow for about thirty seconds The
QL will output a message on the screen indicating how much space is available on
that cartridge The FORMAT command is described in full in the Keywords section

it is good practice to format a new cartridge several times This will help the tape to
run smoothly and may result in a greater capacity

The cartridge could equally well have been formatted in Microdrive 2 by substituting
mdv2 for mdvl

BACKUP
I rlV/wtlL/Uri t A backup is made by copying all the files contained on the cartridge to be backed up

onto a blank cartridge Preferably the blank cartridge will be newly formatted and named
to reflect that it is a backup

Choose a blank cartridge or a cartridge that holds no useful information and place it
in Microdrive 1 Decide on a name for the cartridge, for example, if the name of the
cartridge to be backed up is 'QL data' then 'Ql data bak' would be a good name
for the backup cartridge Then type

FORMAT mdv1_data_bak

followed by ENTER The left hand Microdrive light will glow for about thirty seconds

Place the cartridge to be backed up into Microdrive 2 and type

OJR mdv2_

this will list all the files contained on this cartridge

For each file listed type

COPY mdv2_filename TO mdv'_filename

substituting the relevant file names where marked This command will copy each specified
file from Microdrive 2 to Microdrive 1 The speed of this operation depends on the sizes
of the files being copied the operation could take some time

Repeat the COPY command for each of the listed files When complete the backup
cartridge (the one in Microdrive 2) should be marked with the data and the name of
the cartridge for which it is a backup and then put in a safe place

Normally for each cartridge that you work with and which contains data you may have
one two or more backup cartridges depending on how important the data is If you
use this system then always backup onto the oldest backup cartridge in the set

12 12/84

QL Users
You may find that you would like some assistance in using and getting the most out Bureau
of your four supplied QL programs The QL Users Bureau (QLUB) has been founded
to enable you to do just this and keep you in touch with developments on the QL

Membership is only available to QL owners and entitles you to a number of benefits

• Regular newsletters will be published giving technical information angi tips
Information will be given on new software and peripherals with an opportunity to
buy new products in advance of the general public

Sinclair Research has made arrangements for QLUB members to obtain software
assistance from PSION If you have any queries concerning the use or application
of QL Abacus, Archive, Quill or Easel all you have to do is write to PSION direct
using a QLUB Query Form and quoting your membership number PSION will
usually reply within 48 hours

When updates to the four QL programs (QL Abacus Archive Quill and Easel)
are issued they will be offered to QLUB members at special discount prices

• Membership of the QLUB is FREE and for LIFE

To join the QLUB please fill in the registration form in the information section of your
QL User Guide

Psion can assist members solely on the QL programs supplied with your QL QL software
which you buy subsequently will, where appropriate offer separate service and update
arrangements

If you feel you need help in using the QL itself rather than the QL programs pfease
refer first to the relevant section(s) in your QL User Guide Numerous publishers are selling
books about all kinds of different aspects of the QL You may find these not only helpful
but also very interesting

Compantes independent of Sinclair Research are offering QL user courses and symposia
and we are encouraging such developments We will keep all members informed of
such activities through the newsletter

ORDER FORM

Monitor lead (2 metre)*

RS-232-C lead (2 metre)

Joystick adaptor

POST AND PACKING - Orders

i

Please tick box if VAT receipt required

* I enclose a cheque/postal order payable to Sinclair Research for £

* Please charge my Access/Barclaycard/
Trustcard account number

" please delete as applicable

Signature

PLEASE PRINT

Mr/Mrs/Miss

Address

Please send this form and your remittance (if paying by cheque or postal order) to

Sinclair Research Limited
FREEPOST, Camberley, SURREY GU15 3PS

Telephone Camberley (0276) 685311

Please allow up to 28 days for delivery

Your Sinclair QL is covered by a 12 month comprehensive guarantee valid in the UK Guarantee
only and effective from the date of dispatch It is not transferable The guarantee is
invalidated if the product is opened modified, repaired or tampered with by any party
other than Sinclair Research Limited or their agents This guarantee does not affect your
statutory rights

A guarantee card is enclosed with your QL Please read it straight away if you have
not already done so

If you have a problem then it may not be immediately clear whether this is caused by
the QL itself or one of the QL program cartridges

Please follow the instructions below

none of the four software cartridges will load IF

your QL is probably faulty THEN

OR

all the software packages run successfully but ail display a similar fault when running IF

your QL is probably faulty If you believe your QL to be faulty please take your complete THEN
QL package {including the QL programs) in its original polystyrene box back to the shop
from which you originally purchased it together with your proof of purchase

If you bought the QL by mail order from Sinclair Research Limited then please send
the QL package to

Sinclair Research Limited
Stanhope Road Camberley

Surrey GU15 3BR

Please use recorded delivery or registered post and keep proof of postage Please
send with the package a letter indicating your present address (and your old address
if you have moved since ordering the QL) and giving any details you can about the
nature of the fault which it has developed

If your QL is faulty it will be repaired or replaced at Sinclairs option free of charge within
the guarantee period

one or more of the software packages fads to load, but at least one cartridge loads and IF
runs successfully

the cartridges which you have are probably faulty and not the QL Whether you bought THEN
the QL from a shop or by mail order from Sinclair Research Limited please return the
faulty QL program cartndge(s) in its protective case to

Sinclair Research Limited

Stanhope Road Camberley
Surrey GU15 3BR

